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Abstract

Using the simple Stommel 1961 model, we illustrate how emulators can rea-

sonably represent the full sampling space of a non-linear, bimodal system.

This extreme example shows how emulators can be useful to explore the

parameter space (initial conditions, process parameters, and boundary con-

ditions) of a complex computer model such as ocean and climate general

circulation models, even when the model outcomes contain steps in their

response. In addition, we show that the emulator can help to elucidate inter-

actions between parameters as well as help in the calibration of parameter

values for specific outcomes and in the determination of uncertainty in the

prediction of outcomes.
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1. Introduction

Statistical emulators have been used to understand models and their pa-

rameter space in a wide set of applications. An established community uses
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the advanced statistical methods of designed experiments combined with em-

ulators to study and analyze computer simulations of complex phenomena.

Applications include computational physics for nuclear weapons, models use

in support of exploring oil fields, issues in aircraft engine design, weather pre-

diction and climate science (Higdon et al., 2004; Williams et al., 2006; Sansó

et al., 2008; Sansó & Forest, 2009). All of them contain similar requirements,

that is, the necessity to calibrate input parameters or a need to estimate the

uncertainty of a prediction (O’Hagan, 2006). An example of an application of

the method in a complex simulation more akin to ocean/atmosphere general

circulation models is described in the recent cosmology paper of Heitmann

et al. (2006). In that paper, uncertainties and sensitivities of the underlying

model’s parameter space were explored through the use of an emulator and

calibrated with respect to recent observations of the large-scale structural

statistics of the cosmos. Emulators are extremely adaptable ways of ana-

lyzing the structure of a non-linear simulation. However, they do make an

assumption that the relationship between the model inputs and outputs are

fairly smooth.

A question is often asked: can emulators of strongly non-linear models be

generated successfully, especially models that result in bimodal outcomes of a

specific system? To address this, we examine the use of emulators as applied

to a simple dynamical simulator, the classical Stommel box model (Stommel,

1961). (Note: the word simulator is used rather than model, to distinguish

the dynamical model or simulator from the statistical model.) This simulator

results in two possible stable states at equilibrium, depending upon the initial

conditions of the system. The output is the result of complex non-linear
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interaction between two variables, temperature and salinity and results in two

states with differing density flux at the end. The paper describes, first, how

the Stommel simulator is set up and used, followed by a section describing

what an emulator is and how it is implemented. Finally, we show the results

of applying the emulator methodology to explore the output space of the

Stommel simulator dependent upon its initial conditions and suggest that the

emulator techniques are a useful methodology to explore process parameters,

initial conditions, and boundary conditions in complex general circulation

models of the ocean, atmosphere, and climate.

2. Experiment Setup

The Stommel box model or simulator consists of 2 boxes: an equatorial

box and a polar box (Figure 1). Each box has a given temperature and

salinity. The density difference between the boxes determines the flux (d)

and is defined as

d = (R∆T −∆S)/λ, (1)

where ∆T is a normalized temperature difference between the two boxes, a

value between 0 and 1 and ∆S is a normalized salinity difference between

0 and 1. R is a measure of the effect of salinity and temperature on the

density. λ is a non-dimensional defined inverse flushing rate. For our test,

we set R = 2, λ = 0.2. Because we want to examine only how an emulator

treats a bimodal problem, we keep R and λ constant and only vary the initial

values of ∆T and ∆S. If we wanted to examine the full range of possible

solutions, we would build an emulator to include how changes in R and λ

influence the solution.
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To evaluate the ability of the emulator to recover the equilibrium flushing

rate, we first run the simulator across a large subset of the possible initial

non-dimensional temperature and salinity difference values from 0 to 1. The

resulting equilibrium density difference field of a uniform sampling of 100

points for each ∆T and ∆S is shown in Figure 2a. It is a spatial map of

the d as a function of ∆T and ∆S. Generally, the flux is either close to -1.07

or close to 0.2. In the classic study, there is an unstable region between the

two stable regimes with a value at around -0.3. Figure 2b shows the time

evolution of temperature differences and salinity differences for several initial

values illustrating the convergence of the ∆T and ∆S towards the two distinct

densities. Figure 2c shows the corresponding plot for density differences,

while Figure 2d illustrates the evolution of the two inputs together against

the distribution of density (contour lines). The task is to create an emulator

which approximates this distribution, using a very limited set of simulations

outcomes.

3. Emulator details

We denote a model or simulator output as Y = F (x), where x is a

vector of tunable inputs and F is the mathematical function being simulated,

linear or non-linear. By making a few runs of the simulator with a carefully

designed set of parameter input values, a small set of known outputs Y for a

given vector x is produced. This set of outputs Y (sometimes referred to as

”training data”) has zero uncertainty. The outputs and parameter settings

are then used to create an emulator, f(x). The emulator reflects the true

value of Y at points x. At other points, we expect the distribution of f(x)
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should give a mean value for F (x) and associated uncertainty that represents

a plausible value of output Y given any vector x. The probability distribution

should be a realistic view of the uncertainty in the simulator.

A Gaussian process (GP) is used for f(x) under the assumption that the

uncertainty in the emulator can be described with such a process. A GP can

be understood as a generalization of a Gaussian distribution over an infinite

vector space. Just as a Gaussian distribution has a mean and variance, a GP

has a mean function and a covariance function. It does not mean that either

the distributions of the input parameters or the final metrics are Gaussian.

Normally the function f is smooth and continuous over its parameter space,

although anything known about the response can be incorporated into the

emulator by how the mean function is defined, including strong nonlinear-

ities and discontinuities. Under such a model, the uncertainty regarding a

response Y at some vector location X is easily obtainable. In the case we are

looking at in this paper, the output Y is not continuous. f(x) is modeled

first by a mean function given by:

m0(x) = h(x)Tβ, (2)

where h(x)T is a vector of q regression functions and β is a vector of q param-

eters. In the case presented in this paper, the mean function is represented

by a simple linear function such that

h(x)T =
(

1 x
)
. (3)

More complex functions can be considered. The Gaussian process then mod-

els the residual, so that the joint distribution of two points, (x1, x2), is also
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normal with the covariance given by

vo(x1, x2) = σ2χ(x1, x2). (4)

χ(x1, x2)is, in the example here, equal to e(−(x1−x2)T B(x1−x2)), a Gaussian

correlation function that assumes stationarity and gives a smooth emulator.

B is a matrix of smoothing parameters normally set to be diagonal. The

bii are smoothing parameters and 1/
√
bii are the correlation length scales.

Since these methods are Bayesian, they can incorporate expert knowledge

(prior knowledge) to define prior distributions of β, σ2, and B. To form the

posterior probability distribution, these prior distributions are combined with

the results of the simulation runs (Y ) in the realization of the emulator. Thus,

we use the regression functions associated with the vector β to determine an

outline of the function f , and the Gaussian process model to emulate the

systematic variation of the response around our values of Y . Parameters

may be constrained by a-priori knowledge of the parameter of interest. For

our test problem, we use a linear prior and a Gaussian covariance function

with non-informative priors for µ and σ2. B is estimated by maximizing

the marginal likelihood; i.e. we estimate the bii by determining their most

probable values, given the data. For further details on the GP emulators see

Oakley & O’Hagan (2004) or the Managing Uncertainty in Complex Models

(MUCM) website at mucm.ac.uk. The advantage of using an emulator is

that it is very quick to compute so can be used instead of the expensive

full simulator for inference. This is not the case for our example where our

simulator is itself fast to run, but our example allows us to easily compare

the emulator to the full output of the simulator.

6



4. Experiment Design

Before showing results, an explanation of the design of the experiment is

described. We set up the design in the following manner. First, we define a

sampling strategy of the initial conditions ∆T or ∆S for n initial simulations.

The resulting emulator is created using the n − 1 outcomes. one simulator

outcome is withheld as a test point. Since we know the outcomes of the

deterministic Stommel model, we can examine the result of our emulator in

terms of the fully sampled initial condition space. In the areas where we be-

lieve the emulator solution to be far from the true solution, we can re-sample

our initial conditions constrained to the area that has a large uncertainty.

Even under the conditions where the full space is unknown, we can still run

sequential and further constrain the initial condition region.

There are several well understood sampling strategies we could follow.

Experimental designs such as the Latin hypercubes (McKay et al., 1979) and

Sobol sequences (Sobol, 1967) minimize the number of runs we need to do

to build an emulator. In the context of statistical sampling, a square grid

containing sample positions is a Latin square if and only if there is only one

sample in each row and each column. A Latin hypercube is the generalization

of this concept to an arbitrary number of dimensions, in that each sample

is the only one in each axis-aligned hyper-plane. Sobol sequences, on the

other hand, discretize space using a base 2 system with some reordering of

the resulting sequence. It is a pseudo-random process. In this paper, we use

Sobol sequences for our design. We conduct a two stage experiment, first, an

initial design for a set of points before using an additional sets of simulations

to refine the emulator.

7



5. Emulator evaluation

Once an emulator has been built, it is necessary to evaluate its quality.

A number of methods have been proposed including some that consider how

far the solution is from independent validation points (Bastos & O’Hagan,

2009). The first step is create a set of one or more validation points that

are not included in the creation of the emulator such that Y represents the

simulation outcomes at the validation locations X. Next, use the emulator to

create a set of predicted outcomes f(X) with its associated variance V (f(X)).

This validation data set then can be used in one of more set of diagnostics.

One of the diagnostics is called the Mahalanobis distance:

DMD(Y ) = [Y − f(X)]TV (f(X))−1[Y − f(X)]. (5)

When DMD(Y ) is extreme (i.e. much greater or much smaller than the

number of points in the validation set), then the emulator solution should

be examined closely to identify regions which need to be improved. This

diagnostic assumes that the solution should be smooth. In our test problem,

we have a jump in the solution and thus, fails the smoothness requirement.

Instead, we can also use a simpler diagnostic. We can estimate the ”skill” of

the emulator by

DI
i (Y ) = [Yi − f(Xi)]/

√
V (f(Xi)), (6)

By plotting the DI values against the location of the validation points, X,

we can examine the locations in parameter space that are contributing large

errors in the emulator solution and decide how to further refine the emulator

for this region of space.
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6. Results and Discussion

We first create an emulator using n = 10 simulations of the Stommel

model which vary in the value for the inputs: ∆T and ∆S. A Sobol sequence

is used to sample the parameter space for each to determine what values of

∆T and ∆S to use. This allows for the initial condition space to be sampled

such that the interactions between the two parameters, ∆T and ∆S will be

sufficiently sampled.

Figure 3 shows plots of two distributions of the density difference field

(d), given two different draws of 9 samples from the 10 member Stommel

simulation set. The white contour line represents the true bimodal separation

line between the two solutions of the dynamical model given a fully sampled

system (see Figure 2a). The open circles represent the outcomes from the

simulator, the Stommel model that are used to create the emulator. The

colored dot, with the embedded black open circle is the 10th outcome, which

should fall within in the emulator space when the emulator is a reasonable

representation of the simulator. If the color matches the background field,

then the excluded point fits the emulator. For the Figure 3a, the excluded

point, located in the top right portion of the field, is some distance from the

emulator estimate as seen by its reddish color with DI = 0.46. This emulator

fails a diagnostic for a good emulator - that is, the distribution of f(x) should

give a mean value for F (x) that represents a plausible value of output Y . In

the second case, Figure 3b, the emulation is more successful because the

excluded point (lower right region) falls within the emulator distribution.

This emulator gives a reasonable estimate for a validation point (DI = 0.13).

Figure 3a and b also show that a large part of the simulator space is void
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of any sample points. The overlaid dashed contour lines show the variance

at any given point, and thus, the uncertainty in its estimate. From the

result of our 9 member ensemble emulation, we can further explore the initial

condition space by sampling the region to the right of ∆S between 0.4 and

1. Even if we didn’t know the underlying distribution of d, we might believe

that with the strong gradient in the initial estimate of the d field, further

sampling of the region with the gradient might be useful to further define the

emulator. For our example, we resample using a simple scheme of choosing

10 addition points between 0.4 and 1 for the ∆S parameter and leave ∆T

to be sampled between 1 and 0 again. Figure 3c is the resulting emulator

density difference field using this expanded set of 19 simulator points. It is

easily seen that the distribution in the emulation space is much closer to the

true spatial distribution of the outcome d. (The validation point has a DI

of close to 0.) The variance of the emulated solution is also reduced in the

Figure 3c with the additional simulator points. There is a shift in location

of the high (0.22) bimodel region. It is shifted so that it is more contained

within the white contour that denotes the true division between the regimes.

This is to be expected because of the additional points within that area that

are being used to create the emulator from the simulator output locations.

This illustrates the use of a sequential design process to explore regions of

high uncertainty.

The sampling characteristics on an emulator solution can also be shown

by using a Sobol sequence of n = 40 rather than 10. Using 39 of the 40

simulator outputs, we created an emulator with its solution shown in Figure

4a. It shows a much more realistic representation of the expected density
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space over all the possible ∆T and ∆S values. The 40th point, not included

in the emulator creation, is located at about 0.18 and 0.81 with the thinner

black circle. The white curve is the true curve which delineates the two

stable solutions. Figure 4b shows the same figure, but with areas that are

not within two standard deviations of mid point (-0.42) of the two solutions.

(The dashed lines represent the variance distribution.) Ideally, we would

want the emulator solution, represented by the solid black line to lie on the

red line, the truth. If not that, then a very successful emulator would have

the colored shaded region contain the red curve. As this figure shows, this

emulator has produced a region that is overconfident around ∆S = 0.4 and

∆T between 0.35 and 0.55, as well as under confident in the areas with

large spread about the black contour. We might also want to further sample

the left and bottom right corner regions, because of their particularly high

variance.

Figure 4b can also be used to estimate the probability that this system will

flip from one stable regime to another. For example, if we had a ∆S = 0.9 and

a ∆T = 0.35, we could give an estimate with an associated uncertainty that

the system will flip if the ∆T value increases to 0.4. While this simulator

and its emulator are straight forward to understand, a system with more

parameters and more complexity will add additional complications towards

understanding such predictions. However, this type of methodology allows

us to explore the space in a systematic manner. The DI values for a set

of 100 validations is shown in Figure 4c, along with the black contour line

separating the the two states of the model. It is clear that the points that

have the least skill (values greater than +/- 2) are in the region where the

11



jump between the two states occur. We would expect such a result, given

the extreme nature of the non-linearity. This can be quantified also using the

DMD diagnostic. When using all the 100 validation points, DMD ≈ 10, 000.

If we remove from the calculation, those points with the greatest uncertainty,

(DI > 2, and marked by a black dot on Figure 4c), then DMD = 92.8 for this

set of 81 points. This is what we would expect for a reasonable emulation.

Last, we show the sensitivity of the solution (d) to each of the input

parameters (∆T and ∆S) in Figure 5. Figure 5 explicitly illustrates the

division between the influence of the initial conditions of the temperature

and salinity differences on the outcome. It shows the response of one of

the two inputs, given the other input is held constant at 0.5. For ∆T, the

important shift is between 0.2 and 0.3, while the salinity shift is between 0.4

and 0.5. Again, while these relationships can be easily seen with the model

without the emulator, the plot is shown to illustrate how input parameters

relate to one another and how one can determine the importance of one

variable over another and the interaction between the multiple variables.

7. Conclusion

This test problem illustrates how emulators can be useful to explore as-

pects of complex models when the resources are not available to run thou-

sands of simulations. It is an extreme illustration, in that most systems will

not have distinct bimodal regimes, but rather more continuous solutions that

have less stringent fitting requirements. These emulators, thus, should prove

useful to explore the full space of complex simulations (such as atmosphere-

ocean general circulation models, AOGCMs) including its parameters, initial
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conditions, and/or boundary spaces. These AOGCMs, especially in the con-

text of climate projections or seasonal forecasts would benefit from such an

exploration of their space through the use of emulators.
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Figure 1: Stommel’s 2-box model with T1, T2, S1, S2 as the mean values of each box. The

density difference represents flux between the boxes.
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Figure 2: a) Distribution of density difference from Stommel model, illustrating the two

states given the full sampling of ∆T and ∆S. b) 10 pairs of ∆T and ∆S evolving in time,

given different starting values. c) density difference with time d) Trajectories of ∆T and

∆S. Stars indicate ending 2 points, one low at about -1.07 and the second around +.23 in

density difference space.

16



Figure 3: a) Emulator estimate of density difference (d) distribution with n = 9 and 1

unused simulator output result (red dot in top right hand corner); 9 simulator points

denoted by open dots and filled dot is the one not included in emulator estimate. b) same

as a) but the simulator point not used by the emulator is in the lower right corner; a blue

dot with thin line. c) is the same as b) + 10 additional simulator outputs used to create

the emulator. Dashed lines in all the plots are the variance of the output. The variance

or uncertainty is higher for the fields that used only 9 simulator points in the emulator

creation.
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Figure 4: a) Emulator estimate of density difference(d) with n = 39 and 1 unused simulator

output result, 39 points denoted by open dots. b) Same as a) except only the f(x) within

2 standard deviations of the mid-point are shaded. Contour lines for 1) true division

between low and high density difference states (red contour), and 2) relative variance for

emulator estimates. c) DI for a set of 100 validation points with the black dots indicating

points excluded from DMD calculation. Contour line indicates step between two outcomes

of the dynamical system.
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Figure 5: The sensitivity of the output metric, the density difference (d), to the input

parameters (∆S and ∆T).
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