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Abstract. We study the locus of intermediate Jacobians of cubic
threefolds within the moduli space A5 of complex principally po-
larized abelian fivefolds, and its generalization to arbitrary genus
— the locus of abelian varieties with a singular odd two-torsion
point on the theta divisor. Assuming that this locus has expected
codimension g (which we show to be true for g ≤ 5, and conjec-
turally for any g), we compute the class of this locus, and of is
closure in the perfect cone toroidal compactification APerf

g , in the
Chow, homology, and the tautological ring.

Finally, we work out the cases of genus up to 5 in detail, ob-
taining explicit expressions for the classes of the closures of the
loci A1 × θnull in APerf

4 and of the locus of intermediate Jacobians
(together with the same locus of products) — in APerf

5 .
In the course of our computation we also deal with various inter-

sections of boundary divisors of a level toroidal compactification,
which is of independent interest in understanding the cohomology
and Chow rings of the moduli spaces.

0. Introduction

The moduli spaces Mg of curves of genus g and Ag of principally
polarized abelian varieties (ppav) of dimenson g are at the heart of al-
gebraic geometry. Understanding their geometry includes the question
of computing the cohomology ring and the Chow ring of these varieties
and their compactifications.

The investigation of the cohomology ring ofMg and its compactifica-
tionMg, the moduli space of stable curves, was pioneered by Mumford
and later by Faber and is the contents of numerous papers. The coho-
mology ring of A2 was first computed by Igusa [Igu62]. It was Mum-
ford [Mum83] who computed the cohomology and Chow ring of M2,
or what is the same, of the perfect cone compactification APerf

2 (which
coincides with both the Igusa and the second Voronoi compactification
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in this case). In this paper he also sets up the general framework in
which such computations are done nowadays. The cohomology rings
of A3 and ASat

3 were computed by Hain [Ha02], the Chow rings of A3

and APerf
3 , with rational coefficients, were computed by van der Geer

[vdG99], and finally the second-named author and Tommasi [HT10]
computed the cohomology ring of APerf

3 and showed that it is equal to
the Chow ring.

For higher genus very little is known about the cohomology and
Chow rings of APerf

g , beyond the fact that the Picard group has rank
2. The cohomology for the g = 4 case is the subject of a forthcoming
work by Tommasi and the second-named author [HT11], but for higher
genus very little is known. One approach to this problem, motivated
partly by the success of the similar method for the moduli of curves, is
to study the tautological ring generated by the Chern classes λi of the
Hodge bundle. This ring is known explicitly — the classes λi satisfy
one fundamental relation

(1) (1 + λ1 + . . .+ λg)(1− λ1 + . . .+ (−1)gλg) = 1

as proven by van der Geer [vdG99] in the Chow group with rational
coefficients and by Esnault and Viehweg [EV02] in the Chow ring. One
can then compute the projections of various classes to the tautological
ring — for example, this was done by Faber [Fab99] for the locus of
Jacobians, and by van der Geer [vdG99], respectively Ekedahl and van
der Geer [EvdG05] for the locus of products A0 ×Ag−1.

To the best of our knowledge for g ≥ 4 no classes of geometrically
meaningful cycles (of codimension higher than one — the case of divi-
sors is much easier) have been computed in the Chow ring proper in any
toroidal compactification of Ag, in particular the classes of Ai × Ag−i
are unknown.

In this paper we concentrate on the locus of intermediate Jacobians
of cubic threefolds, its closure in APerf

5 , and its generalization to ar-
bitrary genus. Assuming that such a locus has codimension exactly
g (for a detailed discussion of this condition see below), we compute
its class in APerf

g , and the projection of this class to the tautological
ring. In particular for g = 4 and g = 5 we determine the classes of the

loci A1 × θ(3)
null ⊂ APerf

4 and of the closure of the locus of intermediate

Jacobians of cubic threefolds, together with A1 × θ(4)
null, in APerf

5 . We
emphasize that we compute the classes of these loci precisely, not just
their tautological parts. In the course of our computation we also study
the combinatorics of intersections of boundary divisors of a level cover
ofAPerf

g , describing the classes of various geometric loci contained in the
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boundary of APerf
g , which is of independent interest for understanding

the structure of the Chow and cohomology rings.
Throughout the paper we work over the field of complex numbers.
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1. Statement of results

The intermediate Jacobians of cubic threefolds were studied in de-
tail by Clemens and Griffiths [CG72] who used them to prove that
a non-singular cubic threefold is not rational. The locus IJ of inter-
mediate Jacobians of cubic threefolds within the moduli space A5 is
then a natural 10-dimensional geometrically defined subvariety of a
15-dimensional algebraic variety. Similar to the Schottky problem for
Jacobians of curves, it is interesting to try to describe (the closure of)
this locus IJ ⊂ A5 by geometric or analytic conditions.

Clemens and Griffiths describe the geometry of the intermediate Ja-
cobian in terms of the geometry of the threefold, and in particular show
that the theta divisor of such an intermediate Jacobian has a unique
triple point. Much later Casalaina-Martin and Friedman [CMF05],
[CM08a] used a detailed analysis of theta divisors of Prym varieties,
and degenerations, to show that intermediate Jacobians of cubic three-
folds are in fact characterized among all indecomposable ppav’s (A,Θ)
of dimension 5 by the existence of a unique triple point on the theta di-
visor Θ. This statement can thus be interpreted as a geometric solution
to the Schottky problem for intermediate Jacobians of cubic threefolds.
Note that such a triple point must be at a 2-torsion point on the ppav,
more precisely an odd 2-torsion point. We denote by A[2] the set of
2-torsion points on A, and add a subscript to distinguish the parity.

The above characterization of IJ ⊂ A5 can then be generalized to
arbitrary genus to define the loci

I(g) = {(A,Θ) ∈ Ag | Θ is singular at some point m ∈ A[2]odd}.
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The characterization of intermediate Jacobians then amounts to saying
that within the locus of indecomposable ppav’s on A5 we have I(5) =
IJ . It is thus natural to ask to describe the closure IJ of the locus IJ
within A5, and the possible corresponding degenerations of the cubic
threefold itself. This was accomplished geometrically by Casalaina-
Martin and Laza [CML09], while an analytic description was given by
the first author and Salvati Manni in [GSM09], using some of the ideas
of their earlier work [GSM04]. It turns out that in fact I(5) ) IJ —

the extra irreducible component of this locus is A1 × θ(4)
null (where θ

(g)
null

denotes the divisor of ppav for which the theta divisor is singular at an
even 2-torsion point).

The locus I(g) has expected codimension g in Ag, and in [GSM09]
it is conjectured that it is indeed of pure codimension g (see section 2
for a more detailed discussion). It is thus natural to try to compute
the class of I(g) in the Chow ring of Ag. The result in fact follows
naturally from interpreting singularities of Θ at odd 2-torsion points
as vanishing loci of gradients of theta functions, and thus as zero loci of
certain vector-valued Siegel modular forms. The resulting expression
is the content of our first main result:

Theorem 1.1. The virtual class of I(g) in CHg(Ag) is given by

[I(g)] = 2g−1(2g − 1)

g∑
i=0

λg−i

(
λ1

2

)i
where λi = ci(E) are the Chern classes of the Hodge bundle on Ag.

By virtual class we mean that if the codimension of the locus I(g)

is g, as expected, then its class in the Chow group is given by the
stated formula. Note that this class lies in the tautological ring of the
Chow ring generated by the classes λi. The locus I(5) is known to have
expected codimension. This follows from the work of Casalaina-Martin
[CMF05], [CM08b], for a different proof see [GK11]. Using the relations
in CH∗(Ag) it then follows that we have

Corollary 1.2. The class of I(5) in CH5(A5) is equal to

93 · (4λ2
1λ3 + λ5

1/2).

Recall that the moduli space of ppav Ag is not compact. In fact
it admits many different toroidal compactifications. It is then natural

to investigate the closure I(g) in some toroidal compactification, and
to compute its class there. The first steps in that direction were done

in [GSM09] (see also [CML09]) where the intersection of I(g) with the
boundary of the partial compactification were investigated.
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The second (and much harder) main result of this paper is a compu-

tation of the class of I(g) in the so-called perfect cone compactification
APerf
g . Recall also that in genus g ≤ 3 the perfect cone (also called

first Voronoi) compactification coincides with the second Voronoi, and
the Igusa (also called central cone) compactification. The perfect cone
compactification has the advantage that its boundary divisor is irre-
ducible. We also recall that Shepherd-Barron [SB06] has shown that
APerf
g is a canonical model in the sense of the minimal model program.

Computing the class I(g) requires determining the vanishing behavior
of the gradients of the theta functions on various loci of semiabelic
varieties, and relies on the main results of our recent preprint [GK11].
We obtain the following

Theorem 1.3. For g ≤ 5 (and for any genus in which the statements
of [GK11, theorems 1.2 and 1.3] hold), we have the following expression

for the class of I(g) in CHg(APerf
g ):

(2) [I(g)] =
1

N

∑
m∈(Z/2Z)2godd

g∑
i=0

p∗

λg−i(λ1

2
− 1

4

∑
n∈Zm

δn

)i


where p : APerf
g (2) → APerf

g is the level cover, N = | Sp(2g,Z/2Z)| and

Zm is the set of pairs of non-zero vectors ±n ∈ (Z/2Z)2g such that
m + n is even, and we recall that the irreducible components δn of the
boundary of APerf

g (2) correspond to non-zero elements of (Z/2Z)2g.

At this point some words about intersection theory are in order.
We denote by CHk(APerf

g ) the Chow group of cycles of codimension k.
This is always meant in the sense of the stack, i.e. we are free to work
with invariant classes on level covers and then taking the pushforward
to APerf

g . It should be pointed out that APerf
g is not smooth, also in

the stack sense. This comes from the fact that the perfect cone de-
composition contains non-basic cones. Hence we cannot assume that
CH∗(APerf

g ) has a ring structure. We shall consider Chern classes as
elements in the operational Chow groups of Fulton and MacPherson.
As such they act on cycle classes by taking the cup product. Taking
the cup product with the fundamental class we can also associate Chow
homology classes to Chern classes. By abuse of notation we will not
distinguish between a Chern class and its associated Chern homology
class. All operations of Chern classes will be performed in the oper-
ational Chow ring and the result will then be applied to cycles. In
the above theorem the λi are the Chern classes of the Hodge bundle
and the sum of the boundary components is Cartier. Hence we can
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perform the usual operations with these classes and then take the asso-
ciated Chow homology class. This is what is meant by the right hand
side in the formula of the above theorem. Although there is no ring
structure on CH∗(APerf

g ) we will still label classes by their codimension,
as this makes the formulae more readable and easier to compare with
the existing literature.

We shall also compute the projection of the class computed above
to the tautological ring, i.e. the ring generated by the Hodge classes:
recall that the tautological ring of a toroidal compactification Ator

g is
the polynomial ring generated by the classes λ1, . . . , λg subject to the
one fundamental relation (1). This is defined for every toroidal com-
pactification of Ag and independent of the chosen compactification, as
is its pushforward to the Satake compactification (see [EvdG05]).

The tautological ring is also defined for the open part Ag where the
extra relation λg = 0 holds, which was shown by van der Geer [vdG99]
in cohomology and by Esnault and Viehweg [EV02] in the Chow ring.
We recall that the tautological ring has a perfect pairing, and thus that
there is a projection from the Chow ring to the tautological ring. For
details we refer the reader to [Fab99], [vdG99],[EvdG05, section 3].

Theorem 1.4. If [GK11, theorems 1.2 and 1.3] hold in genus g (in

particular for any g ≤ 5) the projection of the class [I(g)] to the tauto-
logical ring is equal to

[I(g)]taut =
(−1)g−1(g − 1)!

8ζ(1− 2g)
λg + 2g−1(2g − 1)

g∑
i=0

λg−i

(
λ1

2

)i
.

We will discuss the above statements, level covers, and their bound-
ary components in detail in the following sections.

We apply the above theorems to compute the classes of I(g) and I(g).
for all g ≤ 5. For g = 2 these loci are empty, and we get zero as a
valid consistency check for our computations. For genus 3 our results

agree with the computation of the class [Sym3(A1)] ∈ CH∗(A3
Perf)

obtained by van der Geer in [vdG98], and corrected in [vdG09]. For

genus 4 we compute the class of the locus A1×θ(3)
null and of its closure in

APerf
4 . In particular, we confirm that the class of the open part of this

locus lies in the tautological subring of CH∗(A4). Finally, for genus 5
our results are completely new, and give a formula for the class of the
locus of intermediate Jacobians of cubic threefolds together with the

locus A1 × θ(4)
null, and also of the compactification. We further compute

the tautological projections and obtain for the closure of the locus of
intermediate Jacobians of cubic threefolds IJ :
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Proposition 1.5. The projection of the class of the closure of the locus
of intermediate Jacobians of cubic threefolds to the tautological ring is
given by

[IJ ]taut = 140λ5
1 − 376λ2

1λ3 + 848λ5.

Except the calculations of the projections of various classes to the
tautological ring (which depend on the existence of a perfect pairing
and thus require working in the Chow ring with rational coefficients),
all our calculations hold in the Chow ring with integer coefficients.

2. Gradients of theta functions

We denote by Hg the Siegel upper half space of genus g — the set
of symmetric complex g × g matrices with positive-definite imaginary
part. Recall that the symplectic group Sp(2g,Z) acts on Hg by γ ◦ τ =
(Aτ +B)(Cτ +D)−1.

We recall that the level subgroups of Γg := Sp(2g,Z) are defined as
follows:

Γg(n) :=

{
γ =

(
A B
C D

)
∈ Γg

∣∣∣∣ γ ≡ (1 0
0 1

)
mod n

}
Γg(n, 2n) :=

{
γ ∈ Γg(n) | diag(AtB) ≡ diag(CtD) ≡ 0 mod 2n

}
.

The moduli space of ppav is then Ag = Hg/Γg, while the level moduli
spaces Ag(n) := Hg/Γg(n) and Ag(n, 2n) := Hg/Γg(n, 2n) are finite
covers of Ag.

We denote by θ(τ, z) the Riemann theta function of τ ∈ Hg and
z ∈ Cg

θ(τ, z) :=
∑
n∈Zg

e(ntτn/2 + ntz)

where for future use we denote e(x) := exp(2πix) the exponential func-
tion.

For an abelian variety A, we denote by A[2] the set of two-torsion
points on it; as a group, A[2] ∼= (Z/2Z)2g. Analytically the points in
A[2] can be labeled m = (τε+ δ)/2, where τ ∈ Hg projects to A ∈ Ag,
and ε, δ ∈ (Z/2Z)g. For future use we denote σ(m) := ε ·δ ∈ Z/2Z and
call it the parity of m. Accordingly we call m even or odd depending
on whether σ(m) is 0 or 1, respectively. This is equivalent to the point
m not lying (resp. lying) on the theta divisor for a generic τ (i.e. for a
two-torsion point m the function θ(τ,m) is identically zero if and only
if m is odd).



8 SAMUEL GRUSHEVSKY AND KLAUS HULEK

For a point m = (τε+ δ)/2 we denote the theta function with (half-
integer) characteristic

θ

[
ε
δ

]
(τ, z) := θm(τ, z) :=

=
∑
n∈Zg

e((n+ ε/2)tτ(n+ ε/2)/2 + (n+ ε/2)t(z + δ/2)).

As a function of z, the theta function with characteristic is even or odd
depending on the parity of the characteristic. In particular, all theta
constants (the values of theta functions with characteristics at z = 0)
with odd characteristics vanish identically.

Let π : Xg → Ag be the universal family, which exists over the stack,
and let E := π∗ΩXg/Ag be the Hodge bundle. The gradient

(3) Fm := gradzθm(τ, z)|z=0

with respect to z of the theta function vanishes identically in τ for even
m, and is generically non-zero for m odd. This gradient is a vector-
valued modular form for Γg(4, 8) for the representation det⊗1/2⊗std :
Γg → GL(g,C). In other words, we have

(4) Fm ∈ H0(Ag(4, 8), detE⊗1/2 ⊗ E)

(see [GSM04] for more details).
We recall from [Igu72, p. 50], that up to a simple exponential factor,

the theta function with characteristic m is equal to the Riemann theta
function shifted by the point m:

θ(τ, z + (τε+ δ)/2) = e(−εtτε/8− εtδ/4− εtz/2)θ

[
ε
δ

]
(τ, z).

We can thus compute for an odd point m ∈ A[2]

(5) fm(τ) := gradzθ(τ, z)|z=m = gradzθ(τ, z + (τε+ δ)/2)z=0

= e(−εtτε/8− εtδ/4− εtz/2)gradzθ

[
ε
δ

]
(τ, z)|z=0

= e(−εtτε/8− εtδ/4)Fm(τ)

since θ

[
ε
δ

]
(τ, 0) = 0 for the odd two-torsion point. Thus fm and Fm

differ by a nowhere vanishing holomorphic function on Hg, and thus
their zero loci are the same. Moreover, the line bundle on Ag(4, 8)
defined by the exponential factor is trivial since it has a nowhere van-
ishing section. (In what follows, it will be crucial that this exponential
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factor, while non-vanishing on Ag, in fact vanishes on some irreducible
components of the boundary of APerf

g (2).) Thus we also have

fm ∈ H0(Ag(4, 8), detE⊗1/2 ⊗ E).

The group Γg(2)/Γg(4, 8) acts on the gradients by certain signs, and
thus the zero locus

(6) Gm := Gε,δ = {τ |Fm(τ) = 0} = {τ |fm(τ) = 0}

is a well-defined subvariety of Ag(2). We refer to [GSM04, GSM09]
for a more detailed discussion of the properties of the gradients of the
theta function and further questions on loci of ppav with points of high
multiplicity on the theta divisor.

Finally we denote by

I(g) := p(Gm) ⊂ Ag
the locus of ppav for which some Fm vanishes. Geometrically, as ex-
plained in the introduction, this is the locus of ppav having a singularity
at an odd two-torsion point. We will omit the index (g) when no con-
fusion is possible. Note that it follows from the fact that Γg permutes
the Fm that the projection of Gm to Ag does not depend on m.

The multiplicity of the theta function for ppav of low dimension has
been studied extensively. Recall that a ppav is called decomposable if
it is a product of two lower-dimensional ppav. For genus up to 4 it
is known that no indecomposable ppav has a point of multiplicity 3
on the theta divisor [CM08b], and thus by studying the multiplicity of
points on the reducible theta divisors for decomposable ppav, we see
that as schemes

I(3) = Sym3(A1)

and

I(4) = A1 × θ(3)
null

where θ
(3)
null denotes the theta-null divisor in A3: the locus of those ppav

for which there exists a point m ∈ A[2]even lying on the theta divisor
(or, equivalently, for which some theta constant vanishes).

It was recently shown in [CMF05, CM08a] that within the locus of
indecomposable abelian 5-folds the locus I(5) coincides with the locus
IJ of intermediate Jacobians of cubic threefolds, while in [CML09]
degenerations of intermediate Jacobians were studied. Combining this
with results of [GSM09] one gets scheme-theoretically

I(5) = IJ ∪ A1 × θ(4)
null;
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where IJ denotes the closure of IJ in A5. In [CML09] the boundary of
IJ was described, and in particular it was shown that within A5 one
has

IJ \ IJ = J h
5 ∪ A1 × (J4 ∩ θ(4)

null),

where Jg ⊂ Ag denotes the closure of the locus of Jacobians of curves,

and J h
g ⊂ Ag denotes the closure of the locus of hyperelliptic Jacobians

(see also [GSM09] for a discussion). In particular one sees that A1 ×
(J4 ∩ θ(4)

null) is the intersection of the two irreducible components of the
locus I(5).

Remark 2.1. The explicit descriptions of the loci I(g) given above
for g ≤ 5 are a priori only set-theoretic. To make these descriptions
scheme-theoretic, one needs to ascertain that along each of the above-
mentioned components the gradient of the theta function Fm vanishes
with multiplicity 1, and not higher. In general this would be a rather
hard computation, as one would need to establish that at a generic
point of each component of I(g) precisely one Fm vanishes, and that
this Fm vanishes with multiplicity one.

Note, however, that the closure in a suitable toroidal compactifica-
tion of all of the components described above intersects the boundary
of the partial compactification (see the following sections for a more
precise discussion and definitions). This intersection can be computed
(see [GSM09, Prop. 12] and [GK11]). It turns out that this intersec-
tion is related to the locus of singularities of the universal theta divisor
(which is known to be reduced, see [Deb92]), and the locus I(g−1). It
thus follows inductively that for g ≤ 5 the intersection of I(g) with
the boundary of the partial compactification is reduced, and thus that
the locus itself is reduced (note that [GSM09, Prop. 12]) holds scheme-
theoretically. Notice that for g > 5 we do not know this to be the case,
and thus theorem 1.3 should be a priori interpreted as giving the class
of the scheme I(g) which may have non-reduced components.

In fact, in higher genus the locus I(g) is not well understood. Indeed,
even the following question is open:

Conjecture 2.2. [GSM09, Conjecture 1] The locus I(g) has pure codi-
mension g in Ag for any g.

Notice that since locally I(g) is given by the vanishing of g partial
derivatives of the theta function at an odd two-torsion point, we know
that codimension of each its irreducible component is at most g. What
the conjecture says is thus that the vanishing of the partial derivatives
imposes g independent conditions. In this paper we will concentrate on
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the case of g ≤ 5 (when this conjecture is known to hold (see [CM08b]
and [GK11, Thm 1.2]). The above analytic description of I(g) allows
us to prove our first main result.

Proof of theorem 1.1. This is an immediate consequence of the fact
that I(g) is the zero set of the sections Fm, resp. fm of the rank g
vector bundle E ⊗ detE⊗1/2. Provided I(g) vanishes in codimension
g it follows that [I(g)] = cg(E ⊗ detE⊗1/2). This Chern class can be
computed using ci(E) = λi, and then the claim follows, since there are
2g−1(2g − 1) odd theta characteristics. �

Recall that the moduli spaces Ag are not compact. By APerf
g we

denote the perfect cone toroidal compactification of Ag and by AVor
g

we denote the second Voronoi toroidal compactification. The rest of
this paper is devoted to studying the closure of the locus I(g) in APerf

g .
The boundary degenerations are much harder, and the final result is
the computation of the class of the closure in theorem 1.3.

3. Extension of theta gradients on the boundary

The boundary of the perfect cone compactification APerf
g is an ir-

reducible divisor D ⊂ APerf
g . We denote by p : Ag(`) → Ag and

p̄ : APerf
g (`) → APerf

g the level ` covers of the moduli spaces, and by

Di the irreducible divisorial components of the boundary of APerf
g (`).

We denote δi the class of the boundary divisor in CH1(APerf
g (`)). Note

that the cover p̄ : APerf
g (`) → APerf

g branches to order ` along each Di,
and thus we have p̄∗(δi) = δ/`.

We have seen that the gradient of the theta function can be inter-
preted as a section of the vector bundle E⊗ detE⊗1/2. The aim of this
section is to prove that we can extend this to the perfect cone toroidal
compactification APerf

g of Ag.
We first remark that the Hodge bundle extends as a vector bundle

over any toroidal compactification Ator
g of Ag (see [Mum77]), as well as

over any toroidal compactification of any level cover. Indeed, to define
the Hodge bundle we note that any toroidal compactification admits a
universal family of (non-compact) semiabelian varieties Gtor

g . This has
the “zero” section (which is really 1 ∈ C∗ on each torus) s : Ator

g → Gtor
g ,

and the Hodge bundle is defined by E := s∗(Ω1
Gtorg /Ator

g
). In particular,

the fiber of E over [A] ∈ Ag is given by E[A] = Ω1
A,0.

In this section we shall work over Ag(4, 8) and its perfect cone com-
pactification APerf

g (4, 8). We will, by abuse of notation, denote the
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Hodge bundle on this level cover, as well as its extension to the com-
pactification, by E.

Proposition 3.1. The gradients of theta functions with characteristics
at zero, Fm, extend on APerf

g (4, 8) to sections of the extension of the
Hodge bundle twisted by a square root of its determinant, i.e. we have
some extensions

Fm ∈ H0
(
APerf
g (4, 8), detE⊗1/2 ⊗ E

)
.

Proof. Before entering into the necessary computations, we will make
some comments. It is enough to prove extension to the generic point on
each boundary component, as extension over codimension 2 sets is then
automatic by Hartogs’ extension theorem on normal analytic spaces.
Here we shall make use of the fact that the perfect cone decomposi-
tion APerf

g has only one boundary component. This is no longer true

for APerf
g (4, 8), but the group Γg/Γg(4, 8) acts transitively on the set

of boundary components Di of APerf
g (4, 8). Hence it will be sufficient

to consider one of them — we shall work with the so-called standard
boundary component. Since the Voronoi and the perfect cone com-
pactification coincide in genus g ≤ 3 and since AVor

g is a blow-up of

APerf
g in genus g = 4, 5 ([ER88, RB78]) we also obtain extension to the

Voronoi compactification for genus g ≤ 5.
Recall that the boundary components of APerf

g (4, 8) correspond to

lines in Q2g modulo the action of the group Γg(4, 8). We shall work
with the standard cusp corresponding to the line l0 generated by the
vector (0, . . . , 0; 1, 0, . . . , 0). Let P (l0) be the corresponding parabolic
subgroup and let P ′(l0) be the center of the unipotent radical of P (l0).
Moreover let U(l0) = P ′(l0)\Hg be the partial quotient with respect
to P ′(l0) and let V (l0) be the partial compactification of U(l0) given
by adding the cusp corresponding to l0 (see below for details). The
partial compactification ofAPerf

g (4, 8) in a neighborhood of the standard
cusp is then obtained by taking the quotient of V (l0) by the group
P (l0)/P ′(l0). Clearly it makes sense to speak about the Hodge bundle
EHg over the Siegel space Hg (where we have a universal family) as well
as about the Hodge bundle EU(l0) resp. its extension EV (l0) over U(l0)
and V (l0) respectively. The Hodge bundle EHg is trivial as follows
immediately from the construction of the universal family over Hg.
More precisely the universal family over Hg is given as the quotient of
Hg × Cg by the group Z2g where (M,N) ∈ Z2g acts on Hg × Cg by
(τ, z) 7→ (τ, z + τM + N). The differentials dz1, . . . , dzg then define a
trivialization of EHg .

Lemma 3.2. The following holds
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(i) The trivialization of EHg over Hg descends to a trivialization of
EU(l0) over U(l0).

(ii) j∗(EU(l0)) = EV (l0) where j : U(l0) ↪→ V (l0) is the inclusion.

Proof of the lemma. We recall that the universal abelian variety over
Ag(4, 8) is defined by taking the quotient of Hg × Cg with respect to
the semi-direct product Z2g o Γg(4, 8), which acts as follows:(

(M,N),

(
A B
C D

))
: Hg × Cg → Hg × Cg

(τ, z) 7→ ((Aτ +B)(Cτ +D)−1, (z + τM +N)(Cτ +D)−1).

The center of the unipotent radical of the parabolic subgroup associated
to a line in Q2g is a rank 1 lattice. For the standard cusp it consists of

the matrices

(
A B
C D

)
of the form

1 0 s 0
0 1g−1 0 0
0 0 1 0
0 0 0 1g−1

 where s ∈ 8Z.

In particular A = D = 1g and C = 0. From this we can immediately
deduce the first assertion of the lemma.

In order to prove the second assertion we have to understand how the
universal semi-abelian variety can be extended over the generic point
of the boundary divisor associated to the standard cusp. The quotient
of Hg by P ′ is given by

Hg → Hg−1 × Cg−1 × C∗

τ =

(
ω bt

b τ ′

)
7→ (τ ′, b, e(ω/8)).

We denote the image of this quotient map by U . This is an open subset
(in the analytic topology) of Hg−1 × Cg−1 × C. Let V be the interior
of the closure of U in Hg−1 × Cg−1 × C. The difference between V
and U is the set Hg−1 × Cg−1 × {0}. Adding this set is adding the
divisor associated to the standard cusp. We consider q8 := e(ω/8) as
the coordinate on C∗. Thus adding the boundary divisor corresponds
to adding the set {q8 = 0}. We now have to understand the universal
semi-abelian variety over U and its extension to V . Let N1

∼= Z2g be
the lattice given by {Mτ + N | M,N ∈ Zg} and let N2 = {M ;M ∈
Zg} ∼= Zg.

In order to construct the universal semi-abelian variety we consider
the action of N1 oP ′ on Hg ×Cg. For this we first consider the action
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of the subgroup N2 o P ′. Clearly, the quotient of Hg × Cg by this
subgroup is the trivial (C∗)g-bundle on U . We denote the coordinates
on (C∗)g by xi = e(zi); i = 1, . . . , g. The action of N3 = N1/N2

∼= Zg
on U × (C∗)g is trivial on the base and by multiplication with powers
of (tk,1, tk,2, . . . , tk,g) where tk,j = e(τkj) on the torus (C∗)g. In order
to construct the semi-universal abelian variety we extend the trivial
(C∗)g-bundle on U trivially to V and also extend the action of N3 to
V × (C∗)g. Note that the action of N3 on V × (C∗)g is no longer free on
the first coordinate when k = 1. In order to overcome this difficulty one
considers a toroidal embedding V × (C∗)g ↪→ XΣ. This construction is
analogous to the construction of Shioda modular surfaces (see [HKW93,
Part I, 2B and 3D]) where the case g = 2 is treated in detail. There
is a projection XΣ → V whose restriction to U is just projection of
the trivial torus bundle U × (C∗)g → U . Over the boundary, i.e. over
points with q8 = 0 one has a chain of countably many copies of (C∗)g.
The action of N3 on U × (C∗)g → U extends to an action on XΣ

and the quotient is a semi-abelian group scheme over V . The semi-
abelian group scheme over the partial compactification of Ag(4, 8) in
the direction of the standard cusp is then obtained by taking a further
quotient with respect to P/P ′. Note that this group acts freely due to
the presence of the level structure.

To prove the second assertion of the lemma we have to understand
the relation of EV and EU . We claim that we can take dx1, . . . , dxg
as a basis for the fibers of EV . This indeed proves assertion (ii). To
see the claim it is enough to consider the case of the universal ellip-
tic curve with fiber coordinate x1, as the other coordinates are not
affected by the construction. Thus we consider the torus (C∗)2 with
coordinates (w1, t1,1) = (x, q). For this we define a torus embedding
(C∗)2 ↪→ X ′Σ. As we are only interested in the situation over the sec-
tion given by the origin it suffices to look at one chart X ′σ0 of X ′Σ. We
are thus in the situation of [HKW93, p. 29] and X ′σ0

∼= C2 with em-
bedding (x, q) 7→ (x, x−1q) = (u, v). The projection onto the base is
given by (u, v) 7→ uv = q. The section given by the origin is the set
{(1, q); q ∈ C}. In order to describe the Hodge bundle we have to con-
sider the relative tangent bundle Ω1

C2/C restricted to the zero-section.

This is generated by du, dv modulo the pullback d(uv) = udv + vdu.
Restricting the latter to the zero-section gives dv + vdu and hence the
relative cotangent bundle is generated by du = dx which we can take
as trivializing section. �

This argument shows that, in particular, the Hodge bundle over V
is trivial. Hence all we have to do to prove our claim is to show that
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the functions Fm are invariant with respect to P ′ (which is obvious)
and that they extend without poles to V . For this we have to compute
the Fourier-Jacobi expansion. This was done in detail in [GSM09],
and we now summarize the results for completeness. Indeed, denote

z = (z1, z
′) where z1 ∈ C and z′ ∈ Cg−1 and write τ =

(
ω bt

b τ ′

)
.

The Fourier-Jacobi expansion at the standard cusp amounts to writing
the Taylor series in q8 (the coordinates transverse to the boundary of
APerf
g (8)) as τ11 → i∞ For the characteristics of the gradient being

ε = ε1ε
′ and δ = δ1δ

′ we then get for the case ε1 = 0

(7) ∂z1θ

[
0 ε′

δ1 δ′

]
= q4

8 · 4πi(−1)δ1θ

[
ε′

δ′

]
(τ, b) +O(q16

8 )

(8) ∂zθ

[
0 ε′

δ1 δ′

]
= 2∂zθ

[
ε′

δ′

]
(τ, z)|z=0 +O(q4

8).

This is to say that in the case of ε1 = 0 (this can be said invariantly:
see Proposition 3.3 below) the gradient does not vanish identically. On
the other hand, for ε1 = 1 we get

(9) ∂z1θ

[
1 ε′

δ1 δ′

]
= q8 · 4πie(δ1/4)θ

[
ε′

δ′

]
(τ, b/2) +O(q9

8)

(10) ∂zθ

[
1 ε′

δ1 δ′

]
= q8 · 2e(δ1/4)∂zθ

[
ε′

δ′

]
(τ, b/2) +O(q9

8)

which shows that in this case the generic vanishing order of Fm in q8

is precisely equal to one. In any case the Fourier-Jacobi expansion is
holomorphic and in view of Lemma 3.2 this proves Proposition 3.1. �

The above computations actually give us more information. To ex-
plain this, we prefer to work on the full level-8 cover APerf

g (8) rather

than APerf
g (4, 8). Recall from [Nam80, Ch. 4] (or eg. [Erd07, Sec. 3])

that the boundary components of APerf
g (2) are in bijective correspon-

dence with the primitive vectors in ((Z/8Z)2g \ {0})/± 1, and Γg acts
transitively on the set of boundary components of APerf

g (8). Under this
correspondence the standard boundary component corresponds to the
vector (0, 0, . . . , 0; 1, 0, . . . , 0). Now let Dn be a boundary component of
APerf
g (8) labeled by a primitive vector ±n ∈ (Z/8Z)2g. We denote the

reduction of n modulo 2 (which simply sends odd entries to 1 and even
entries to 0) by n2. We identify an odd 2-torsion point m = (τε+ δ)/2
with its characteristic (ε, δ) ∈ (Z/2Z)2g. The above calculations show
that Fm does not vanish on the standard component if and only if
ε1 = 0. Note that in this case σ(m+ n2) = εδ + ε1 = 1 since m is odd,
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i.e. εδ = 1 mod 2 and ε1 = 0. Using the action of the finite group
Γg/Γg(8) on APerf

g (8) we thus obtain

Proposition 3.3. The gradient Fm does not vanish generically on the
boundary component Dn of APerf

g (8) if and only if σ(m + n2) = 1.
Otherwise it vanishes on Dn with generic vanishing order equal to one.

We would like to interpret the above proposition by saying that
(11)

F̃m ∈ H0

APerf
g (8), det(E)⊗1/2 ⊗ E⊗O

− ∑
{±n|m+n2 even}

Dn

 .

To be able to say this we must show that
∑

{±n|m+n2 even}
Dn is a Cartier

divisor and not just a Weil divisor. This is not immediate as APerf
g (8)

is not a smooth space for g ≥ 4. Analytically this means that we want
to divide the gradient by the product of the defining equations for all
boundary components of APerf

g (8) where it vanishes identically with
multiplicity one.

The gradients of theta functions with characteristics were studied
in [GSM04], and their boundary degenerations were also considered in
[GSM09]. It seems, however, that the gradients fm of the theta function
at odd two-torsion points were not as extensively studied, while for us
they turn out to be more important.

Proposition 3.4. The divisor
∑

{±n|m+n2 even}
Dn is a Cartier divisor and

we can also extend the sections fm to sections

f̃m ∈ H0

APerf
g (8), det(E)⊗(1/2) ⊗ E⊗O

− ∑
{±n|m+n2 even}

Dn


not vanishing identically on any component Di of the boundary of
APerf
g (8). Moreover f̃m and F̃m are equal up to a non-zero constant

and thus we have

G
(g)
m (8) := {τ ∈ APerf

g (8) | F̃m = 0} = {τ ∈ APerf
g (8) | f̃m = 0}.

Proof. Indeed, by formula (5) we have on Ag(8) the relation

fm(τ) = e(−εtτε/8− εtδ/4)Fm(τ),

and thus to determine the extension of fm to APerf
g (8) it is enough to de-

termine the properties of the exponential factor, and to combine them
with the results obtained above about Fm. Note also that the functions
e(−εtτε/8− εtδ/4) descend to any partial quotient which arises in the
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construction of the toroidal compactification and thus
∑

{±n|m+n2 even}
Dn

is a Cartier divisor on APerf
g (8). To determine the extension of fm it

is again enough to work with the standard component. Noticing that
e(−εtδ/4) is a constant independent of τ and thus irrelevant for our
computations, we compute in the above notation

e

(
−1

8

(
ε1 ε′t

)(ω bt

b τ ′

)(
ε1

ε′

))
= e

(
−1

8

(
ε2

1ω + 2ε1b
tε′ + ε′

t
τ ′ε′
))

= q
−ε21
8 e(−ε1b

tε′/4− ε′tτ ′ε′/8).

It thus follows that for ε1 = 0 this exponential factor is independent
of q8, while for ε1 = 1 it has a pole q−1

8 . Noticing that in these cases
Fm = O(1) and Fm = O(q8), respectively, it thus follows that the

extension f̃m does not vanish generically on any boundary component
of APerf

g (8), and thus finally that f̃m and F̃m coincide up to a non-zero
constant. �

Since the group Γg/Γg(8) permutes the sets G
(g)
m (8) ⊂ APerf

g (8), this

defines a locus G = G(g) such that ∪mG(g)
m (8) = p∗(G(g)).

Geometrically, the above computation amounts to saying that we
have determined the vanishing orders of Fm on the open part of the
boundary of APerf

g (8), and in particular noticed that the zero loci of f̃m
do not have any irreducible components contained in this locus. It is
then natural to wonder whether if we consider the full compactification
APerf
g (8), the zero locus of any f̃m may have any irreducible component

contained in the boundary (from the above, it would then have to be
disjoint from the partial compactification). We conjecture that this in
fact impossible:

Conjecture 3.5. For any genus we have the equality G(g) = I(g).

While we were unable to prove this conjecture in full generality, one
of the main results of [GK11] is theorem 1.3 there, which is a proof of
the above conjecture for g ≤ 5. This result is obtained by explicitly
describing the geometry of various types of principally polarized semi-
abelic varieties in detail, and checking that there are no components

of G(g) contained in the loci of semi-abelic varieties of any of the types
described. We thus obtain our second main result:

Proof of theorem 1.3. Recall that what this theorem claims is an ex-

pression for the class of the locus I(g) in CHg(APerf
g ). Note, however,

that the locus G
(g)
m (8) ⊂ APerf

g (8) is by definition the zero locus of f̃m,
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which is a section of a certain vector bundle given by proposition 3.4.

Thus the class of G
(g)
m (8), if it has expected codimension g, is given

by the top Chern class of this vector bundle. Thus we need to first
understand the geometry of the cover, and then to compute the top
Chern class.

Indeed, we are working with the full level `Galois cover p : APerf
g (`)→

APerf
g , with the Galois group Sp(2g,Z/`Z). As long as one considers

projective varieties this action factors through PSp(2g,Z/`Z). How-
ever, as we will be doing all our calculations in the stack set-up it is
important to work with Sp(2g,Z/`Z) as ±1 acts non-trivially on APerf

g

(as a stack). For any Sp(2g,Z/`Z)-invariant cycle Z with class [Z] on
APerf
g (n) we define

(12) p∗([Z]) =
1

| Sp(2g,Z/`Z)|
[p∗(Z)].

For classes Z which are the pullback of a stacky class W we have
p∗(Z) = W and in particular we have p∗(λi) = λi where the λi are the
classes of the Hodge bundle(s).

Now, to prove the theorem we first perform the computation on
APerf
g (8), and then argue invariance to reduce this to APerf

g (2). Denote

by α1, · · · , αg the Chern roots of the Hodge vector bundle E onAPerf
g (8),

so that the Chern polynomial is c(E) =
∏

(1+αi), which means that for
the symmetric polynomials we have si(α1, . . . , αg) = λi. From formula

(11) we know that f̃m is a section of E ⊗ Lm for a certain line bundle

Lm. The cycle G(g)(8) (which is the pre-image of G(g)) is the union of

the vanishing loci of the sections Fm. Now, if f̃m vanish in codimension
g, so that G is pure of codimension g — and this is our assumption (or
the content of [GK11, Thm. 1.2 and 1.3] for g ≤ 5), we recall that the
vanishing locus is reduced, as noted in remark 2.1. It now follows, see
[Ful98, Chapter 14], that

[G(g)(8)] =
∑

m∈(Z/2Z)2godd

cg(E⊗ Lm).

Denoting

`m := c1(Lm) =
λ1

2
−

∑
±n∈(Z/8Z)2gprimitive,n2+m even

δn =
λ1

2
−
∑
n∈Zm

δn
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we compute on APerf
g (8) that

cg(E⊗ Lm) =

[
g∏
i=1

(1 + αi + `m)

]
deg=g

=

g∑
i=0

sg−i(α1, . . . , αg)`
i
m

=

g∑
i=0

λg−i`
i
m =

g∑
i=0

λg−i

λ1

2
−

∑
n∈(Z/8Z)2gprimitive,n2+m even

δn


i

and the formula on APerf
g (8) follows.

Finally, to obtain the stated formula, as a pushforward fromAPerf
g (2),

we note that the expression above is certainly invariant under the Ga-
lois action Γg(2)/Γg(8), as only the reduction n2 modulo two matters.
Remembering that APerf

g (8) → APerf
g (2) branches along the boundary

to order 4, we get the result as stated. Note also that as we remarked
before, the vanishing locus of each Fm is well-defined as a subvariety of
Ag(2), even though Fm itself is only a section of a well-defined vector
bundle over Ag(4, 8). �

4. The tautological ring

We will now use various properties of the tautological ring of APerf
g

(this section uses the perfect pairing, and we thus have to work with

rational coefficients) to compute the projection of the class [I(g)] given
by theorem 1.3 to the tautological ring, thus proving theorem 1.4.

We recall that the perfect cone (and in fact any toroidal) com-
pactification APerf

g admits a stratification induced by the natural map

P : APerf
g → ASat

g to the Satake compactification. Writing the Satake
compactification as

ASat
g = Ag t Ag−1 t Ag−2 . . . t A0,

following van der Geer [vdG98], we denote β0
k := P−1(Ag−k) the open

strata, and denote by βk := β0
k t . . . t β0

g = P−1(ASat
g−k) the closed

strata — and by abuse of notation, their classes in CHk(APerf
g ). We

also recall that δi denote the classes of the irreducible components of
the boundary of APerf

g (2), and we follow van der Geer in denoting by
σk the degree k elementary symmetric polynomial in the classes δi,
which we would like to consider as an element of CHk(APerf

g (2)). This,
however, is problematic, as in general the boundary components δi are
not Cartier divisors (this can be seen for g = 4 by looking at the
second perfect cone which is a 10-dimensional cone with 12 extremal
rays, see [HS04] for a discussion of this), and thus this is also the case
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for g > 4. However, the sum of all boundary components, as well as
certain partial sums, are Cartier as we saw in section 3. In what follow,
whenever we work with expressions such as the σi we shall mean by this
the restriction of this cycle to the smooth part Aperf,0

g of APerf
g where it

is well defined. We observe that the singular locus of APerf
g is contained

in β4. We also notice that σk is invariant under the action of Γg, and
we can thus also denote σk the corresponding class in CHk(Aperf,0

g ).
We shall frequently make implicit use of the following very useful

fact, see [Ful98, Proposition 1.1.8]. If Z is a closed subvariety of APerf
g

then there is an exact sequence

(13) CHk(Z)→ CHk(APerf
g )→ CHk(APerf

g − Z)→ 0.

We start with two useful lemmas concerning the projection of classes
supported on the boundary to the tautological ring.

Lemma 4.1. Let [X] be a class of codimension at most g − 1 in the
Chow of a toroidal compactification Ator

g , supported over the boundary
β1. Then (P (λ)[X])taut = 0 for every non-constant polynomial P (λ) in
the tautological classes λi.

Proof. We first notice that it is enough to prove that [X]taut = 0: if [X]
pairs to zero with every polynomial of complementary degree in the λi,
then the same is true for P (λ)[X].

We write [X] = Q(λ) + [Y ] where Q(λ) is a polynomial in the λi; i ≤
g − 1 by the assumption on the codimension of [X], and [Y ] pairs
to zero with all tautological classes of complementary degree (that is,
polynomials in the λi of complementary degree). Restricting to Ag we
obtain [X]|Ag = 0 and [Y ]|Ag still projects to 0 in the tautological ring
of Ag. But this is a contradiction, since Q(λ) defines a non-zero class
in the tautological ring of Ag, the only new relation in the tautological
ring of Ag versus that in the tautological ring of Ator

g being λg = 0 in
degree g (see [vdG99]). �

Lemma 4.2. Let [X] be a Chow cohomology class of codimension at
most g on a toroidal compactification Ator

g supported over β2. Then
[X]taut = 0.

Proof. The idea of the proof is similar to the proof of the previous
lemma — basically these lemmas together are based on the fact that
in a sense λg is the only degree g tautological class supported on β1.
Rigorously, suppose that we have [X] = Q(λ)+[Y ] in CH∗(APerf

g ) with
[Y ]taut = 0. Unless we have Q(λ) = cλg, for some c ∈ C, the image of
Q(λ) in CH∗(Ag) (obtained from CH∗(APerf

g ) by imposing one extra



THE LOCUS OF INTERMEDIATE JACOBIANS 21

condition λg = 0) is non-zero, which contradicts the fact that the class
is supported over β2. But if we have Q(λ) = cλg, then we must have

0 = λ
g(g−1)

2
1 [X] = cλ

g(g−1)
2

1 λg + 0 6= 0

where we have used the fact that λ
g(g−1)

2
1 is zero on β2 for dimension

reason, and the last intersection number is non-zero by Hirzebruch-
Mumford proportionality. (This can also be seen explicitly without a
reference to proportionality, since by [vdG99, Theorem 4.7] the class
λg is proportional to the class [Bg] of the closure of the zero section
of Xg−1 → Ag−1, modulo classes supported on β2, which have zero
pairing with the top power of λ1 for dimension reasons. By [SB06]
the normalization of this closure of the locus of trivial extensions is
isomorphic to APerf

g−1 , where the top self-intersection number of λ1 is
non-zero). �

We now compute the projection to the tautological ring of the one
degree g monomial in σ and λ not covered by the above lemmas.

Proposition 4.3. The projection of σg1 to the tautological ring is

(14) [σg1 ]taut = (−2)g−1(g − 1)![Bg]
taut =

−2g−1(g − 1)!

ζ(1− 2g)
λg,

where Bg is the class of the closure of the zero section of Xg−1 → Ag−1

in the boundary of the partial compactification, as above.

Proof. We first observe that it suffices to prove the first equality, since
it follows from [vdG99, Theorem 4.7] and the above lemma 4.2 that
[Bg]

taut = (−1)gλg/ζ(1− 2g). Recall σ1|β0
1

= −2T , where β0
1 = β1 \ β2

is the open part (isomorphic to the universal Kummer family), and
T ⊂ Xg−1 is the universal theta divisor trivialized along the zero section
(see [EGH10] for a more precise description). Thus we compute σg1 =

(−2T )g−1 + X for some class X supported within β2. Here (−2T )g−1

is an extension of the class (−2T )g−1 to APerf
g (which is unique up to

a cycle supported on β2). Since the class [σg1 ]− (−2)g−1(g − 1)![Bg] is
supported on β1 we can argue as in the proof of lemma 4.2 that [σg1 ]taut−
(−2)g−1(g − 1)![Bg]

taut = cλg. Now note that on each fiber of the
boundary of the partial compactification Xg−1 → Ag−1 the divisor T
restricts to the principal polarization, with top self-intersection number
(g− 1)!. Thus the degree of T g−1 on each fibre is (g− 1)!. Intersecting

with λ
g(g−1)

2
1 then shows that c = 0 as claimed. �

We are now ready to compute the projection [I(g)]taut.
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Proof of theorem 1.4. Let us expand the expression in formula (2) in
theorem 1.3, and take one of the terms: this will then be of the form
p∗(Q(λ)P (δn)), where Q(λ) is a monomial in the classes λi (i.e. lies in
the tautological ring), P is a monomial in classes δn of various irre-
ducible components of the boundary of APerf

g (2), and the total codi-
mension is equal to g.

If P contains a product of at least two different boundary compo-
nents, δn1δn2 , it is supported within β2, and thus by lemma 4.2 in this
case we have [P ]taut = 0. This implies that all pairing of P with poly-
nomials in λ classes are zero, and thus this is also the case for QP , so
we have [p∗(Q(λ)P (δn))]taut = 0. Thus to have a non-zero projection
to the tautological ring we must have P = δin. Moreover, if 0 < i < g,
then lemma 4.1 applies, and we also get [p∗(Q(λ)P (δn))]taut = 0. Thus
the only monomials in the expansion of (2) that can have a non-zero
projection to the tautological ring are either those that do not contain
any δn (and thus these are the ones giving the expression on the open
part in theorem 1.1), or the ones of the form δgn. Thus the extra term
compared to theorem 1.1 that we need to compute is

1

N

∑
m∈(Z/2Z)2godd

(−4)−gp∗

(∑
n∈Zm

δgn

)
.

We know by proposition 3.3 that n ∈ Zm if and only if σ(n + m) = 0.
Thus for n fixed there are 22g−2 such odd m. The projection p∗δn
for any n is equal to σ1/2 (recall the branching order 2 of the cover
APerf
g (2)→ APerf

g along the boundary). Thus the above pushforward is
equal to

1

N
(−1)g2−2g22g−2

∑
n∈(Z/2Z)2g\{0}

p∗(δ
g
n) = (−1)g2−2−gσg1 .

We now use formula (14) to obtain

(−1)g2−2−g[σg1 ]taut =
(−1)g−1(g − 1)!

8ζ(1− 2g)
λg + [X]taut,

where, however, the class [X] is of codimension g, supported over β2,
and thus has zero tautological projection by lemma 4.2. �

5. Combinatorics of boundary divisors

The rest of this paper will be devoted to using theorem 1.3 to com-

pute the classes of the loci I(g) explicitly for g ≤ 5 (and not only its
tautological part given by theorem 1.4).
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In this section we will deal with the combinatorics of the terms ap-
pearing in the expression in theorem 1.3, enabling us to further perform
the explicit class computations.

Proposition 5.1. Formula (2) can be written in a different way, group-
ing by powers of δ, as follows:

(15) [I(g)] =
∑
m odd

p∗

 g∑
j=0

(
−
∑
n∈Zm

δn

)j g∑
i=j

(
i

j

)(
λ1

2

)i−j
λg−i

 .

This expression is easier to use, as similar terms involving δn’s are
grouped together. To use the proposition we thus need to study the
combinatorics of the intersections of the components Di of the bound-
ary ∂APerf

g (2), and the vanishing of a given Fm on a set of components.

The combinatorial description of the boundary components ofAPerf
g (2)

and their intersection behavior can be deduced from the correspondence
between cusps and isotropic subspaces of Q2g. For a detailed discussion
of the combinatorics of the boundary we refer the reader to [Erd07].
Recall that the group Sp(2g,Z/2Z) = Γg/Γg(2) has an affine transi-
tive action on the set of odd theta characteristics m. The action of
Sp(2g,Z/2Z) on the set of boundary components of APerf

g (2), i.e. the

linear action on (Z/2Z)2g \ {0} is also transitive. Recall that the sym-
plectic product of n1, n2 ∈ (Z/2Z)2g with ni = [αi, βi] is defined as
n1 ·n2 = α1 ·β2 +α2 ·β1 ∈ Z/2Z. Then boundary components Dn1 and
Dn2 of APerf

g (2) intersect if and only if n1 · n2 = 0, i.e. n1, n2 span an
isotropic plane (see. [Erd07, Proposition 3.3.15]). Moreover recall that
the intersection Dn1 ∩ . . .∩Dnk

⊂ ∂APerf
g (2) lies in the stratum βj and

intersects β0
j , where j is the dimension of the linear span of the vectors

n1, . . . , nk in (Z/2Z)2g (i.e. an open part of this intersection lies in the
preimage of Ag−j ⊂ ∂ASat

g ).

Proposition 5.2. For any set of vectors n1, . . . , nk ∈ (Z/2Z)2g \ {0}
such that the intersection Dn1 ∩ · · · ∩ Dnk

is non-empty the number
of gradients Fm vanishing on each Dni

, i.e. the number of odd m ∈
(Z/2Z)2g such that m+ ni is even for all i, is

(1) zero if there exists a linear relation ni1 + . . .+ nij = 0 with odd
number of terms j = 2l + 1

(2) equal to 22g−k−1 if n1, . . . , nk are a basis for an isotropic sub-
space

Proof. For part (1), relabel the n’s so that the linear dependence is
n1 + . . .+ n2l+1 = 0. For the intersection Dn1 ∩ . . . ∩Dn2l+1

to be non-
empty, we must have ni ·nj = 0 for all 1 ≤ i < j ≤ 2l+1. On the other
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hand, for Fm to vanish onDni
, we must have ni ∈ Zm, i.e. σ(m+ni) = 0.

Recall that by definition we have σ(m+n) = σ(m) +σ(n) +m ·n, and
thus

σ(m1 + . . .+mk) =
k∑
i=1

σ(mi) +
∑

1≤i<j≤k

mi ·mj.

Suppose now that some Fm vanished on all of these Dni
. We can then

use the linear dependence to compute

1 = σ(m) = σ

(
m+

2l+1∑
i=1

ni

)
=

σ(m) +
2l+1∑
i=1

σ(ni) +m ·
2l+1∑
i=1

ni +
∑

1≤i<j≤2l+1

ni · nj =

= (2l + 1)σ(m) +
2l+1∑
i=1

σ(ni) +m ·

(
2l+1∑
i=1

ni

)
=

2l+1∑
i=1

σ(m+ ni) = 0,

which is a contradiction.
For part (2), note that the action of Sp(2g,Z/2Z) is transitive on the

set of bases of k-dimensional isotropic subspaces (this is well known, eg.
[Erd07, Remark 3.3.9]), and thus any such basis k-tuple is conjugate
to the standard one, i.e. in which ni = [0, ei] with ei being the unit
vector in (Z/2Z)g in the i’th direction. Thus it is enough to count the
number of m such that σ(m+ ni) = 0 for the standard isotropic tuple.
Indeed, such m are all of the form[

ε
δ

]
=

[
1 . . . 1 ∗ . . . ∗
∗ . . . ∗ ∗ . . . ∗

]
where ∗ denote arbitrary entries and there are k 1’s in the top row.
Recalling that m must be odd means we can choose all entries except
the first bottom one arbitrarily, and then there would be a unique
choice of the first bottom one to make m odd. Thus the total number
of such m is equal to 22g−k−1 as claimed. �

6. Known cases: genus 2 and 3

We shall now demonstrate how our formula works by computing

the classes [G(g)] in genus 2 and 3. Note that in general it is an ex-
tremely interesting question to define a meaningful “enlarged” tauto-
logical ring of the Chow ring for some toroidal compactification of Ag
(see [vdG99],[EvdG05], and we hope our computations here may also
shed further light on this.
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Note that for g ≤ 3 the stack Aperf
g is smooth and thus we can work

in the (classical) Chow ring of this space.

6.1. Genus 2. Recall that the locus I(2) is empty, and also G(2) = ∅.
It is convenient to introduce some ordering on the set (Z/2Z)2g, so that
the following formulas are easier to write using n1 < n2, etc. notation.
We now use Theorem 1.3 to compute

[G(2)] =
∑
m odd

p∗

λ2 + λ1

(
λ1

2
− 1

4

∑
n∈Zm

δn

)
+

(
λ1

2
− 1

4

∑
n∈Zm

δn

)2


= p∗

(∑
m odd

(
5

4
λ2

1 −
2

4
λ1

∑
n∈Zm

δn +
1

16

∑
n∈Zm

δ2
n +

2

16

∑
n1<n2∈Zm;n1·n2=0

δn1δn2

))
where we used the relation λ2 = λ2

1/2. In genus 2 there are 6 odd
characteristics. By proposition 5.2 four of Fm vanish on any boundary
component Di. Any intersection Di∩Dj of two boundary components,
if non-empty, is codimension two, and there exist then two Fm vanishing
on both Di and Dj. We thus compute

[G(2)] = p∗

(
6 · 5

4
λ2

1 − 4 · 1

2
λ1

∑
n

δn + 4 · 1

16
·
∑
n

δ2
n + 2 · 1

8

∑
n1<n2

δn1δn2

)

=
15

2
λ2

1 − λ1σ1 +
σ2

1 − 2σ2

16
+
σ2

16
where we again used the fact that APerf

g (2)→ APerf
g has branching order

2 along the boundary, so that the pushforwards are

(16) p∗(
∑

δn) =
σ1

2
, p∗(

∑
n1<n2

δn1δn2) =
σ2

4

as well as

(17) p∗

(∑
n

δ2
n

)
= p∗

(
(
∑
n

δn)2 − 2
∑
n1<n2

δn1δn2

)
=
σ2

1

4
− σ2

2
.

Here σ2 is as in [vdG99], namely the stacky cycle defined by the union of
the intersections of two boundary components on a level cover. Finally
from the computation of CH∗(APerf

2 ) in [vdG98] we have

σ2 = 6λ1σ1, σ2
1 = 22σ1λ1 − 120λ2

1

and substituting this into the expression above gives [G(2)] = 0 as
expected.

In general these computations allow us to compute the terms with
i < 3 in (15), obtaining for any genus
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Lemma 6.1. For any genus we have the formula

[G(g)] = 2g−1(2g − 1)

g∑
i=0

λg−i

(
λ1

2

)i
− 22g−5σ1

g∑
i=1

iλg−i

(
λ1

2

)i−1

+22g−8(σ2
1 − σ2)

g∑
i=2

i(i− 1)

2
λg−i

(
λ1

2

)i−2

+ P

where the last term denotes some polynomial in δn having degree at
least 3.

6.2. The genus 3 case: the locus Sym3(A1). In genus 3 it is in fact
known [CM08b] that I(3) = Sym3(A1) as a set (in the literature on the
subject it is customary to write A1 × A1 × A1 for the locus of such
reducible ppav, while in fact it is really the symmetric product, and we
try to make this distinction). The multiplicity is in fact equal to one
as discussed in remark 2.1.

We know from [GK11, Th. 1.3] that G(3) = I(3). We shall now

compute the class of G(3) and show that it coincides indeed with the

class [Sym3(A1)] ∈ CH∗(APerf
3 ) as computed in [vdG98], and corrected

in [vdG09], thus demonstrating the way our machinery works.
Indeed, if we use Lemma 6.1, the only new ingredient needed is

an expression for the terms with at least three δ’s. We perform this
computation in arbitrary genus for further use. To this end we first
compute(∑

n∈Zm

δn

)3

=
∑
a∈Zm

δ3
a + 3

∑
a6=b∈Zm

δ2
aδb + 6

∑
a<b<c6=a∈Zm

δaδbδc.

By Proposition 5.2 we have 22g−2 sections Fm generically vanishing
on any given boundary component Da, 22g−3 vanishing on any non-
empty intersection Da ∩ Db, and 22g−4 vanishing on any non-empty
intersection Da ∩Db ∩Dc that is global, i.e. over β3 ⊂ ASat

g (by part 1

of Proposition 5.2 there do not exist any Fm generically vanishing on
a local triple intersection of boundary divisors, over β0

2 ⊂ ASat
g , which

would correspond to the case a + b + c = 0). By definition the locus
β3 ∈ APerf

g (2) is the union of all global triple intersections, while σ3 is
the class of the union of all triple intersections, whether global or local.
Altogether this yields∑
m odd

p∗

(∑
n∈Zm

δ3
n

)
= 22g−2p∗(

∑
a

δ3
b )+3·22g−3p∗

(∑
a6=b

δ2
aδb

)
+22g−4·6β3

23
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where on the right-hand-side the summation is over all boundary com-
ponents labeled by a, b, c ∈ (Z/2)2g \0. The factor 6 in front of the last
summand comes from the fact that every set {a, b, c} appears 6 times
in the summation, whereas the factor 83 comes from the branching of
order 8 along each boundary component.

We now need to deal with the combinatorics of the intersections of
the boundary components. To this end, observe the identity

p∗

(
(
∑
a

δa)(
∑
a<b

δaδb)

)
=
σ1σ2

23
= p∗

(∑
a6=b

δ2
aδb + 3

∑
a<b<c

δaδbδc

)
We can thus deduce

p∗

(∑
a6=b

δ2
aδb

)
=
σ1σ2 − 3σ3

8
,

and similarly using

σ3
1

8
= p∗

(
(
∑
a

δa)
3

)
= p∗

(∑
a

δ3
a + 3

∑
a6=b

δ2
aδb + 6

∑
a<b<c

δaδbδc

)
we deduce

p∗

(∑
a

δ3
a

)
=
σ3

1 − 3(σ1σ2 − 3σ3)− 6σ3

8
=
σ3

1 − 3σ1σ2 + 3σ3

8
.

This finally yields, after grouping similar terms

Lemma 6.2. The term of the polynomial P in Lemma 6.1 involving
products of three boundary divisors equals

−
∑
m odd

p∗

(
1

4

∑
n∈Zm

δn

)3 g∑
i=3

(
i

3

)(
λ1

2

)i−3

λg−i

= −22g−12
(

2σ3
1 − 3σ1σ2 − 3σ3 + 3β3

) g∑
i=3

(
i

3

)(
λ1

2

)i−3

λg−i.

Combining this expression with the result of Lemma 6.1 we finally
get for g = 3

[G(3)] = 28

(
λ3 + λ2

λ1

2
+ λ1

λ2
1

4
+
λ3

1

8

)
− 2σ1

(
λ2 + 2λ1

λ1

2
+ 3

λ2
1

4

)

+
1

4
(σ2

1−σ2)

(
λ1 + 3

λ1

2

)
− 1

32
(σ3

1−3σ1σ2+3σ3)− 3

64
(σ1σ2−3σ3)− 3

64
β3.
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The Chow ring CH∗(APerf
3 ) was computed in [vdG98], and corrected

in [vdG09], and in particular it was shown (as corrected in the erratum)
that

[Sym3(A1)] = −35λ3 +
35

2
λ3

1 −
25

4
λ2

1σ1 +
5

8
λ1σ2 +

5

8
λ1σ

2
1 −

1

12
σ1σ2.

Simplifying the expression for [G(3)] above and using the relations de-
termined in [vdG98], shows at the end of a lengthy, but straightforward,
computation that we in fact have

[G(3)] = [Sym3(A1)]

as expected.

7. Genus 4 case: the class of the locus A1 × θ(3)
null is

tautological

We will now treat the first new case, that of g = 4. As remarked

above, for g = 4 the locus I(4) is simply the closure of the locus of

products A1×θ(3)
null. Unlike the genus 3 case, CH∗(A4) and CH∗(APerf

4 )
are not known (this is currently under investigation, see [HT11]), and

in particular the classes of the locus A1 × θ
(3)
null and its closure are

not known. However, the projections to the tautological ring of these
classes can be computed, providing a good consistency check for theo-
rem 1.4, which for g = 4 gives the formula

[I(4)] = 45λ4
1.

In this section we first compute [A1×θ(3)
null]

taut directly geometrically,
thus confirming our results, and then proceed to use theorem 1.3 to
obtain a complete expression for this class — and not only for its
tautological part.

We start by considering the locus of products A1 ×A3.

Lemma 7.1. The projection of the class [A1 ×A3] ∈ CH∗Q(APerf
4 ) to

the tautological ring is given by

[A1 ×A3]taut = 20λ3

Proof. We note that by [vdG99] there are only two degree 3 classes in
the tautological ring, λ3

1 and λ3, and thus we know that we must have
an expression of the form

[A1 ×A3]taut = Aλ3
1 +Bλ3,

and it remains to determine the coefficients A and B. This can be
done by pairing with the complementary dimension tautological classes.
Indeed, by using the Hirzebruch-Mumford proportionality principle
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[Mum77], [vdG99], these can be computed (we got the number for
the top self-intersection number of λ1 from [vdG99], and used the rela-
tion (1 + λ1 + . . .+ λg)(1− λ1 + . . . (−1)gλg) = 1 from there to obtain
λ2

3 = λ3
1λ3 − λ6

1/8 and λ5
1λ3 = 7λ8

1/48)

〈λ3
1 · λ7

1〉APerf
4

=
1

1814400
; 〈λ3 · λ7

1〉APerf
4

=
7

48
· 1

1814400

〈λ3
1 · λ4

1λ3〉APerf
4

=
7

48
· 1

1814400
; 〈λ3 · λ4

1λ3〉APerf
4

=
1

48
· 1

1814400
.

We now need to compute the restrictions of the tautological classes to
A1 ×A3 and compute the corresponding intersection numbers there.
Note that the perfect cone compactification is multiplicative [SB06],
i.e. A1 ×A3 = APerf

1 × APerf
3 . Moreover, the Hodge bundle on the

locus of products is the sum of the pullbacks of the Hodge bundles on
the two factors, so that we in particular have

(18) λ1|APerf
1 ×APerf

3
= 1× λ1 + λ1 × 1

and

(19) λ3|APerf
1 ×APerf

3
= 1× λ3 + λ1 × λ2.

These expressions allow us to compute

λ7
1[A1 ×A3] = 7〈λ1〉APerf

1
· 〈λ6

1〉APerf
3

= 7 · 1

24
· 1

181440

and

λ4
1λ3[A1 ×A3] = 〈λ1〉APerf

1
· 〈λ4

1λ2〉APerf
3

+ 4〈λ1〉APerf
1
· 〈λ3

1λ3〉APerf
3

=
1

24
· 1

2
· 1

181440
+ 4

1

24
· 1

8
· 1

181440
=

1

24
· 1

181440

where for the last line we used λ2 = λ2
1/2 and computed the λ3

1λ3

intersection number from 2λ1λ3 = λ2
2 = λ4

1/4. Combining the above
computations, we then get the following two equations for A and B
(after factoring out the common factor of 1/1814400):

A+
7

48
B = 10 · 7

24
;

7

48
A+

1

48
B = 10 · 1

24

and solving these gives the result of the proposition. �

Corollary 7.2. The projection of the class [A1 × θ(3)
null] to the tautolog-

ical ring (with rational coefficients) is given by

[A1 × θ(3)
null]

taut = 45λ4
1.
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Remark 7.3. To obtain the corollary we are basically going to intersect
with a divisor, and deduce the tautological part of the product. It is
tempting to say that this can be done in the tautological ring, but
notice that a priori Chow is not a ring, and the projection from the
Chow to the tautological ring cannot be a ring homomorphism.

Indeed, for example on A2 we have λ2
1σ1 = 0, and thus the projection

of σ1 to the tautological ring is equal to zero, while λ1σ
2
1 6= 0, and thus

the projection of σ2
1 to the tautological ring is non-zero (in fact we have

σ2
1 = 22σ1λ1 − 120λ2

1, see [vdG98]).

Proof. From our previous proposition we know that

[A1 ×A3] = 20λ3 + [X]

where the class [X] has intersection 0 with all monomials in the λi of

degree 7. The class of the theta-null divisor [θ
(3)
null] in CH∗(APerf

3 ) equals

18λ1 − 2σ
(3)
1 where σ

(3)
1 is the class of the boundary. We thus obtain

18λ1[A1 ×A3] = [18λ1|APerf
1
×APerf

3 ] + [A1 × θ(3)
null]

+[APerf
1 × 2σ

(3)
1 ] + 18λ1[X].

We now deal with the summands term by term. For the first term, we
compute

[18λ1|APerf
1
×APerf

3 ] =
3

2
[A0 ×APerf

3 ]

(keeping in mind the stackiness, so that λ1 has degree 1/24 on A1 and
A0 has degree 1/2). The tautological projection of the class [A0×APerf

3 ]
was computed in [vdG99, Prop. 4.3], resp. [EvdG05, Theorem 3.4], and
we thus get

3

2
[A0 ×APerf

3 ]taut =
3λ4

2ζ(−7)
= 360λ1λ3 − 45λ4

1.

Let us now compute the tautological part of [APerf
1 ×2σ

(3)
1 ] (note that

lemmas 4.1 and 4.2 do not work here). Indeed, this is a codimension 4
locus, and since we have λ6

1 = 8λ3
1λ3−8λ2

3, to compute the tautological
part we need to know the intersections with λ2

3 and with λ3
1λ3. Using

formulae (18) and (19) and recalling from [vdG99, Lemma 3.11] that
in CH∗(APerf

3 ) we have λ3σ1 = 0, we thus get

λ3[APerf
1 × 2σ

(3)
1 ] = [λ1|APerf

1
× λ2

1σ
(3)
1 ],

from which the intersection numbers are

λ2
3[APerf

1 × 2σ
(3)
1 ] = 0
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since λ2
1 is zero in dimension one on APerf

1 and

λ3
1λ3[APerf

1 × 2σ
(3)
1 ] = 0

since λ5
1σ1 = 0 on APerf

3 . Thus [APerf
1 × 2σ

(3)
1 ]taut = 0.

Since [X] lies in the orthogonal complement of the tautological ring
the same holds for λ1[X] and the assertion follows. �

The above computation matches the result of our theorem 1.4 for
g = 4. We now proceed to compute the class completely.

Proposition 7.4. The class of the locus is

[I(4)] = [A1 × θ(3)
null] = 180λ1λ3 +

45

2
λ4

1 − 8σ1λ3 − 14σ1λ
3
1 +

7

2
λ2

1σ
2
1

−7

2
λ2

1σ2 −
3

8
λ1σ

3
1 +

9

16
λ1σ1σ2 +

9

16
λ1σ3 −

9

16
λ1β3 +

3

64
Y +

1

64
σ4

− 1

16
σ1σ3 +

3

64
σ1β3 +

1

64
σ2

2 −
1

32
σ2

1σ2 +
1

64
σ4

1 ∈ CH∗(APerf4 )

where the class Y is defined as

Y :=
∑

n1<n2<n3<n4;n1+n2+n3+n4=0

δn1δn2δn3δn4 .

Remark 7.5. One can understand the locus with class Y geometri-
cally, similarly to the way the discriminant locus ∆ = σ3 − β3 can be
described as the class of the stratum of semiabelic varieties whose nor-
malization has two components, each of which is a P2 bundle over some
ppav B ∈ Ag−2. Indeed, by inspecting the table of perfect cones for all
possible small codimension strata in APerf

g we see that Y is in fact equal
to the locus of semiabelic varieties of torus rank 3 (since the dimension
of the linear span of ni is three), for which the normalization is a union
of two P3 bundles and a F (2, 2) bundle. To prove this, we just observe
that the corresponding cone is generated by x2

1, x
2
2, x

2
3, (x1 + x2 + x3)2,

giving the relation among the ni as in the definition of Y . We shall
discuss this in more detail in remark 8.2.

Remark 7.6. It is a very appealing question to try to define and
describe a suitably “extended” tautological ring of a toroidal compact-
ification of Ag (in particular, of the perfect cone compactification). In
addition to the tautological classes λi, presumably such an extended
ring would include the classes λi, σi, βi. In view of the above com-
putation, it would also be natural to include Y and the classes of all
strata in the boundary corresponding to various types of semi-abelic
varieties. Note that the proof below shows that Y does not lie in the
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ring generated by σi and βi, but it could lie in the ring generated by
these together with λi — we were unable to determine this.

Proof of proposition 7.4. Note that one a priori technical difficulty is
thatAPerf

4 is singular. However, it is only singular in codimension 10 (at
the one point corresponding to the only non basic cone in the perfect
cone compactification of genus 4, namely the second perfect cone, see
[HS04]). The computations we do are for classes of codimension at most
4, and thus the singularity does not matter for these computations.

Indeed, applying the formulas from lemmas 6.1 and 6.2 and using
the relations among the λ classes from [vdG99] we get

[G(4)] = 180λ1λ3 +
45

2
λ4

1 − 8σ1λ1 − 14σ1λ
3
1 +

7

2
λ2

1σ
2
1 −

7

2
λ2

1σ2

− 3

16
λ1(2σ3

1 − 3σ1σ2 − 3σ3 + 3β3)

+
1

44

∑
m odd

p̄∗

(
24

∑
n1<n2<n3<n4∈Zm

δn1δn2δn3δn4 + 12
∑

n1;n2<n3∈Zm

δ2
n1
δn2δn3

+6
∑

n1<n2∈Zm

δ2
n1
δ2
n2

+ 4
∑

n1;n2∈Zm

δ3
n1
δn2 +

∑
n∈Zm

δ4
n

)
.

where all the sums are taken over all ni ∈ Zm that are pairwise distinct,
and the coefficient of some monomial δa1n1

·. . .·δaknk
is equal to the binomial

coefficient
( ∑

ai
a1,...,ak

)
We now need to go through the possible combinatorics of the inter-

sections. Note that any intersection Da ∩ Db for a 6= b, if non-empty,
“lives over β2” (which is to say that it intersects β0

2 and does not in-
tersect β0

1), while for triple intersections we know that Da ∩Db ∩Da+b

lives over β2, and all other triple intersections live over β3. Similarly
the quadruple intersections that live over β3 are Da ∩Db ∩Dc ∩Da+b

and Da ∩Db ∩Dc ∩Da+b+c, while all the other ones live over β4, and
in fact the other intersections together give β4.

Using Proposition 5.2, and in particular that we cannot have n1 +
n2 +n3 = 0 for elements of Zm, we thus compute for arbitrary g (notice
that the sums on the right are now over all ni, not just those in Zm;
we suppress the fact that ni are ordered, and use n for the index that
is not ordered relative to ni):∑
m

∑
n1<n2<n3<n4∈Zm

δn1δn2δn3δn4 = 22g−4
∑

n1+n2+n3+n4=0

δn1δn2δn3δn4+22g−5β4;

∑
m

∑
n1;n2<n3∈Zm

δ2
n1
δn2δn3 = 22g−4

∑
n1+n2+n3 6=0;n2<n3

δ2
n1
δn2δn3 ;
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m

∑
n1<n2∈Zm

δ2
n1
δ2
n2

= 22g−3
∑

δ2
n1
δ2
n2
,

∑
m

∑
n1,n2∈Zm

δ3
n1
δn2 = 22g−3

∑
δ3
n1
δn2 .

We now try to express the right-hand-sides as linear combinations
of the degree four classes in the algebra generated by σ1 = β1, σ2 =
β2, σ3, β3, σ4, the corresponding expressions for which are

σ4 − β4 =
∑

n1+n2+n3+n4=0

δn1δn2δn3δn4 +
∑

n1+n2+n3=0;n

δn1δn2δn3δn;

σ1β3 = 4β4 + 4
∑

n1+n2+n3+n4=0

δn1δn2δn3δn4 + 3
∑

n1+n2+n3=0;n

δn1δn2δn3δn

+
∑

n1+n2+n3 6=0;n2<n3

δ2
n1
δn2δn3 ,

σ1(σ3 − β3) =
∑

n1+n2+n3=0;n

δn1δn2δn3δn +
∑

δ2
n1+n2

δn1δn2

for the terms involving some combinatorics. Notice that on the right-
hand-side we have 4 different unknown terms, and thus we would not
be able to express all of them in terms of these classes, so that the
resulting expression will have to involve Y .

For the rest of the terms there is no combinatorics of the intersections
involved, and we compute

σ2
2 = 6

∑
all

δn1δn2δn3δn4 + 2
∑
all

δ2
n1
δn2δn3 +

∑
all

δ2
n1
δ2
n2

;

σ2
1σ2 = 12

∑
all

δn1δn2δn3δn4 + 5
∑
all

δ2
n1
δn2δn3 + 2

∑
all

δ2
n1
δ2
n2

+
∑
all

δ3
n1
δn2 ;

σ4
1 = 24

∑
all

δn1δn2δn3δn4 + 12
∑
all

δ2
n1
δn2δn3 + 6

∑
all

δ2
n1
δ2
n2

;

+4
∑
all

δ3
n1
δn2 +

∑
all

δ4
n

for the remaining terms (in the last three expressions we sum over all
possible dimensions of linear spans of {ni} on the right).

Combining all of these allows us to first express all symmetric poly-
nomials in Dn in terms of the standard symmetric polynomials, and
then we express all the terms involving various combinatorics of the
intersections in terms of these classes and Y , obtaining the expression
as claimed. �
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For further use we record the result of the above computation for
arbitrary g.

Lemma 7.7. For arbitrary g the order 4 term in proposition 6.1 is
equal to

22g−2

84

(
6Y + 3β4 + 3(σ1β3 − β4 − Y − 3σ4) + 3(σ2

2 − 2σ1σ3 + 2σ4)

+2(σ2
1σ2 − 2σ2

2 − σ1σ3 + 4σ4) + σ4
1 − 4σ2

1σ2 + 2σ2
2 + 4σ1σ3 − 4σ4

)
= 22g−14

(
σ4 − 4σ3σ1 + 3Y + 3σ1β3 + σ2

2 − 2σ2σ
2
1 + σ4

1

)
times the corresponding polynomial in λ classes.

8. Genus 5: the locus of intermediate Jacobians

In this section we finally compute the class in the Chow ring of
the locus I(5), that is of the locus of intermediate Jacobians of cubic

threefolds together with the locus of products A1 × θ
(4)
null. We then

compute the projection to the tautological ring of each of these two
loci. The computation is similar to the one in the previous section, but
much more involved, with more new classes appearing. Again we shall
first work on the smooth part of Aperf

5 . In this case we observe that
the codimension of the singular locus is at least 6, which is sufficient
for our purpose: away from β5 we know it to be 10, whereas on β5

there is only one stratum of codimension 5 and this corresponds to the
principal cone, which is basic.

Proposition 8.1. We have in CH∗(APerf
5 ) the formula

[IJ ] + [A1 × θ(4)
null] = 496λ5 + 372λ3λ

2
1 +

93

2
λ5

1 − 64λ3λ1σ1 − 34λ4
1σ1

+(4λ3 + 14λ3
1)(σ2

1 − σ2) +
5

4
λ2

1

(
3σ3 + 3σ2σ1 − 2σ3

1

)
+

7

32
λ1(σ4 − 4σ3σ1 + 3Y + 3β3σ1 + σ2

2 − 2σ2σ
2
1 + σ4

1)

− 1

256
(−95σ5 − 30β5 − 45A2 − 30A3 − 15A4 + 15C1 + 10D1

+45σ4σ1 + 15β4σ1 + 30Y σ1 + 5σ3σ2 − 15σ3σ
2
1 + 5σ2

2σ1 − 5σ2σ
3
1 + 2σ5

1

)
where the classes A2, A3, A4, C1, D1 are defined below, and we refer to
remark 8.2 for a geometric interpretation of the classes A2, A3, A4.
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Proof. We shall again use formula (15). Similar to the above computa-
tions, the new term we need to deal with here is

∑
m

(
∑
n∈Zm

δn)5. Thus we

will need to handle all products of five δn, with indices distinct or equal,
and with all possible combinatorics of the intersections. The compu-
tations will be still more involved, and we proceed systematically, first
listing all the terms that could appear. Recall that by convention the
indices n1, . . . , nk, and separately the indices m1, . . . ,m` are ordered,
and that all the linear relations among indices are stated under the
sums. We then have the following types of products of 5 boundary
components:

A1 :=
∑

δn1δn2δn3δn4δn5 ; A2 :=
∑

n1+n2+n3+n4+n5=0

δn1δn2δn3δn4δn5 ;

A3 :=
∑

n1+n2+n3+n4=0

δn1δn2δn3δn4δn; A4 :=
∑

n1+n2+n3=0

δn1δn2δn3δm1δm2 ;

A5 :=
∑

n+n1+n2=n+m1+m2=0

δnδn1δn2δm1δm2 ;

B1 :=
∑

δ2
nδn1δn2δn3 ; B2 :=

∑
n+n1+n2+n3=0

δ2
nδn1δn2δn3 ;

B3 :=
∑

n+n1+n2=0

δ2
nδn1δn2δm; B4 :=

∑
n1+n2+n3=0

δ2
nδn1δn2δn3 ;

C1 :=
∑

δ2
n1
δ2
n2
δn; C2 :=

∑
n1+n2+n=0

δ2
n1
δ2
n2
δn;

D1 :=
∑

δ3
nδn1δn2 ; D2 :=

∑
n+n1+n2=0

δ3
nδn1δn2 ;

E :=
∑

δ3
nδ

2
k; F :=

∑
δ4
nδk; G :=

∑
δ5
n

Remark 8.2. Some of these loci — the ones where each δn appears to
power one — have geometric interpretations. Indeed, recall that the
strata of a toroidal compactification correspond to orbits of cones in the
corresponding fan. The perfect cone compactification APerf

g is given, as

the name indicates, by the perfect cone decomposition of Sym2
≥0(Rg)

and AVor
g is given by the second Voronoi decomposition. For genus g ≤

3 these two toroidal compactifications coincide, whereas for g = 4, 5,
but not in general, the second Voronoi decomposition is a refinement
of the perfect cone decomposition. In other words, AVor

g is a blow-up of

APerf
g for g = 4, 5 and by inspection of the decompositions one can see

that the center of the blow-up AVor
g → APerf

g has codimension > 5. We

also recall that, due to the moduli interpretation of AVor
g (see [Ale02]),
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the strata of this toroidal compactification have an interpretation in
terms of polarized semi-abelic varieties. In [GK11, section 3] we have
enumerated the relevant cones of small codimension and described the
corresponding semi-abelic varieties. We can use this description to
give a geometric interpretation for all of the above loci where each δn
appears to power one.

First, we note that A1 = β5. Then observe that A2 is the class of
the locus of semi-abelic varieties of torus rank 4 the normalization of
which is a union of two P4 bundles and one X bundle (the toric poly-
tope corresponding to X is the 4-dimensional cube with two simplices
removed) — the corresponding cone is generated by x2

1, x
2
2, x

2
3, x

2
4, (x1 +

x2 + x3 + x4)2 and has the correct linear dependency. The class A3 is
the class of the stratum where the corresponding cone is generated by
x2

1, x
2
2, x

2
3, x

2
4, (x1 + x2 + x3)2, and the normalization of the semiabelic

variety is the union of two P1×P3 bundles and one P1×F (2, 2) bundle.
Similarly, A4 corresponds to the stratum where the corresponding cone
is x2

1, x
2
2, x

2
3, x

2
4, (x1 + x2)2. The normalization of such a semiabelic va-

riety is two copies of a P1×P1×P2 bundle. Finally, A5 corresponds to
the cone x2

1, x
2
2, x

2
3, (x1 + x2)2, (x1 + x3)2, and the normalization of the

corresponding semiabelic varieties consists of two copies of a P3 bundle
and two copies of an F2 (singular cone over P1 × P1) bundle.

Denoting by A the sum of all Ai, etc., we now express all degree 5
elements of the ring generated by σi and βi in terms of the classes above.
The expressions we get for polynomials in σi are standard expressions
in the algebra of symmetric polynomials, while in expressions involving
βi the combinatorics of the indices plays a role — some summands are
missing, and the coefficients differ depending on the combinatorics.
Indeed we have

σ5 = A; σ1σ4 = 5A+B; σ2σ3 = 10A+ 3B + C;

σ2
1σ3 = 20A+ 7B + 2C +D; σ1σ

2
2 = 30A+ 12B + 5C + 2D + E;

σ3
1σ2 = 60A+ 27B + 12C + 7D + 3E + F ;

σ5
1 = 120A+ 60B + 30C + 20D + 10E + 5F +G

for the symmetric polynomials, and also

β5 = A1; σ1β4 = 5A1 + 5A2 + 4A3 + 3A4 +B1;

σ2β3 = 10A1 + 10A2 + 10A3 + 9A4 + 8A5 + 3B1 + 3B2 + 2B3 + 3B4 +C1;

σ2
1β3 = 20A1+20A2+20A3+18A4+16A5+7B1+7B2+5B3+6B4+2C1+D1.

We want to use these identities to express all these unknown classes
in terms of the smallest possible number of unknowns. We first note
that from symmetric polynomial expressions we get expressions for
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A,B,C,D,E, F,G in the ring generated by σi (and thus writing down
A = A1 + A2 + A3 + A4 + A5 gives a non-trivial identity among the
codimension 5 boundary strata — which we then use to eliminate A5

from the formulas). From the expression for σ1β4 we can express B1 in
terms of the geometrically defined classes Ai. We can further note that
Y σ1 = A3 + A5 +B2, which provides a geometric description of B2.

Using proposition 5.2, we can now deal with the fifth order term
appearing in the class computation in Theorem 1.3. Indeed, we note
that no terms where there is a linear relation of odd length occur, and
thus compute

1

45
p∗
∑
m odd

(∑
n∈Zm

δn

)5

=
1

85

(
120(22g−6A1 + 22g−5A3)

+60(22g−5B1 + 22g−4B2) + 30(22g−4C1) + 20(22g−4D1)

+10 · 22g−3E + 5 · 22g−3F + 22g−2G
)

= 22g−18 (15A1 + 30A3 + 15B1 + 30B2 + 15C1 + 10D1

+10E + 5F + 2G) .

To obtain an expression for this class in terms of the classes previously
introduced, we note that B1 and B2 can be expressed in terms of the Ai
and Y σ1, that we have eliminated A5, but that there is no way to avoid
using C1 and D1. Doing this computation in Maple yields the result
of the proposition. Of course using the formulas for σ2β3 and σ2

1β3, we
can express C1 and D1 in terms of B3, B4, and the other classes, but
it is not clear why this would be a better expression. �

The proposition above computes the class of the locus [I(5)]. To be
able to compute the class of the locus of intermediate Jacobians, we
need to compute the class of the other component. This is accomplished
similarly to the computations in the previous section.

Proposition 8.3. The projection of the class [A1 ×A4] ∈ CH∗Q(APerf
5 )

to the tautological ring is given by

[A1 ×A4]taut = −11

8
λ4

1 + 11λ1λ3.

In particular, if the locus of products [A1 × A4] ∈ CH∗(A5) is tauto-
logical, then [A1 ×A4] = −11

8
λ4

1 + 11λ1λ3.
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Proof. The proof proceeds similarly to the proof of lemma 7.1 for genus
4. From van der Geer’s defining relation [vdG99, (1)] of the tautological
ring we get the following explicit identities in CH∗(APerf

5 ):

λ2
3 = λ3

1λ3−
λ6

1

8
− 2λ1λ5; λ5

1λ3 =
7

48
λ8

1 +
8λ5

3
(λ3

1 + λ3); λ2
5 = 0.

Multiplying the first of these by λ5
1 and the second by λ3 and equating

the results further gives

λ3
1λ3λ5 =

1

5
λ6

1λ5 −
1

7040
λ11

1 ;

multiplying this one by λ2
1 and the second by λ5 and equating the

results finally yields

λ8
1λ5 =

3

1144
λ13

1 .

Using these relations, we can compute explicitly all the top intersec-
tion numbers in the ring generated by the λi classes (of course, these
also follow from the Hirzebruch-Mumford proportionality, but we could
not find an easily available reference for intersection numbers on the
symplectic Grassmannian).

Indeed, from the Hirzebruch-Mumford proportionality (see [vdG99]
for the formula) we get

〈λ15
1 〉APerf

5
=

13

16329600
.

Using the above relations we compute step by step

〈λ12
1 λ3〉APerf

5
= 〈8

3
λ7

1λ3λ5 +
8

3
λ10

1 λ5 +
7

48
λ15

1 〉APerf
5

= 〈16

5
λ10

1 λ5 +
8

55
λ15

1 〉APerf
5

=
2

13
〈λ15

1 〉APerf
5

=
2

16329600
and then

〈λ9
1λ

2
3〉APerf

5
= 〈λ12

1 λ3 − 2λ10
1 λ5 −

1

8
λ15

1 〉APerf
5

=

(
2

13
− 3

572
− 1

8

)
〈λ15

1 〉APerf
5

=
1

53222400
.

From the fact that the Hodge bundle on A5 restricts to the sum of
Hodge bundles on the factors of a decomposable ppav, we get, as in
lemma 7.1,

λ11
1 [A1 ×A4] = 11〈λ1〉APerf

1
· 〈λ10

1 〉APerf
4

=
11

24
· 1

1814400
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and

λ8
1λ3[A1 ×A4] = 〈λ1〉APerf

1
· 〈λ8

1λ2〉APerf
4

+ 8〈λ1〉APerf
1
· 〈λ7

1λ3〉APerf
4

=
1

24
· 1

2
· 1

1814400
+ 8 · 1

24
· 7

48
· 1

1814400
=

5

72
· 1

1814400

where we have used the computation of 〈λ7
1λ3〉APerf

4
from lemma 7.1.

Thus if we have [A1 ×A4] = Aλ4
1 + Bλ1λ3 in the tautological ring,

we can compute the coefficients from the above relations, and the result
is as stated. �

Similarly to the g = 4 case, we can then compute the projection of
the class of the theta-null divisor to the tautological ring.

Corollary 8.4. The projection of the class [A1 × θ(4)
null] to the tautolog-

ical ring with rational coefficients is given by

[A1 × θ(4)
null]

taut = 187(−λ5
1/2 + 4λ2

1λ3 − 4λ5).

Proof. Indeed, similarly to the proof of corollary 7.2, let [X] ∈ CH4(A5)
be the part of the class of [A1 ×A4] orthogonal to the tautological ring.

Since the class of [θ
(4)
null] is equal to 68λ1 − 8σ

(4)
1 , we compute

68λ1[A1 ×A4] = [68λ1|APerf
1
×APerf

3 ]+[A1 × θ(4)
null]+68λ1[X]+8[APerf

1 ×σ(4)
1 ].

The class λ1[X] is orthogonal to the tautological ring, and we need to
argue that so is the last class. Indeed, it is codimension 5 in APerf

5 , but
by the restriction property of the Hodge bundle it is enough to argue

that σ
(4)
1 is orthogonal to the tautological ring of APerf

4 , which follows
from lemma 4.1.

Thus using the above proposition together with the formula [A0 ×
APerf

4 ]taut = −λ5/ζ(−9) from [vdG99, prop. 4.3] (and recalling again
that degA0 = 1/2, as of a stack, and thus λ1|A0 = 1/12[A0]), we
obtain

−2 · 68λ5

24ζ(−9)
+ [A1 × θ(4)

null]
taut = 187(−λ5

1/2 + 4λ2
1λ3).

Recalling ζ(−9) = −1/132 proves the claim. �

Combining this with theorem 1.4 finally yields proposition 1.5, giving
a formula for [IJ ]taut.
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