
IGUSA QUARTIC AND STEINER SURFACES
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Abstract. The Igusa quartic has a morphism of degree 8 onto
itself. Via this self-morphism, the Satake compactification As

1(2)
of the moduli of principally polarized abelian surfaces with Göpel
triples (as well as usual p.p.a.s.’s with full level-2 structures) is
isomorphic to the Igusa quartic. We also determine the action of
Fricke involution on the moduli.

In the workshop in the University of Georgia in October 2011, I gave
a talk on Enriques surfaces of type E7, which is a continuation of [8]
and will appear elsewhere. In this article, instead I report on a new
interpretation of the Igusa quartic as a moduli, which was found in my
study of such Enriques surfaces.

The Satake compactification As(2) of the moduli space H2/Γ(2) of
principally polarized abelian surfaces is a quartic hypersurface in P4,
called the Igusa quartic, where H2 is the Siegel upper half space of
degree 2 and Γ(2) is the principal congruence subgroup of level 2 in
Sp(4, Z). We characterize the Igusa quartic using Steiner quartic sur-
faces, or Steiner’s Roman surfaces. As a corollary, we show that the
Satake compactification As

1(2) of the moduli of principally polarized
abelian surfaces with Göpel triples is also isomorphic to the Igusa quar-
tic.

A Steiner surface is an irreducible quartic surface in P3 whose sin-
gular locus is the union of three lines meeting at a point. A Steiner
surface has seven planes which cut out double conics, or tropes, from
it. Three are the unions of two double lines. The other four are lin-
early independent and cut out irreducible double conics. Taking these
four planes as the reference tetrahedron x0x1x2x3 = 0 of homogeneous
coordinates, a Steiner surface is normalized in the form

(1) (s2
1 − 4s2)

2 = 64s4,
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where si is the elementary symmetric polynomial of degree i in the co-
ordinates x0, x1, x2, x3. (See (10) for another equation.) In particular,
all Steiner surfaces are isomorphic to each other.

Let X be a hypersurface in P4 and σ a linear and reflective involution
of X ⊂ P4, that is, the lift of σ to GL(5, C) has only one −1 as its
eigenvalue. The fixed point set of the action of σ on P4 consists of an
isolated point and P3. The projection X · · · → P3 from the isolated
fixed point factors through the quotient X/σ.

The following is called the Steiner property of such a pair (X, σ).

(∗) The fixed point locus of σ is a Steiner surface R and the map
X/σ · · · → P3 is a double covering with branch the union of four planes
which cut out irreducible double conics from R.

A hyperquartic X is said to satisfy the Steiner property if there
exists an involution σ such that (X, σ) satisfies it. Such a hyperquartic
is isomorphic to the standard one

(2) (x2
4 − s2

1 + 4s2)
2 = 64s4

in P4
(x0:...:x4).

The following observation is the starting point of our consideration.

Proposition 1. The Igusa quartic satisfies the Steiner property and
has a morphism of degree 8 onto itself.

(See Remark 4 for the geometric meaning of the involution σ in this
case.)

Making use of this observation, we construct a self-morphism of the
Igusa quartic (§1). We denote the congruence subgroup of Sp(4, Z)

consisting of

(
A B
C D

)
with C ≡ 0 (2) by Γ0(2), and with A − I2 ≡

C ≡ 0 (2) by Γ1(2). The quotient H2/Γ0(2) is the moduli space of pairs
(A, G) of principally polarized abelian surfaces A and Göpel subgroups
G ⊂ A(2). (G is Göpel if it is maximally totally isotropic with respect
to the Weil pairing.) The quotient H2/Γ1(2) is the the moduli space
of pairs (A,ψ)’s, where ψ : (Z/2)⊕2 → A(2) is an isomorphism onto a
Göpel subgroup.

The element 1√
2

(
0 I2

−2I2 0

)
∈ Sp(4, R) belongs to the normalizer of

Γ1(2), and induces involutions of the quotient H2/Γ0(2) and H2/Γ1(2),
which are called the Fricke involutions. Geometrically, the Fricke invo-
lution maps a pair (A, G) to (A/G,A(2)/G). Since A(2)/G is isomorphic
to G via Weil pairing, the Fricke involution of H2/Γ1(2) is also well de-
fined geometrically.
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Theorem 2. The Satake compactification As
1(2) of H2/Γ1(2) is a hy-

perquartic in P4 and the Fricke involution ϕ acts linearly on As
1(2) ⊂

P4. Moreover, the pair (As
1(2), ϕ) satisfies the Steiner property. In

particular, As
1(2) is isomorphic to the Igusa quartic and its quotient

A∗,s
1 (2) by the Fricke involution is the double cover of P3 with branch

the union of four planes.

As Terasoma [9] observes, the Fricke involution fixes the moduli of
abelian surfaces with real multiplications by

√
2. The fact that the

fixed point locus is a Steiner surface also follows from Hirzebruch [4].
It is interesting to compare our description with the computation of
Siegel modular forms in [6] but we do not pursuit it here.

This article was completed during the author’s stay at the Isaac
Newton Institute in the Spring of 2011. The author is very grateful for
the generous support and hospitality of the institution.

1. A simple computation

We first construct a self-morphism (of degree 8) of the quartic hy-
persurface (2).

Let Y be the double P3 with branch the union of four linearly in-
dependent planes. The symmetric group S4 of degree four acts on Y
permuting the four planes.

Lemma 3. The quotient of the above threefold Y by the action of the
Klein’s 4-group K4 ⊂ S4 is isomorphic to (2).

Proof. Y is expressed as z2 = y0y1y2y3 for a homogeneous coordinate
(y0 : y1 : y2 : y3) of P3. To compute the quotient we make the following
coordinate transformation:

(3) x0 = (y0 + y1 + y2 + y3)/2, x1 = (y0 + y1 − y2 − y3)/2,

x2 = (y0 − y1 + y2 − y3)/2, x3 = (y0 − y1 − y2 + y3)/2.

Then Y is expressed as

16z2 = (x0+x1+x2+x3)(x0+x1−x2−x3)(x0−x1+x2−x3)(x0−x1−x2+x3)

and as 16z2 = s2
1 − 4s2 + 8x0x1x2x3, where si is the elementary sym-

metric polynomial of degree i in the variables X0 := x2
0, . . . , X3 := x2

3.
Since K4 interchanges even number of signs of x1, x2 and x3, the quo-
tient Y/K4 is (s2

1 − 4s2 − 16z2) = 64X0X1X2X3. Hence the quotient
Y/K4 is isomorphic to (2). ¤

When (X, σ) has the Steiner property, the quotient X/σ is isomor-
phic to the 3-fold Y in the lemma. Therefore, (2) has a self-morphism
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of degree 8. Its explicit form is give by

(4) (x0 : x1 : x2 : x3 : x4 : τ) 7→

((x0 + x1 + x2 + x3)
2 : · · · : (x0 − x1 − x2 + x3)

2 : 2(s2
1 − 4s2 − τ 2)).

2. Proof of Proposition 1

We give three proofs.

Proof 1. To use the equation

(5) (y0y1 + y0y2 + y1y2 − y3y4)
2 − 4y0y1y2(y0 + y1 + y2 + y3 + y4) = 0

in Igusa [7, p. 397] is the simplest. The interchange of y3 and y4 is an
involution of this hyper quartic. Its fixed point locus

(y0y1 + y0y2 + y1y2 − y2
3)

2 − 4y0y1y2(y0 + y1 + y2 + 2y3) = 0

is a Steiner surface. The four planes y0 = 0, y1 = 0, y2 = 0, y0 + y1 +
y2 + 2y3 = 0 cut out irreducible double conics. Therefore, (5) satisfies
the Steiner property.

Proof 2. As is well-known, the Igusa quartic is isomorphic to the quartic

(6) σ1 = σ2
2 − 4σ4 = 0

which is invariant under the natural action of the symmetric group
of degree six (' Sp(4, Z)/Γ(2)), ([2, Sections 4, 5]), where σi is the
elementary symmetric polynomial of degree i in the six coordinates
x1, . . . , x6. It is easy to see from this equation that the Igusa qaurtc
has 15 double lines. The complement of these 15 lines is isomorphic to
H2/Γ(2).

Now we consider the involution of (6) interchanging x5 and x6. Then
the hyperplane x5 = x6 contains three of 15 double planes and cut out
a Steiner surface. Let us see more throughly. Putting x0 = x5 −x6, (6)
is expressed as a hyperquartic
(7)
(x2

0+3s2
1+4s2)

2 = 64(x2+x3+x4)(x1+x3+x4)(x1+x2+x4)(x1+x2+x3)

in Px0:...:x4 , where si is the elementary symmetric polynomial of degree
i in the four coordinates x1, . . . , x4. The fixed point locus

(8) (3s2
1+4s2)

2 = 64(x2+x3+x4)(x1+x3+x4)(x1+x2+x4)(x1+x2+x3)

is a Steiner surface and (7) satisfies the Steiner property.
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Proof 3. A principally polarized abelian surface which is not of product
type is mapped onto a Kummer quartic surface in P3 by the linear
system of twice the theta divisor. Its equation
(9)
a(x4+y4+z4+t4)+b(x2y2+z2t2)+c(x2z2+y2t2)+d(x2t2+y2z2)+16exyzt = 0

(with coefficients a, . . . , e ∈ C) is classically known ([5]) and is invariant
under the action of the Heisenberg group. The Satake compactification
As(2) of H2/Γ(2) is the quotient of the ambient P3 by the Heisenberg
(projective) action of B ' (C2)

4. More precisely, the ambient P3 is the
Satake compactification As(2, 4) of H2/Γ(2, 4) ([1, Proposition 1.7]).
The group B has an exact sequence 0 → B1 → B → B2 → 0 such that
B1 ' B2 ' C2

2 , that B1 changes even number of signs of the coordinates
x, y, z, t, and that B2 permutes them like Klein’s 4-group modulo sign.
The quotient Y of P3 by B1 is the double P3 with branch the union of
four coordinate planes. Hence the quotient P3/B is isomorphic to (2)
by Lemma 3 and satisfies the Steiner property.

3. Proof of Theorem 2

First we prove the last statement of the theorem:

Claim: the Satake compactification As
1(2) is isomorphic to the Igusa

quartic.

Proof. We restart from the expression (7) of H2/Γ(2) and take its quo-
tient by the group Γ1(2)/Γ(2) ' (C2)

3. When a principally polarized
abelian surface A is the Jacobian of a curve C of genus two, a Göpel
subgroup G corresponds to a partition of the six Weierstrass points into
three pairs. In fact, for example, KC − w1 − w2, KC − w3 − w4, KC −
w5 − w6 and 0 form a Göpel subgroup G0. The group Γ1(2)/Γ(2),
which preserves G0, is generated by three transpositions (12), (34) and
(56). The action of the symmetric group of degree 6 on the coordi-
nates of (6) is twisted by a nontrivial outer automorphism. Hence
Γ1(2)/Γ(2) acts on x1, . . . , x6 by the permutation C2 ×K4, where C2 is
the symmetric group of two coordinates, say x5 and x6, and K4 is the
Klein’s 4-group acting on the rest. The quotient Y of (7) by C2, gener-
ated by σ56, is the double P3 with branch the union of the four planes
x2 +x3 +x4 = 0, x1 +x3 +x4 = 0, x1 +x2 +x4 = 0 and x1 +x2 +x3 = 0.
Since K4 permutes these four planes like Klein’s 4-group, the quotient
Y/K4 is isomorphic to the Igusa quartic by Lemma 3. ¤

Remark 4. The fixed point locus of σ56 contains the Jacobians of
curves C of genus two with bi-elliptic involutions α ([8]) such that the
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action of α on the cohomology group H1(C, Z/2) is the same as the
element Sp(4, Z/2) corresponding to σ56.

Now we determine the action of the Fricke involution.

Lemma 5. The automorphism group of the Igusa quartic is the sym-
metric group S6 of degree six.

Proof. First, we note that the automorphism group Aut (X) as an ab-
stract variety coincides with that Aut (X ⊂ P4) as a projective variety,
since X ⊂ P4 is an anti-canonical embedding of X.

The singular locus of the Igusa quartic X ⊂ P4 is the union of 15
lines. We construct an homomorphism Aut (X) → S6 using an inci-
dence relation of these lines and show its injectivity. Note that there
are exactly six sets D1, . . . , D6 of five disjoint double lines. Moreover,
each intersection Di ∩ Dj, i 6= j, consists of one line, and every line
is contained exactly two of D1, . . . , D6. Hence we have an homomor-
phism Aut (X) → S6, and if an automorphism belongs to the kernel
it preserves each of 15 double lines. Since the intersection points of
all pairs of distinct lines span the ambient project space P4, such an
automorphism is the identity. ¤

By the claim and the lemma, the automorphism group of the Satake
compactification As

1(2) is S6. Hence there are three types of involu-
tions, that is, permutation type (2), (2)2 and (2)3. Since the Fricke
involution fixes the moduli points of abelian surfaces with real multi-
plication by

√
2 and such abelian surfaces forms a 2-dimensional family,

the permutation type of the Fricke involution is (2). Hence the pair
of As

1(2) and the Fricke involution satisfies the Steiner property. Thus
the proof of Theorem 2 is completed.

Remark 6. When we regard (2) as the Stake compactification As
1(2),

the hyperplane section τ = 0 is an Humbert surface of discriminant 8
as we already saw above. We find two kinds of other Humbert surfaces
in As

1(2). They are the hyperplane sections τ = ±(−x0 +x1 +x2 +x3).
As surfaces, they are defined by

(10) x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 = 4x0x1x2x3

in P3. This is again a Steiner surface and singular along three lines
x1 = x2 = 0, x1 = x3 = 0 and x2 = x3 = 0. One of them, say
τ = −x0+x1+x2+x3 parametrizes abelian surfaces of product type and
the other parametrizes bi-elliptic ones. The Fricke involution τ 7→ −τ
interchanges these two Humbert surfaces.
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