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Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic and magnetic
Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these
high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of
MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced
all of the most influential physics of the flows and magnetic fields? In this Report, a metric is defined to indicate
whether the necessary physics of interest has been captured. It is found that current computing resources will
typically not be sufficient to achieve this minimum state metric.

I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence [1, 2] has been
widely employed as a physical model in simulations and mod-
eling of space physics systems and astrophysics systems. As
is well known, the number of degrees of freedom in turbu-
lent flows can be estimated using non-dimensional parame-
ters such as the Reynolds number (Re) and magnetic Reynolds
number (Rm). These can be interpreted as ratios of the non-
linear terms to the dissipative terms in the governing MHD
equations. In space physics and astrophysics, estimates for
Re and Rm are often in excess of 105, sometimes by many or-
ders of magnitude. Direct numerical simulation of such high
Reynolds number systems would require resolutions that are
well beyond what can be achieved using current and fore-
seeable supercomputers. Thus, it is highly desirable to de-
termine whether the computationally feasible simulations—
with much lower Re and Rm—still capture the most important
physics of the flows of interest, despite the inevitable differ-
ences associated with the lower Reynolds numbers. Here we
employ the minimum state concept [3] along with recent re-
sults on the wavenumber locality of nonlinear interactions in
MHD turbulence [4] to estimate the minimum Reynolds num-
bers needed for accurate simulation of the energy-containing
range in incompressible MHD turbulence.

The equations of incompressible three-dimensional MHD
are

∂u

∂t
+ ν∇2u = −u ·∇u + b ·∇b−∇p, (1)

∂b

∂t
+ η∇2b = −u ·∇b + b ·∇u, (2)

along with the solenoidality constraints ∇ · u = 0 and ∇ ·
b = 0 [e.g., 1]. Here, u is the fluid velocity, b the magnetic
field, expressed in Alfvén speed units, and p the total pressure.
Equations (1)–(2) are written so that the nonlinear terms are
isolated on the RHS, along with the pressure gradient. Note
that the nonlinear terms all have the same structure,∼ α ·∇β,
where α and β can be either u or b.

We begin by discussing the basic requirement of a min-
imum state, namely capturing the key physics of the flow
of interest. From an applications perspective the most im-
portant group of scales is often the energy-containing range.

FIG. 1. (Color online) Sketch of a kinetic energy spectrum indicat-
ing the energy-containing, inertial, and dissipation ranges, and their
wavenumber boundaries. The idea behind the minimum state is that
the inertial range should be long enough so that direct interactions
between modes in the energy-containing and dissipation ranges are
energetically weak, indicated by the dashed (green) arrow. Some
“strong” interactions are indicated via the solid (green) arrows.

The integrity of the evolution of modes in this range can be
protected by demanding that the (direct) interactions between
them and modes in the dissipation range are weak [3]. In such
situations the energy-containing and dissipation range scales
will be separated by an inertial range, through which the en-
ergy originally resident at energy-containing scales cascades
to smaller scales [5]. Moreover, the modes in the energy-
containing range will then interact dominantly with them-
selves and modes in the inertial range. It seems likely that
there will be critical values of Re and Rm below which this
requirement cannot be satisfied. These Reynolds numbers de-
fine a minimum state flow. See Figure 1.

To quantify these ideas we will extend a criterion devel-
oped for Navier–Stokes (NS) turbulence [3] to the MHD case.
Specifically, a minimum state flow is defined as one for which
the (normalized) energy flux at the high-k end of the inertial
range is half that at the low-k end [3], where k = |k| is the
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Fourier wavenumber. The remainder of the paper provides
the necessary definitions and details required to estimate the
Reynolds numbers for a minimum state.

II. INERTIAL RANGE BOUNDARIES

To calculate the minimum state we require estimates of the
wavenumbers which bound the kinetic and magnetic inertial
ranges. In particular, their scaling with Reynolds number is
needed. Let � denote the outer scale, or correlation length, of
the velocity field, and let �B be the equivalent quantity for b.
Further, let ũ and b̃ be characteristic rms values for the ve-
locity and magnetic fields. Standard definitions of the (outer
scale) kinetic and magnetic Reynolds numbers are Re = ũ�/ν
and Rm = ũ�/η. We will also make use of an alternative
magnetic Reynolds number, Rm∗ = B̃�B/η, which is based
entirely on typical magnetic quantities [6]. The Kolmogorov
dissipation scale for the kinetic energy is defined in the usual
way as �diss = (ν3/�)1/4, where � is the kinetic energy dissi-
pation rate.

For NS turbulence, Dimotakis [7] suggested defining the in-
ertial range as the set of scales which lie below the Liepmann–
Taylor scale [8],

λLT =
2π

kLT
≈ 5 Re−1/2�, (3)

and above the inner viscous scale [e.g., 9],

λν =
2π

kν
≈ 50�diss ≈ 50 Re−3/4�. (4)

Operationally, the latter is defined as the scale where the spec-
trum departs from the≈ −5/3 powerlaw [9–11]. The energy-
containing range is thus treated as having k � kLT, and the in-
ertial range as k ∈ [kLT, kν ]. We assume that the same bound-
aries hold for MHD turbulence (but see the final section) and
define the magnetic versions analogously:

ζLT =
2π

kB
LT
≈ 5 Rm∗−1/2�B , (5)

ζη =
2π

kη
≈ 50 Rm∗−3/4�B . (6)

III. ENERGY FLUXES AND LOCALITY

For turbulent systems, the flux of energy in Fourier space
is a central concept, and numerous investigations of it have
been performed for both NS [e.g., 12–14] and MHD [e.g.,
4, 15–21] systems. Each of the nonlinear terms in Eqs. (1)–
(2) is associated with such a flux, which we denote herein as
Παβ . An important feature of the flux functions is their scal-
ing with wavenumber, which provides information on the ex-
tent to which the contributing interactions are local in spectral
space. The different scaling properties of these fluxes will be
important in determining the minimum state Reynolds num-
bers.

Using direct numerical simulation databases, Domaradzki
et al. [4] calculated normalized versions of the four energy
flux functions, which they denoted as Παβ(k|kc). These
represent the flux of energy to wavevectors with magnitudes
greater than kc, due to wavevector triads which have at least
one member with a magnitude less than k (and normalized by
the total flux through kc for the particular α ·∇β term). Plot-
ting these as a function of k/kc reveals approximate powerlaw
scaling for three of the four normalized fluxes. (See Figure 2
in [4].) Here we express their results in terms of the scale

disparity parameter [13, 14, 22],

s =
max(k, p, q)
min(k, p, q)

, (7)

where k, p, and q are the magnitudes of wavevectors making
up an interacting triad k = p + q. This re-expression is con-
venient since k/kc ≈ 1/s and thus, Παβ(k|kc) ≈ Παβ(1/s).
The scale disparity parameter is a measure of the elongation
of the triads and has been used to characterize the degree of
locality of interactions [e.g., 23].

The scalings observed by Domaradzki et al. [4] are

Πuu(s) ∼ Πub(s) ∝ s−2/3, (8)

and

Πbb(s) ∝ s−1/3. (9)

The flux Πbb is associated with removing the kinetic energy
from the velocity field. It is the least local of these three flux
functions. These numerical results are consistent with theo-
retical predictions [21]. Note that for NS turbulence, theory
and simulations [13, 14, 24–30] suggest that Π(s) ∼ s−4/3,
a scaling which is considerably more local than the MHD re-
sults.

The remaining flux function, Πbu, is associated with the
process of energy transfer to the magnetic field. The same
study [4] found that it was non-universal and that it did not
follow an s−M scaling law. It does, however, decrease faster
than Πuu and Πub. While the reason for the different behavior
of Πbu is at present not clear, it is fortunate that the falloff is
so steep since this suggests extremely local interactions for the
term. Thus its detailed form will not affect the analysis here.

IV. MINIMUM STATE

For large enough Reynolds numbers, the energy-containing
range of a turbulent flow will have very weak direct interac-
tions with the dissipation range. As noted above, the mini-
mum state is the lowest Reynolds number flow of this kind [3].
In flows that have a shorter inertial range, there will be sig-
nificant direct interactions between the energy-containing and
dissipation ranges, and the integrity of the energy-containing
range modes will not be maintained. To ensure that strong di-
rect couplings between these two ranges are absent we need
to quantify what ‘strong’ means in this context, and then de-
termine the length of the inertial range in a minimum state.
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Here we define the direct interactions between the energy-
containing and dissipation ranges as weak if the energy flux at
the high-k end of the inertial range (e.g., at kν) is at most half
that at the low-k end (e.g., at kLT).

From numerical simulations, the peak of a normalized flux
function, Π(sp), can be found, along with the value of s at
which it occurs, sp. Let sh be the scale disparity param-
eter where the normalized flux reduces to half of its peak
value, i.e., Π(sh) = 1

2Π(sp). The s−M scaling properties
of Eqs. (8)–(9) lead to

sh

sp
= 2(1/M). (10)

This ratio can be used to determine the values of kν and kη as-
sociated with the minimum state. The underlying idea is that
Eq. (10) gives the length of the (minimum state) inertial range,
in units of the Liepmann–Taylor wavenumber. Hence, we de-
fine kh = (sh/sP )kLT and equate it to the high wavenumber
end of the inertial range. For the momentum equation, the
least local nonlinear term is Πbb, yielding sh/sp = 8 and an
inertial range wavenumber interval of [kLT, 8kLT]. For the in-
duction equation we obtain sh/sp =

√
8 ≈ 3 and an inertial

range of [kB
LT, 3kB

LT].
We are now in position to calculate the critical Reynolds

numbers for a minimum state. For the momentum equation
we use Eqs. (3) and (4) in 8kLT = kν , obtaining

ReMS ≈ 4.1× 107. (11)

Proceeding similarly for the induction equation, 3kB
LT = kη

yields

Rm∗
MS ≈ 8.1× 105. (12)

This is some 50 times smaller than ReMS as a consequence
of the more local nature of the nonlinear interactions in the
induction equation.

V. COMPARISON WITH FLUID TURBULENCE

It is informative to compare the above results with those
for fluid turbulence. We recall that NS turbulence is more
local than the MHD case, with Π(s) ∼ s−4/3 [12, 13]. Using
23/4 ≈ 2 in Eq. (10) gives a minimum state Reynolds number
of 1.6 × 105 for NS flow [3], which is significantly smaller
than the MHD values derived above.

Our minimum state Reynolds numbers are in reasonable ac-
cord with results from a perturbative field-theoretic approach
for the NS case [31, 32]. In those studies, the nonlocal compo-
nents of shell-to-shell energy transfers were used to estimate
that a turbulent energy flux occurs when kmax/kmin ≈ 216 ≈
104. This value is compatible with the inertial range lengths
we found above for the MHD energy fluxes. It would be inter-
esting to perform the MHD version of the study in Ref. [31],
to see how the results compare with the ones presented herein.

Another issue is our assumption that the inertial range
boundaries carry over essentially unchanged from the NS case
to MHD. However, these bounding wavenumbers may scale

differently in the two cases. For example, the energy spectrum
has often been observed to have a bottleneck feature near the
dissipation scale [e.g., 11, 33, 34], but this appears to be more
pronounced in NS turbulence than in MHD turbulence [e.g.,
35, 36]. Thus, our estimates for kν and kη could be argued
to be too small, leading to estimates for the critical Reynolds
numbers which are too large. Note that for the NS case, re-
sults based on field-theoretic approaches [31] indicate that the
spectral bottleneck may not occur for inertial ranges longer
than about four decades.

In order to improve understanding of the apparently dif-
ferent features of the NS and MHD bottleneck phenomena it
would of course be helpful to have results from MHD studies
with (very) large Reynolds numbers. A key element still miss-
ing is a major MHD laboratory experiment or observational
measurement, analogous to the hydrodynamic wind tunnel
results discussed in Ref. [11], for example. Recent MHD
computational results [36] indicate that erroneous bottleneck
effects can occur when the Reynolds numbers are not large
enough. Similar studies have been performed for fluid turbu-
lence [31, 37]. The wavenumber scalings for the energy fluxes
contain information about any bottlenecks present in the en-
ergy spectra, although this may be hard to extract explicitly.
Thus, in that sense the above determinations of the minimum
state Reynolds numbers already take account of the bottle-
neck effects. Further consideration of this interesting issue is
beyond the scope of this Brief Report.

VI. SUMMARY

We have extended the concept of a minimum state flow to
the case of MHD turbulence, which is a widely used model
in space physics and astrophysics applications. By insisting
on the integrity of the energy-containing range dynamics, we
have determined minimum Reynolds numbers for MHD simu-
lations and experiments below which this condition is unlikely
to be satisfied. These ‘critical’ values of ReMS ≈ 4.1 × 107

and Rm∗
MS ≈ 8.1 × 105 are rather large, as a consequence

of the more nonlocal nature of the the nonlinear terms in the
MHD equations (compared to the NS nonlinearity). As far as
direct numerical simulations of a minimum state flow are con-
cerned, they are probably not feasible with current computing
resources. However, they may become feasible within a few
years.

Note that the numerical accuracy of a simulation for given
Reynolds numbers is a distinct issue, relative to the above
discussed ‘physical integrity’ of a simulation. A recent ex-
ploration of the accuracy requirements for 2D MHD tur-
bulence [38] concluded that sufficient accuracy is obtained
if simulations retain wavenumbers a factor of three greater
than the (Kolmogorov) dissipation wavenumber. If a smaller
wavenumber range was retained then the accuracy of fourth-
order (and higher-order) quantities like the kurtosis was seri-
ously compromised.

In closing we briefly mention some possible extensions and
complications associated with the isotropic MHD model em-
ployed above. As is well known, the presence of an en-
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ergetic large-scale (e.g., mean) magnetic field (B0) induces
anisotropy in u and b [39–42]. This anisotropy could result in
somewhat different critical Reynolds numbers, although the
qualitative results presented herein would likely still hold.

Finally, we emphasize that in actual space physics and as-
trophysics systems the nature of the dissipation mechanisms
may be quite different from the uniform viscous and resis-
tive dissipation of Eqs. (1)–(2). In particular, the dissipation
scales are not expected to be universal. Plasma effects, such as
damping by waves at ion and/or electron gyroradii or inertial

lengths may be important [43–46].
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