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Abstract. We consider the continuous version of the Vicsek model with noise, proposed as a
model for collective behavior of individuals with a fixed speed. We rigorously derive the kinetic
mean-field partial differential equation satisfied when the number N of particles tends to infinity,

quantifying the convergence of the law of one particle to the solution of the PDE. For this we
adapt a classical coupling argument to the present case in which both the particle system and
the PDE are defined on a surface rather than on the whole space Rd. As part of the study we
give existence and uniqueness results for both the particle system and the PDE.

Introduction

The stochastic Vicsek model [13] arises in the study of collective motion of animals and it
is receiving lots of attention due to the appearance of a phase transition [2, 9]. A continuum
version and variants of this model have been proposed in the recent works [5, 4]. Our objective
is to rigorously derive some continuum partial differential equations analysed in [5] from the
stochastic Vicsek particle model. This was carried out for a family of collective behaviour models
in [1] following the method of [12]. The present models do not fall into this analysis due to the
evolution being defined on a surface as we explain next. In the models considered here, individuals
are assumed to move with a fixed cruising speed trying to average their orientations with other
individuals in the swarm in the presence of noise. This orientation mechanism is modelled by
locally averaging in space their relative velocity to other individuals. More precisely, we are
interested in the behaviour of N interacting R

2d-valued processes (Xi
t , V

i
t )t≥0 with 1 ≤ i ≤ N

with constant speed |V i
t |, say unity. We define them as solutions to the coupled Stratonovich

stochastic differential equations














dXi
t = V i

t dt,

dV i
t =

√
2P (V i

t ) ◦ dBi
t − P (V i

t )





1

N

N
∑

j=1

K(Xi
t−Xj

t )(V
i
t − V j

t )



 dt.
(1)

Here P (v) is the projection operator on the tangent space at v/|v| to the unit sphere S
d−1 in R

d,
i.e.,

P (v) = I − v ⊗ v

|v|2 .

This stochastic system is considered with independent and commonly distributed initial data
(Xi

0, V
i
0 ) ∈ R

d × S
d−1 with 1 ≤ i ≤ N . The (Bi

t)t≥0 denote N independent standard Brownian
motions in R

d. The projection operator ensures that V i
t keeps constant norm, equal to 1. The

second term in the evolution of V i
t models the tendency of the particle i to have the same orientation

as the other particles, in a way weighted by the interaction kernel K, as in the model proposed by
F. Cucker and S. Smale [3]. Let us observe that P (V i

t )V
i
t = 0, so we can drop the corresponding

term when writing (1) to recover the usual formulations as in [5].
We will work with stochastic processes defined on R

2d instead of Rd×S
d−1. We will check later

on that solutions of (1) with initial data in R
d ×S

d−1 remain there for all times. We have written
(1) in the Stratonovich sense, since the term involving noise corresponds to Brownian motion on
the sphere S

d−1 as in [10, Section 1.4] and [11, Section V.31].
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By symmetry of the initial configuration and of the evolution, all particles have the same
distribution. Even though they are initially independent, correlation builds up in time due to the
interaction term. Nevertheless, this interaction term is of order 1/N, and thus, it seems reasonable
that two of these interacting particles (or a fixed number k of them) become less and less correlated
as N gets large (propagation of chaos).

Following [12] we shall show that the N interacting processes (Xi
t , V

i
t )t≥0 respectively behave

as N → ∞ like the auxiliary processes (X
i

t, V
i

t)t≥0, solutions to










dX
i

t = V
i

t dt,

dV
i

t =
√
2P (V

i

t) ◦ dBi
t − P (V

i

t)(H ∗ ft)(X
i

t, V
i

t) dt,

(X
i

0, V
i

0) = (Xi
0, V

i
0 ), ft = law(X

i

t, V
i

t)

(2)

in the Stratonovich sense. Here the Brownian motions (Bi
t)t≥0 are those governing the evolution

of the (Xi
t , V

i
t )t≥0 and

(H ∗ f)(x, v) =
∫

R2d

K(x− x′) (v − v′) f(x′, v′) dx′ dv′, x, v ∈ R
d .

Note that (2) consists of N equations which can be solved independently of each other. Each of

them involves the condition that ft is the distribution of (X
i

t, V
i

t), thus making it nonlinear. The

processes (X
i

t, V
i

t)t≥0 with i ≥ 1 are independent since the initial conditions and driving Brownian
motions are independent.

We will show that these processes defined on R
2d are identically distributed, take values in

R
d × S

d−1 if initially so, and their common law ft at time t, as a measure on R
d × S

d−1, evolves
according to

∂tft + ω · ∇xft = ∆ωft +∇ω ·
(

ft(I − ω ⊗ ω)(H ∗ ft)
)

, t > 0, x ∈ R
d, ω ∈ S

d−1. (3)

Now the convolution H ∗ f is over Rd × S
d−1:

(H ∗ f)(x, ω) =
∫

Rd×Sd−1

K(x− x′) (ω − ω′) f(x′, ω′) dx′ dω′, x ∈ R
d, ω ∈ S

d−1 .

Moreover, ∇x stands for the gradient with respect to the position variable x ∈ R
d whereas ∇ω,

∇ω· and ∆ω respectively stand for the gradient, divergence and Laplace-Beltrami operators with
respect to the velocity variable ω ∈ S

d−1.
This equation is proposed in [4] as a continuous version of the original Vicsek model [13], and one

of our purposes is to make this derivation rigorous. The asymptotic behavior and the appearance
of a phase transition in the space-homogeneous version of (3) (i.e., without the space variable) has
been recently studied in [7]. It is also known as the Doi-Onsager equation, introduced by Doi in
[6] as a model for the non-equilibrium Statistical Mechanics of a suspension of polymers in which
their spatial orientation (given by the parameter ω ∈ S

d−1) is taken into account.

The main result of this paper can be summarized as:

Theorem 1. Let f0 be a probability measure on R
d × S

d−1 with finite second moment in x ∈ R
d

and let (Xi
0, V

i
0 ) for 1 ≤ i ≤ N be N independent variables with law f0. Let also K be a Lipschitz

and bounded map on R
d. Then,

i) There exists a pathwise unique global solution to the SDE system (1) with initial data

(Xi
0, V

i
0 ) for 1 ≤ i ≤ N ; moreover, the solution is such that all V i

t have norm 1.
ii) There exists a pathwise unique global solution to the nonlinear SDE (2) with initial datum

(Xi
0, V

i
0 ); moreover, the solution is such that V

i

t has norm 1.
iii) There exists a unique global weak solution to the nonlinear PDE (3) with initial datum f0.

Moreover, it is the law of the solution to (2).

Solutions to general SDE’s can be built in submanifolds of Rd by means of the Brownian motion
of the ambient space as in [11, Theorem V.34.86] for instance; then one can interpret the generator
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in terms of the corresponding Laplace-Beltrami operator. For example, the Brownian motion on
a submanifold Σ of Rd is the solution to the SDE

dWt = PΣ(Wt) ◦ dBt

on R
d and with PΣ(w) being the orthogonal projection of Rd onto the tangent space at w to Σ.

Here, we give the full construction and derivation of the evolution of the law as it can be done
explicitly in the case of the sphere Sd−1. Let us also emphasize that we have only partial diffusion
since it is a kinetic model.

We observe that existence of L2 and classical solutions for the space-homogeneous version of
(3) has also been considered in [7].

As a direct consequence of the classical Sznitman’s theory, we get the following mean-field limit
result:

Theorem 2. With the assumptions of Theorem 1 and for the respective solutions (Xi
t , V

i
t )t≥0 and

(X
i

t, V
i

t)t≥0 of (1) and (2), for all T > 0 there exists a constant C such that

E

[

|Xi
t −X

i

t|2 + |V i
t − V

i

t|2
]

≤ C

N

for all 0 ≤ t ≤ T , N ≥ 1 and 1 ≤ i ≤ N .

This estimate classically ensures quantitative estimates on (see [12, 1] for details)

i) the convergence in N of the law at time t of any (by symmetry) of the processes (Xi
t , V

i
t )

towards ft,
ii) the propagation of chaos for the particle system through the convergence of the law at

time t of any k particles towards the tensor product f⊗k
t (for k fixed or k = o(N)),

iii) the convergence of the empirical measure at time t of the particle system towards ft.

Of course, the same techniques lead to a corresponding mean-field limit result for the space-
homogeneous particle system instead of (1), obtaining the corresponding space-homogeneous PDE.

Proofs

Using the standard Itô-Stratonovich calculus, see [8, p. 99] for instance, equations (1) and (2)
are respectively equivalent to the Itô stochastic differential equations















dXi
t = V i

t dt,

dV i
t =

√
2P (V i

t )dB
i
t − P (V i

t )





1

N

N
∑

j=1

K(Xi
t−Xj

t )(V
i
t − V j

t )



 dt− (d− 1)
V i
t

|V i
t |2

dt .
(4)

and






















dX
i

t = V
i

t dt,

dV
i

t =
√
2P (V

i

t)dB
i
t − P (V

i

t)(H ∗ ft)(X
i

t, V
i

t) dt− (d− 1)
V

i

t

|V i

t|2
dt,

(X
i

0, V
i

0) = (Xi
0, V

i
0 ), ft = law(X

i

t, V
i

t)

(5)

which we now consider.

We start with the proof of Theorem 1. We use a regularization of the diffusion and drift
coefficients. We let σ1 be a d× d matrix valued map on R

d with bounded derivatives of all orders
such that σ1(v) = P (v) for all v with |v| ≥ 1/2, and σ2 and σ3 be maps on R

d, again with bounded
derivatives of all orders, such that σ2(v) = v/|v|2 if |v| ≥ 1/2 and σ3(v) = v if |v| ≤ 2.
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Existence and uniqueness for the particle system (4). Given such σ1, σ2, the system of
equations















dXi
t = V i

t dt,

dV i
t =

√
2σ1(V

i
t ) dB

i
t − σ1(V

i
t )





1

N

N
∑

j=1

K(Xi
t−Xj

t )(V
i
t − V j

t )



dt− (d− 1)σ2(V
i
t )dt

(6)

starting from (Xi
0, V

i
0 ) ∈ R

d × S
d−1 for 1 ≤ i ≤ N has locally Lipschitz coefficients. Moreover, by

the Itô formula and as long as |V i
t | ≥ 1/2,

d|V i|2 = 2
√
2V i · P (V i)dBi − 2V i · P (V i)





1

N

N
∑

j=1

K(Xi −Xj)(V i − V j)



 dt

−2 (d− 1)dt+ 2

d
∑

k,l=1

δkl d

〈

Bi
k −

d
∑

p=1

V i
kV

i
p

|V i|2 B
i
p , B

i
l −

d
∑

q=1

V i
l V

i
q

|V i|2 B
i
q

〉

= −2 (d− 1)dt+ 2

d
∑

k=1

[

1− 2
(V i

k )
2

|V i|2 +

d
∑

p=1

(V i
p )

2(V i
k )

2

|V i|4

]

dt = 0.

Here we dropped the time dependence, wrote y = (y1, . . . yd) ∈ R
d and used the fact that V i ·

P (V i)y = 0 for all vectors y ∈ R
d. Hence |V i

t | = 1 up to explosion time. Since moreover
dXi

t = V i
t dt, this ensures that the explosion time is infinite, hence global existence and pathwise

uniqueness for (6).
Now the solution to (6) for given σ1, σ2 is a solution to (4) since all velocities have norm 1,

which provides global existence of solutions to (4). If now we consider two solutions to (4) for the
same initial data and Brownian motions, then they have velocities equal to 1, so that are solutions
to (4) for any σ1, σ2, for which pathwise uniqueness holds: hence they are equal. This proves the
first part in Theorem 1.

Existence and uniqueness for the artificial processes (5). Let σ1, σ2, σ3 be any maps as
above and let

Hσ3
[f ](x) =

∫

R2d

K(x− y)σ3(v − w) f(y, w) dy dw.

Then, given a distribution f0 on R
d × S

d−1 with finite second moment in x ∈ R
d and (X0, V 0)

with law f0, the nonlinear equation










dXt = V t dt,

dV t =
√
2σ1(V t)dBt − σ1(V t)(Hσ3

∗ ft)(Xt, V t)dt− (d− 1)σ2(V t)dt,

ft = law(Xt, V t)

(7)

has bounded and Lipschitz coefficients on R
2d, so admits a pathwise unique global solution ac-

cording to [12, Theorem 1.1]. Moreover, as long as |V t| ≥ 1/2, then we can repeat the argument
above to prove that d|V t|2 = 0, so that |V t| = 1 for all time. In particular the obtained solution
(Xt, V t)t≥0 is a global solution to the genuine nonlinear equation (5). Pathwise uniqueness of
solutions to (5) can be obtained as for (4).

Existence and uniqueness for the PDE (3). Let f0 be a distribution on R
d×S

d−1 with finite
second moment in x ∈ R

d, (X0, V 0) with law f0, and let (Xt, V t)t≥0 be the solution to (5) with

initial datum (X0, V 0). Its law ft, as a measure on R
2d, satisfies

d

dt

∫

R2d

ϕdft =

∫

R2d

(

v · ∇xϕ+Hessvϕ : (I − v⊗ v) +∇vϕ · (I − v⊗ v)(H ∗ ft)− (d− 1)v · ∇vϕ
)

dft

for all smooth ϕ on R
2d by the Itô formula; here ∇v and ∆v are respectively the gradient and

Laplace operators with respect to v ∈ R
d, and Hessvϕ : M is the term by term product of the

Hessian with respect to v matrix of ϕ with a matrix M .
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We have observed that |V t| = 1 a.s., so ft is concentrated on R
d × S

d−1. We now define the
restriction Ft of ft on R

d × S
d−1 by

∫

Rd×Sd−1

Φ dFt =

∫

R2d

ϕdft

for all continuous maps Φ on R
d × S

d−1, where ϕ is any continuous and bounded map on R
2d

equal to Φ on R
d × S

d−1. Let now Φ be a C∞
c map on R

d × S
d−1 and ϕ be a C∞

c map on R
2d

such that ϕ(x, v) = Φ(x, v/|v|) for all 1/2 ≤ |v| ≤ 2. Then ϕ is 0-homogeneous in v in the annulus
1/2 ≤ |v| ≤ 2, so that v · ∇vϕ = 0 for all (x, v) in the support of ft. In particular

d

dt

∫

Rd×Sd−1

Φ dFt =
d

dt

∫

R2d

ϕdft =

∫

R2d

(

v · ∇xϕ+∆vϕ+∇vϕ · (I − v ⊗ v)(H ∗ ft)
)

dft.

Then the maps v · ∇xΦ and v · ∇xϕ are equal on R
d × S

d−1 since Φ and ϕ have the same x-
dependence. Moreover, ∇ωΦ = ∇vϕ and ∆ωΦ = ∆vϕ for (x, ω) ∈ R

d × S
d−1. This last point can

be checked by direct computations. Hence

d

dt

∫

Rd×Sd−1

Φ dFt =

∫

Rd×Sd−1

(ω · ∇xΦ+∆ωΦ+∇ωΦ · (I − ω ⊗ ω)(H ∗ Ft)) dFt.

This ensures that Ft is a weak solution to (3).

We now turn to uniqueness of solutions to (3). For that purpose we let f1 and f2 be two
solutions with the same initial datum f0, and at each time t we view them as measures on R

2d

concentrated on the surface Rd×S
d−1. We let (X

1

t , V
1

t )t≥0 and (X
2

t , V
2

t )t≥0 be the solutions to (7)

with drift given by Hσ3
∗ f1

t and Hσ3
∗ f2

t respectively, and common initial datum (X0, V 0) with
law f0. Then their respective laws g1t and g2t , as measures on R

2d, are solutions to the linear PDE

∂tg
i
t + v · ∇xg

i
t =

d
∑

k,l=1

∂2

∂vk∂vl

(

(σ1σ
∗
1)kl g

i
t

)

+∇v ·
[

git
(

σ1 (Hσ3
∗ f i

t ) + (d− 1)σ2

)]

.

Since f i
t is also a measure solution to this linear PDE on R

2d with bounded and regular coefficients,
for which uniqueness classically holds, it follows that git = f i

t (i = 1, 2). Consequently, the

(X
i

t, V
i

t)t≥0 are solutions to the nonlinear SDE (7), for which we have already proved uniqueness.

Hence (X
1

t , V
1

t )t≥0 and (X
2

t , V
2

t )t≥0 are equal, and in particular f1
t (= g1t ) = (g2t =)f2

t .

Proof of Theorem 2. Since |V i
t | = |V i

t| = 1 for all i and t, the processes (Xi
t , V

i
t )t≥0 and

(X
i

t, V
i

t)t≥0 are solutions of the corresponding equations with bounded and Lipschitz diffusion
and drifts coefficients as in (7). Hence we may apply the estimates in [12, Theorem 1.4] to obtain
Theorem 2.
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