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Excluded-volume effects can play an important role in determining transport properties in diffu-
sion of particles through crowded environments. Here, the diffusion of finite-sized hard-core inter-
acting particles is considered systematically using the method of matched asymptotic expansions.
The result is a nonlinear diffusion equation for the one-particle distribution function, with crowding
effects enhancing the overall diffusion rate. Stochastic simulations of the full particle system are
shown to compare well with the solution of this equation for two examples.
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Recently there has been an increasing interest in un-
derstanding particle transport in crowded environments
[1]. Crowding is important in many biological processes,
including diffusion through ion channels [2], inside the
cell cytoplasm (macromolecular crowding) [3–5] and in
chemotaxis [6], and can have a significant impact on the
thermodynamics and kinetics of biological processes such
as macromolecular reaction rates and the folding of pro-
teins [3–5, 7]. Finite-size effects are also important when
considering the combustion of powders [8], collective be-
haviour (e.g. animal flocks) [9] and granular gases [10].

Excluded-volume or steric interactions arise from the
mutual impenetrability of finite-size particles (see Fig.
1). For one-dimensional configurations, such as chan-
nels, the single-file diffusion of hard-core particles can be
solved exactly by mapping it to the classical diffusion of
point-particles [11, 12]. However, the situation in higher
dimensions is more challenging.
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FIG. 1. (color online). Excluded (red and black) and available
(blue) area in a solution of black particles for the placement of
an additional test particle. (a) The area available with point
particles is the whole domain. (b) The area available (to the
center of the test particle) with finite-size particles is reduced.
Modified from Minton [7].

Batchelor [13] models Brownian diffusion of particles
with hydrodynamic interaction using generalized Ein-
stein relations to find a concentration dependent correc-
tion to the diffusion coefficient. Felderhof [14] consid-
ers the same problem through an analysis of the Fokker-
Planck equation, and includes both excluded volume and
hydrodynamic effects. His analysis is based on the ther-
modynamic limit (in which the number of particles N

and the system volume V tend to infinity, with the con-
centration N/V fixed), and is valid only for a small per-
turbation from the equilibrium concentration.

Muramatsu and Minton [15] use a simple model to cal-
culate the diffusion coefficient of hard spheres by estimat-
ing the probability that the target volume for a step in
a random walk is free of any macromolecules. Other au-
thors model excluded volume phenomenologically by in-
troducing a particle pressure, and an equation of state in
which the compressibility is reduced as the concentration
increases [16].

Another popular approach is to consider lattice mod-
els, in which a particle can only move to a site if it is
presently unoccupied. Such an approach is used to model
diffusion of multiple species with size exclusion effects in
[17] or to model the effect of crowding on diffusion-limited
reaction in [18].

The preceding approaches are all either phenomeno-
logical in nature, restricted to small perturbations from
a uniform concentration, or based on the thermodynamic
limit in which the number of particles tends to infinity.
Here we consider a finite number of finite-sized particles
diffusing in a box of fixed size. We perform an asymp-
totic analysis of the associated Fokker-Planck equation
in the limit that the volume fraction of particles is small.
Our analysis is systematic, using the method of matched
asymptotic expansions, but is not appropriate for con-
centrations close to the jamming limit.

In order to focus on steric effects, we suppose that there
are no electrostatic or hydrodynamic interaction forces
between particles. We work in d dimensions, where d is
either 2 or 3. Thus our starting point is a system of N
identical hard core diffusing and interacting spheres (or
disks), each with constant diffusion coefficient D and di-
ameter K, in a bounded domain Ω in R

d of typical diam-
eter L. By nondimensionalizing length with L and time
with L2/D, the size of the domain and the diffusion coef-
ficient may be normalized to unity, while the diameter of
the particles becomes ǫ = K/L. We assume that the par-
ticles occupy a small volume fraction, so that Nǫd ≪ 1.
We denote the centres of the particles by Xi(t) ∈ Ω at
time t ≥ 0, where 1 ≤ i ≤ N [19]. Each centre evolves
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according to the stochastic differential equation (SDE)

dXi ≡
√

2 dBi + fi dt, 1 ≤ i ≤ N, (1)

where the Bi are N independent d-dimensional stan-
dard Brownian motions and fi is the external force on
the i th particle. In general this force may include both
inter-particle and external interactions, such as electro-
magnetic, friction, convection and potential forces, in
which case fi depends on the positions of all the particles
~X = (X1, . . . ,XN ). While soft-core steric effects can also
be built into fi, hard-core collisions can be more easily
expressed as reflective boundary conditions on the “col-
lision surfaces” r = ||Xi −Xj || = ǫ, with 1 ≤ i < j ≤ N .
Since we are focussing on hard-core particle interactions,
we restrict ourselves to other external forces of the form

~F ( ~X) = [f(X1), . . . , f(XN )], (2)

where f : Ω → R
d acts identically on all N particles. We

suppose that the initial positions Xi(0) are independently
identically distributed.

Let P (~x, t) be the joint probability density function of
the N particles. Then, by the Itô formula, P (~x, t) evolves
according to the linear Fokker-Planck partial differential
equation (PDE)

∂P

∂t
= ∇~x ·

[

∇~x P − ~F (~x)P
]

in ΩN
ǫ , (3a)

where ∇~x and ∇~x· respectively stand for the gradient and
divergence operators with respect to the N -particle po-
sition vector ~x = (x1, . . . ,xN ) ∈ ΩN . Note that because
of steric effects, (3) is not defined in ΩN but in its “hol-
low form” ΩN

ǫ = ΩN \ Bǫ, where Bǫ = {~x ∈ ΩN : ∃i 6=
j such that ||xi − xj || ≤ ǫ} is the set of all illegal con-
figurations (with at least one overlap). On the collision
surfaces ∂ΩN

ǫ we have the reflecting boundary condition
[

∇~x P − ~F (~x)P
]

· ~n = 0 on ∂ΩN
ǫ , (3b)

where ~n ∈ SdN−1 denotes the unit outward normal.
Although linear, the PDE model (3) is very high-

dimensional, and it is impractical to solve it directly.
Since all the particles are identical and P is invariant to a
switch of particle labels, we are interested mainly in the
marginal distribution function of the first particle, given
by p(x1, t) =

∫

P (~x, t) dx2 . . . dxN . We aim to reduce
the high-dimensional PDE for P to a low-dimensional
PDE for p through a systematic asymptotic expansion
as ǫ → 0. In the particular case of point-particles (ǫ = 0)
the model reduction is straightforward. In this case the
N particles are independent and the domain is ΩN

ǫ ≡ ΩN

(no holes), which implies that the internal boundary con-

ditions in (3b) vanish. Therefore P (~x, t) =
∏N

i=1 p(xi, t),
and

∂p

∂t
(x1, t) = ∇x1

· [∇x1
p − f(x1) p] in Ω, (4a)

0 = [∇x1
p − f(x1) p] · n̂1 on ∂Ω, (4b)

where n̂1 is the outward unit normal to ∂Ω.
When ǫ > 0, the internal boundary conditions in (3b)

mean the particles are no longer independent. When we
integrate (3) over x2, . . ., xN and apply the divergence
theorem we end up with surface integrals over the colli-
sion surfaces, on which P must be evaluated. However,
when the particle volume fraction is small, the volume
in ΩN

ǫ occupied by configurations in which three or more
particles are close is small [O(ǫ2dN2)] compared to those
in which two particles alone are in proximity [O(ǫdN)].
Thus the dominant contribution to these “collision in-
tegrals” corresponds to two-particle collisions. We illus-
trate our approach for N = 2; since two-particle collisions
dominate the extension to arbitrary N is straightforward.

For two particles at positions x1 and x2, Eq. (3a) reads

∂P

∂t
(x1,x2, t) = ∇x1

· [∇x1
P − f(x1)P ]

+ ∇x2
· [∇x2

P − f(x2)P ] , (5a)

for (x1,x2) ∈ Ω2
ǫ , and the boundary condition (3b) reads

[∇x1
P − f(x1)P ] · n̂1 + [∇x2

P − f(x2)P ] · n̂2 = 0, (5b)

on xi ∈ ∂Ω and ||x1 −x2|| = ǫ. Here n̂i = ni/|ni|, where
ni is the component of the normal vector ~n corresponding
to the i−th particle, ~n = (n1,n2). We note that n̂1 = 0
on x2 ∈ ∂Ω, and that n̂1 = −n̂2 on ||x1 − x2|| = ǫ.

We denote by Ω(x1) the region available to particle 2
when particle 1 is at x1, namely Ω(x1) = Ω\Bǫ(x1). Note
that when the distance between x1 and ∂Ω is less than ǫ
the area |Ω(x1)| increases. This creates a boundary layer
of width ǫ around ∂Ω where there exists a wall-particle-
particle interaction (three-body interaction). Since the
dimensions of the container are much larger than the par-
ticle diameter these interactions are higher-order and we
may safely ignore them and take |Ω(x1)| constant [20].
Integrating Eq. (5a) over Ω(x1) yields

∂p

∂t
(x1, t) = ∇x1

· [∇x1
p − f(x1) p]

+

∫

∂Bǫ(x1)

[f(x1)P − 2∇x1
P −∇x2

P ] · n̂2 dS2 (6)

+

∫

∂Ω∪∂Bǫ(x1)

[∇x2
P − f(x2)P ] · n̂2 dS2

The first integral in (6) comes from switching the order
of integration with respect to x2 and differentiation with
respect to x1 using the transport theorem; the second
comes from using the divergence theorem on the deriva-
tives in x2. Using (5b) and rearranging we find

∂p

∂t
(x1, t) = ∇x1

· [∇x1
p − f(x1) p]

+

∫

∂Bǫ(x1)

{−2∇x1
P + P [f(x1) − f(x2)]} · n̂2 dS2. (7)

Because the pairwise particle interaction is localized
near the collision surface ∂Bǫ(x1) we can determine it
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using the method of matched asymptotic expansions
[21]. We suppose that when two particles are far apart
(||x1 − x2|| ≫ ǫ) they are independent, whereas when
they are close to each other (||x1−x2|| ∼ ǫ) they are cor-
related. We designate these two regions of configuration
space the outer region and inner region, respectively.

In the inner region, we set x1 = x̃1 and x2 = x̃1 + ǫx̃
and define P̃ (x̃1, x̃, t) = P (x1,x2, t) to give

ǫ2
∂P̃

∂t
(x̃1, x̃, t) = 2∇2

x̃
P̃ − ǫ2∇

x̃1
·
[

f(x̃1)P̃
]

+ ǫ2∇2
x̃1

P̃

+ ǫ∇
x̃
·
{

[f(x̃1) − f(x̃1 + ǫx̃)] P̃
}

− 2ǫ∇
x̃1
·∇

x̃
P̃ , (8a)

with

2x̃ · ∇
x̃
P̃ = ǫ x̃ ·

{

∇
x̃1

P̃ + [f(x̃1 + ǫx̃) − f(x̃1)] P̃
}

, (8b)

on ||x̃|| = 1. Here we assume that x̃1 is not close to ∂Ω;
the region in which the particles are close to each other
and the boundary is even smaller, and will affect only the
higher-order terms. In addition to (8b) the inner solution
must match with the outer solution as x̃ → ∞. In the
outer region, by independence,

P (x1,x2, t) = q(x1, t)q(x2, t),

for some function q(x, t). The normalization condition
on P gives q(x1, t) = p(x1, t) + O(ǫd). Expanding this
outer solution in inner variables gives

P (x1,x2, t) = q(x̃1, t)q(x̃1 + ǫx̃)

∼ q2(x̃1, t) + ǫq(x̃1) x̃ · ∇
x̃1

q(x̃1) + · · · . (8c)

Expanding P̃ in powers of ǫ, and solving (8b), (8b) with
the matching condition (8c) we find that the solution in
the inner region is simply

P̃ (x̃1, x̃, t) ∼ q2(x̃1, t) + ǫq(x̃1) x̃ · ∇
x̃1

q(x̃1) + · · · . (9)

Using this solution to evaluate the integrals in (7) we
find, to O(ǫd),

∂p

∂t
(x1, t) = ∇x1

·
[

∇x1

(

p + αdǫ
dp2

)

− f(x1) p
]

, (10)

where α2 = π/2 and α3 = 2π/3. The extension from two
particles to N particles is straightforward up to O(ǫd),
since at this order only pairwise interactions need to be
considered. Particle 1 has (N − 1) inner regions, one
with each of the remaining particles. A similar procedure
shows that the marginal distribution function satisfies

∂p

∂t
(x1, t) = ∇x1

·
{

∇x1

[

p + αd(N−1)ǫdp2
]

− f(x1) p
}

,

(11a)

0 = [∇x1
p − f(x1) p] · n1 on ∂Ω. (11b)

We see that steric interactions lead to a concentration-
dependent diffusion coefficient, with the additional term
proportional to the excluded volume. Equation (11a) is

consistent with that derived by Felderhof [14], but ex-
tends it to situations in which p is not close to uniform.

In (11) we have only included the leading-order non-
linear term due to steric effects. There will be correction
terms of O(ǫd+1N) due to higher-order terms in the two-
particle inner solution (9), as well as new inner regions
where three particles [O(ǫ2dN2)], or two particles and the
boundary [O(ǫd+1N)], are close. Because our asymptotic
expansion is systematic, these correction terms could in
principle be calculated.

In order to assess the validity of (11) we compare its
solution p(x1, t) (obtained by a simple finite difference
method) with Monte Carlo (MC) simulations of the 2N -
coupled SDE (1) in two dimensions. The particle-particle
(and particle-wall) overlaps are treated as in [22]. To test
the importance of steric interactions, we also compare
with the corresponding solutions with ǫ = 0.

FIG. 2. (color online). Marginal distribution function p(x1, t)
at time t = 0.05 with normally distributed initial data and
N = 400. (a) Solution p(x1, t) of (4) for point particles (ǫ =
0). (b) Histogram for ǫ = 0. (c) Solution p(x1, t) of (11) for
finite-sized particles (ǫ = 0.01). (d) Histogram for ǫ = 0.01.
Histograms computed from 104 realizations of (1) with ∆t =
10−5. All four plots have the same color bar.

In Fig. 2 we show the results of a time-dependent sim-
ulation with f ≡ 0, Ω = [− 1

2 , 1
2 ]2, ǫ = 0.01, N = 400,

for which the initial distribution is a Gaussian of zero
mean and variance 0.05 (normalized so that its integral
over Ω is one); the figures correspond to time t = 0.05.
The simulation time-step ∆t is chosen such that almost
no collisions are missed. The theoretical predictions for
both point and finite-size particles compare very well
with their simulation counterparts, while steric effects
are clearly appreciable even though the volume fraction
of particles is only 0.0314. The initial profile spreads
faster when steric effects are included [Fig. 2(c)] than
when they are not [Fig. 2(a)], indicating that the overall
diffusion is enhanced.
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When the force field f is the gradient of a potential,
f(x1) = −∇x1

V (x1), we may write ∂p
∂t

+ ∇x1
· (pu) = 0,

with u = −∇x1

[

log p + 2αd(N − 1)ǫdp + V (x1)
]

. Then
the stationary distribution, which we denote ps(x1), is
obtained by solving [23]

log ps(x1) + 2αd(N − 1)ǫdps(x1) + V (x1) = C, (12)

with the constant C determined by the normalisation
condition on ps. For our second example we consider
the volcano-shaped potential V (x1) = −4.77 e−100||x1||

2

+

3.58 e−50||x1||
2

and we compare the stationary distribu-
tion ps predicted by (12) with simulations using the
Metropolis-Hastings (M-H) algorithm [24]. Figure 3
shows the model and simulation results with N = 1000
and Ω and ǫ as in Fig. 2 for both point and finite-size
particles. In this case there is competition between the
potential well and steric repulsion: the particle density
inside the well is reduced for finite-size particles. Again,
the agreement between the model (12) and the stochastic
simulations is excellent.

FIG. 3. (color online). Stationary marginal distribution func-
tion ps(x1) under the external potential V for point particles
and finite-size particles, with N = 1000. (a) Point particles,
ps ∝ e−V . (b) Histogram for ǫ = 0. (c) Finite-size particles ps

from (12) (ǫ = 0.01). (d) Histogram for ǫ = 0.01. Histograms
computed with 109 steps of the M-H algorithm. All four plots
have the same color bar.

We have derived systematically a nonlinear diffusion
equation which describes steric interactions in the limit
of small but finite particle volume fraction. Our method
justifies for example the ansatz made in [25] to account
for the finite size of the cells and prevent aggregation, and
unlike [14, 26] does not rely on a closure assumption.

The method was implemented here in its simplest set-
ting (hard-core identical spherical particles with an exter-
nal potential) but it can be extended in many directions.
Particles of different size or shape could easily be incorpo-

rated, while the hard-core interaction between particles
can be replaced by any short-range soft-core interaction.

On the other hand, incorporating long range effects
such as chemotaxis or electrostatic interactions is more
challenging; in such cases a system size expansion is likely
to be needed in addition to a small particle expansion.

MB expresses her cordial thanks to the Isaac New-
ton Institute for Mathematical Sciences for its hospitality
during the preparation of the present paper. MB holds
an EPSRC studentship.
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