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Abstract. We compare two approaches to Ricci curvature on non-smooth spaces,
in the case of the discrete hypercube {0, 1}N . While the coarse Ricci curvature of the
first author readily yields a positive value for curvature, the displacement convexity
property of Lott, Sturm and the second author could not be fully implemented.
Yet along the way we get new results of a combinatorial and probabilistic nature,
including a curved Brunn–Minkowski inequality on the discrete hypercube.

Introduction

Let A0, A1 be two compact, nonempty subsets of Rn. In one of its guises, the
remarkable Brunn–Minkowski inequality states that

ln volAt > (1− t) ln volA0 + t ln volA1

where 0 6 t 6 1 and At = {(1−t)a0 +ta1, a0 ∈ A0, a1 ∈ A1} is the set of t-midpoints
between A0 and A1. In other words, the logarithm of the volume of At is concave.
We refer to [Gar02] for a nice survey. This is the “infinite-dimensional” version of
the Brunn–Minkowski inequality, from which the more common version using 1/n-th
powers instead of logarithms can be derived (see Eq. (22) in [Gar02]).

If Rn is replaced with a Riemannian manifold, the presence of positive curvature
improves this inequality. Indeed, in [CMS06] (elaborating on [CMS01]) it is proved
that if X is a smooth and complete Riemannian manifold with Ricci curvature at
least K for some K ∈ R, then for any two compact, nonempty subsets A0, A1 ⊂ X,
we have

ln volAt > (1− t) ln volA0 + t ln volA1 +
K

2
t(1− t) d(A0, A1)2.

Here the set of t-midpoints At is defined as the set of all γ(t) where γ is any
minimizing geodesic such that γ(0) ∈ A0 and γ(1) ∈ A1. The distance d(A0, A1) is
infa0∈A0, a1∈A1 d(a0, a1).
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Figure 1. In positive curvature, midpoints spread out.

d

(1− κ) d on average

Figure 2. In positive curvature, balls are closer than their centers.

Actually this kind of inequality has been used as a tentative definition of positive
Ricci curvature on more general, non-smooth spaces. The idea is that, in positive
curvature, “midpoints spread out” so that the set of midpoints of two given sets
is larger than in the reference Euclidean case (Fig. 1). This led to the notion of
displacement convexity of entropy for Riemannian manifolds [RS05, CMS01, OV00],
later developed by Sturm [Stu06] and Lott and the second author [LV09]. However,
it is not clear how this fares for discrete spaces [BS09].

Another approach to define the Ricci curvature of discrete spaces is coarse Ricci
curvature, developed by the first author [Oll07, Oll09]. The motto is that, in positive
curvature, “balls are closer than their centers are” in transportation distance (Fig. 2).

We compare both approaches applied to the discrete hypercube X = {0, 1}N . This
is the most simple discrete space expected to have positive Ricci curvature in some
sense, for a variety of reasons (see, e.g., paragraph 31

2
.21 “Spheres, cubes, and the law

of large numbers” in [Gro99]). The subtitle question “What is the Ricci curvature of
the discrete hypercube?” was asked verbatim by Stroock in a seminar as early as
1998, in a context of logarithmic Sobolev inequalities.
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The formalism of coarse Ricci curvature is readily available for the hypercube and
yields a value of 2

N+1
for the Ricci curvature of {0, 1}N (section 2.1). On the other

hand, we could not fully implement the displacement convexity of entropy (properly
discretized) in the hypercube. Yet, along the way, we still get a combinatorial
Brunn–Minkowski inequality on the hypercube, including a positive curvature term.
The resulting value of curvature is ≈ 1/N , compatible with coarse Ricci curvature.

Acknowledgements: The authors would like to thank Prasad Tetali for helpful
comments on concentration in the symmetric group, which led to improved constants.

1. Statement of results

1.1. Brunn–Minkowski inequality in the hypercube. We consider the discrete
hypercube X := {0, 1}N , N ∈ N, equipped with the Hamming (or `1) metric

d((xi), (yi)) := #{i, xi 6= yi}.
For A and B nonempty subsets of X, we define d(A,B) := infa∈A,b∈B d(a, b).

Let a and b be two points in X. A midpoint of a and b is any point m such that
d(m, a) + d(m, b) = d(a, b) and |d(m, a)− d(a, b)/2| < 1. More explicitly: if d(a, b)
is even, a midpoint is the middle point on any shortest path from a to b in X, and if
d(a, b) is odd, a midpoint is one the two middlemost points on such a shortest path.
In the hypercube, midpoints are by no means unique: the number of midpoints of a
and b is the binomial coefficient

(
d(a,b)
d(a,b)/2

)
if d(a, b) is even, and 2

(
d(a,b)

(d(a,b)−1)/2

)
if d(a, b)

is odd.
If A and B are two subsets of X, the set of midpoints of A and B is the set of

midpoints of all pairs (a, b) ∈ A×B.

Theorem 1. Let A and B be two nonempty subsets of {0, 1}N . Let M be the set of
midpoints of A and B. Then

ln #M >
1

2
ln #A+

1

2
ln #B +

K

8
d(A,B)2

with K = 1
2N

.

This is analogous to the curved Brunn–Minkowski inequality above in Riemannian
manifolds (for t = 1/2), with K playing the role of a curvature lower bound.

The order of magnitude 1
N

for K is optimal: indeed, when A and B are singletons
lying at distance N , then d(A,B)2 = N2, while the number of midpoints is

(
N
N/2

)
∼

2N
√

2
πN

, so that ln #M grows linearly in N .
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We will now see that this theorem can be improved by replacing d(A,B) with a
transportation distance.

1.2. Entropy of midpoints in the hypercube. Theorem 1 appears as a particular
case of a refined statement using probability measures instead of sets.

Let µ be a probability measure on a discrete set X. Its Shannon entropy is

S(µ) := −
∑
x∈X

µ(x) lnµ(x).

In particular, if µ is the uniform distribution on a finite subset A ⊂ X, then
S(µ) = ln #A.

In this paper, we shall also use the relative entropy (or Kullback–Leibler divergence)
of a measure µ with respect to a reference probability measure ν, defined as

H(µ|ν) :=
∑
x∈X

µ(x) ln
µ(x)

ν(x)
> 0.

If X is finite and the reference measure ν is uniform on X, then we have H(µ|ν) =
ln #X − S(µ).

To state an entropic version of Theorem 1 we define the midpoints of two measures
as follows. Loosely speaking, we first pick a random point a under µ0, then an
independent random point b under µ1, and finally we pick a random midpoint of a
and b uniformly over all such midpoints.

More precisely, let a and b be two points of the hypercube X. The midpoint
measure mid(a, b) is defined as the uniform probability measure on all midpoints of
a and b. Let now µ0, µ1 be two probability measures on X. The midpoint measure
of µ0 and µ1 is defined as

mid(µ0, µ1) :=

∫∫
mid(a, b) dµ0(a)dµ1(b).

Theorem 2. Let µ0 and µ1 be two probability measures on the discrete hypercube
X = {0, 1}N . Let µ1/2 = mid(µ0, µ1) be their midpoint measure. Then

S(µ1/2) >
1

2
(S(µ0) + S(µ1)) +

K

8
W1(µ0, µ1)2

with K = 1
2N

. Equivalently,

H(µ1/2|ν) 6
1

2
(S(µ0|ν) + S(µ1|ν))− K

8
W1(µ0, µ1)2

with ν the uniform probability measure on {0, 1}N .
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Here we use the L1 Wasserstein distance

W1(µ, µ′) := inf
ξ

∫∫
d(a, b) dξ(a, b)

where the infimum is taken over all measures ξ on X×X such that
∫
b
dξ(a, b) = dµ(a)

and
∫
a

dξ(a, b) = dµ′(b), i.e., all couplings of µ and µ′. We refer to [Vil03] for more
background on this topic.

Note that W1(µ0, µ1) is always at least d(A,B) for µ0 and µ1 supported in sets A
and B; in particular, if µ0 and µ1 are taken uniform in A and B, Theorem 2 is really
a refinement of Theorem 1.

1.3. Limitations and open questions. A first limitation of these results is the
necessity to take t = 1/2. This comes from the combinatorial nature of our proof,
which, for the most basic situation K = 0, consists in building an injection from
A×B into M ×M .

This can probably be circumvented if we assume that the sets A and B are convex
(i.e. the midpoint of two points in A lies in A, and likewise for B): then, we can
describe t-midpoints of A and B as iterated 1/2-midpoints. (If A or B are not convex,
iterating only yields midpoints of several points in A and several points in B, which
is not what we want.)

The injection from A×B into M ×M used in our proof very naturally extends to
an injection from A×B into Mt×M(1−t), with Mt the set of t-midpoints. This leads
to a lower bound for ln #Mt + ln #M(1−t) in terms of ln #A+ ln #B plus a curvature
term. This also holds in the Riemannian case (by adding the Brunn–Minkowski
inequality for t and for (1− t)). We do not know if there is a particular interpretation
of this inequality.

Our initial goal was to prove that the discrete hypercube has positive Ricci
curvature in the sense of Lott, Sturm and the second author, i.e., that the hypercube
satisfies displacement convexity of entropy (see below). The main difference with
our result is that, in the Brunn–Minkowski inequality, we consider all midpoints of
all pairs of points (a, b) with law µ0 ⊗ µ1; whereas for displacement convexity, one
should first choose an optimal coupling between µ0 and µ1 and then only consider
the midpoints of those pairs (a, b) that make up the optimal coupling. The two
properties coincide only when µ0 is a Dirac measure, in which case our result is
related to Sturm’s measure contraction property [Stu06].

So as far as we know, the problem of computing the Ricci curvature of the hypercube
using the displacement convexity approach is still open.
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Figure 3. Coarse Ricci curvature in the hypercube.

2. Two approaches to discrete Ricci curvature

We now present in more detail the two known approaches for Ricci curvature on
discrete spaces. This is not necessary to understand our results and proofs, but
provides the original motivation.

2.1. Coarse Ricci curvature (after the first author). The basic idea of coarse
Ricci curvature is to take two small balls and compute the transportation distance
between them. If this distance is smaller than the distance between the centers of
the balls, then coarse Ricci curvature is positive.

This is formalized as follows [Oll07, Oll09]. Let (X, d) be a metric space equipped
with a measure µ. Let ε be a discretization parameter (we take ε = 1 for a graph)
and assume that all ε-balls in X have finite and non-zero measure. For x ∈ X define
the measure µx by restricting µ to the closed ε-ball around x:

µx :=
µ|B(x,ε)

µ(B(x, ε))

with B(x, ε) = {y ∈ X, d(x, y) 6 ε}.
If x and y are two points in X, then the coarse Ricci curvature along (x, y) is the

number κ(x, y) defined by

W1(µx, µy) =: (1− κ(x, y)) d(x, y)

where W1 is the L1 Wasserstein distance as defined earlier. If this is applied to a
Riemannian manifold, this gives back the ordinary Ricci curvature when ε→ 0, up
to scaling by ε2.

Let us apply this to the discrete hypercube X = {0, 1}N equipped with the uniform
measure. The measure µx is uniform on the N + 1 neighbors of x (counting x itself).
When x and y are neighbors, it is very easy to compute the curvature κ(x, y), as
illustrated on Figure 3. Indeed, we have to move the N + 1 neighbors of x to the
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N + 1 neighbors of y; out of these N + 1 points, two are already in place (x and y
themselves) and do not need to move, and the others have to move by a distance 1.
So W1(µx, µy) = 1− 2/(N + 1) and κ(x, y) = 2/(N + 1).

If x and y are not neighbors, we use a locality property of coarse Ricci curvature.
Namely, if the space X is δ-geodesic (i.e. if the distance between two points is realized
by a sequence of points with jumps at most δ), then it is enough to compute κ(x, y)
for d(x, y) 6 δ (Exercise 2 in [Oll07]). A graph is 1-geodesic by definition of the
graph metric, so it is enough to work with neighbors.

A lower bound on coarse Ricci curvature comes with a number of consequences
[Oll09]. For the discrete hypercube equipped with the uniform measure these proper-
ties were already known (but not on the hypercube with e.g. Bernoulli(θ/N) measures
[JO10]).

In general, one may directly choose an arbitrary Markov kernel µx (without using
a global measure µ); this leads to interesting applications [JO10].

2.2. Displacement convexity (after Lott, Sturm and the second author). In
[RS05] (following ideas from [OV00]), Renesse and Sturm present a characterization
of Ricci curvature on Riemannian manifolds, based on the idea that in positive
curvature, “midpoints spread out”.

Let X be a smooth, complete Riemannian manifold. Let dx be the Riemannian
volume measure on X. Given a probability measure µ on X, define its relative
entropy as H(µ|dx) :=

∫
ln dµ

dx
dµ if the integral makes sense, or +∞ otherwise.

Let P2(X) be the set of probability measures on X with finite second moment, i.e.
those probability measures µ such that

∫
d(pt, x)2 dµ(x) <∞ for some (hence any)

point pt ∈ X. On P2(X), the Wasserstein distance W2 is well-defined. Moreover,
P2(X) equipped with the metric W2 is a geodesic space: given any two probability
measures µ0, µ1 ∈ P2(X), there exists a curve (µt)t∈(0;1) in P2(X) with W2(µt, µt′) =
|t− t′| W2(µ0, µ1) for t, t′ ∈ [0; 1]. Such a curve is called a displacement interpolation
between µ0 and µ1. We refer to Chapter 7 of [Vil08] for more details.

Theorem 1.1 in [RS05] asserts that the Riemannian manifold X has Ricci curvature
at least K ∈ R if and only if the following inequality is satisfied: for any two measures
µ0, µ1 ∈ P2(X), for any W2-geodesic (µt)t∈(0;1) joining them, we have

H(µt|dx) 6 (1− t)H(µ0|dx) + tH(µ1|dx)− K

2
t(1− t)W2(µ0, µ1)2,

a property called displacement convexity of the entropy function.
For any probability measure µ we have H(µ|dx) > − ln vol Supp(µ), with equality

when µ is uniform on its support. Taking µ0 and µ1 to be uniform probability
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distributions on sets A0 and A1 respectively, we see that displacement convexity of
entropy implies an inequality between the logarithms of the volumes of the support
of µt, µ0 and µ1. This inequality is very similar to the Brunn–Minkowski inequality
mentioned earlier. Actually, an important property of displacement interpolation
is that the measure µt will charge only t-midpoints between the supports of µ0 and
µ1 (Corollary 7.22 in [Vil08], basically due to Brenier and McCann), and so the
Brunn–Minkowski inequality in a Riemannian manifold really follows from convexity
of entropy.

Displacement convexity of entropy makes sense in an arbitrary geodesic space. In
[Stu06, LV09], it is taken as the basis for a notion of Ricci curvature in such spaces.
The definition depends on two parameters K (the curvature) and N (a “dimension”).
Displacement convexity of entropy as written here corresponds to N = ∞, the
simplest and weakest case.

Interestingly, this approach applies to spaces with positive curvature in the sense
of Alexandrov [Pet].

Application to discrete spaces requires some changes: for instance, in the case of
the hypercube considered in this article, clearly if two points are at odd distance
they do not have an exact midpoint, but they have an approximate midpoint up
to an error term ±1/2. Such an approach is used in [Bon09] to define the Brunn–
Minkowski inequality on discrete spaces. In [BS09], Bonciocat and Sturm use
approximate midpoints in the space of probability measures to extend the definition
of displacement convexity of entropy to discrete spaces, and provide examples of
planar graphs satisfying this property. To our knowledge, these planar graphs are
the only discrete examples so far.

3. Brunn–Minkowski inequality without curvature

To make the idea clearer and introduce necessary concepts, we begin with a
simplified version of Theorem 1, namely the same statement with K = 0. So let
A,B be two nonempty subsets of the hypercube X = {0, 1}N . Let M be the set of
midpoints of A and B. We want to prove that

ln #M >
1

2
(ln #A+ ln #B)

or equivalently
#M >

√
#A #B.

Let a = (ai)16i6N ∈ A and b = (bi)16i6N ∈ B. A midpoint m = (mi) of a and b is a
sequence of bits such that mi = ai whenever ai = bi and such that half the remaining
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bits coincide with those of a and the other half with those of b. Let r = d(a, b) be
the number of distinct bits between a and b. For fixed a and b, there is a one-to-one
correspondence between the midpoints m of a and b and the subsets c ⊂ {1, . . . , r}
with cardinality r/2 (if r is even) or r/2 ± 1/2 (r odd): among the r distinct bits
between a and b, the set c describes those picked from a in the construction of m.

We shall call r-crossover such a c ⊂ {1, . . . , r} with |#c− r/2| 6 1/2. We shall
denote m = ϕc(a, b) the midpoint of a and b defined by crossover c. If c is a crossover,
we shall denote by c̄ its complement, which is also a crossover.

Note that, given a fixed d(a, b)-crossover c, the pair Φc(a, b) := (ϕc(a, b), ϕc̄(a, b)) =
(m,m′) allows to recover a and b. Indeed, the identical bits in m and m′ are the
same as in a and b; the bits that differ between m and m′ also differ between a and
b, and knowledge of the crossover c tells us exactly which of those come from a or b.

In particular, for each r ∈ {0, . . . , N}, let us define the r-crossover cr := {1, 2, . . . , br/2c}.
Then the map (a, b)→ Φcd(a,b)(a, b) is an injection from A×B to M ×M where M
is the set of midpoints of A and B. This proves that #(A × B) 6 #(M ×M) as
needed.

For later use, let us state a property of the coding maps ϕc and Φc. If Φc(a, b) =
(m,m′), we denote a = ϕ−1

c (m,m′) and b = ϕ−1
c̄ (m,m′) = ϕ−1

c (m′,m).
Let us equip the set of crossovers Cr with the distance

d(c, c′) := #(c\c′) + #(c′\c).
Proposition 3 (Decoding is isometric). Let m,m′ ∈ {0, 1}N . Let c1, c2 ∈ Cd(m,m′).
Let a1 = ϕ−1

c1
(m,m′) and a2 = ϕ−1

c2
(m,m′). Then d(a1, a2) = d(c1, c2).

Proof. Given m and m′, modifying the crossover c changes the preimage ϕ−1
c (m,m′)

by the same amount. �

4. Concentration in the set of crossovers

To get an improved inequality with positive curvature K, we will need to study
geometric properties of the set of crossovers; more precisely we show that this set
exhibits concentration of measure. This is obtained from the well-known concentration
of measure in the permutation group by a quotienting argument. (We refer to [Led01]
for more background about concentration of measure.) We first state concentration
in the permutation group under the form we need.

Lemma 4 (Concentration in Sn). Let Sn be the permutation group on {1, . . . , n}.
Equip Sn with the distance d(σ, σ′) = #{i, σ(i) 6= σ′(i)} for σ, σ′ ∈ Sn. Let ν be the
uniform probability measure on Sn.
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Let f : Sn → R be a 1-Lipschitz function. Then f satisfies the concentration
inequality

ν({f >
∫
fdν + t}) 6 e−t

2/2(n−1) ∀t > 0

and the Laplace transform estimate∫
eλfdν 6 eλ

∫
fdν+ (n−1)λ2/2 ∀λ ∈ R.

Proof. The second statement is Proposition 6.1 in [BHT06]. The first statement
follows by the exponential Markov inequality. �

Proposition 5 (The set of crossovers is concentrated). Let n > 1 and let Cn be
the set of parts c ⊂ {1, . . . , n} with |#c− n/2| < 1. Equip Cn with the distance
d(c, c′) := #(c\c′) + #(c′\c) as above and with the uniform probability measure µ.
Let f : Cn → R be a 1-Lipschitz function. Then f satisfies the concentration

inequality
µ({f >

∫
fdµ+ t}) 6 e−t

2/2n ∀t > 0

and the Laplace transform estimate∫
eλfdµ 6 eλ

∫
fdµ+nλ2/2 ∀λ ∈ R.

Proof. Let us begin with even n. Then the natural action of Sn on {1, . . . , n}
preserves Cn. Let us fix an origin c0 := {1, . . . , n/2} ∈ Cn and define the projection
map π : Sn → Cn by σ 7→ σ(c0). Each fiber of π has the same cardinality ((n/2)!)2.
Moreover, if we equip Sn and Cn with the distances as above, then the map π is
1-Lipschitz.

Thus, if f : Cn → R is a 1-Lipschitz function, the function f̃ := f ◦π is 1-Lipschitz
on Sn. So f̃ satisfies the concentration property ν({f̃ >

∫
f̃ dν + t}) 6 e−t

2/2(r−1)

where ν is the uniform probability measure on Sn. Since all fibers of π have the same
cardinality, π sends ν to the uniform measure µ and so the same estimate holds for
f in Cn under µ. The argument is identical for the Laplace transform estimate.

For odd n we proceed as follows. Let us fix c0 = {1, . . . , bn/2c} ∈ Cn and
c1 = {1, . . . , dn/2e} ∈ Cn. Let us define the set S∗n := Sn×{0} t Sn×{1}. Define
the map π : S∗n → Cn by (σ, i) 7→ σ(ci) for i = 0, 1. Then each fiber of π has the
same cardinality bn/2c! dn/2e!. Let us equip S∗n with the metric d((σ, i), (σ′, i′)) =
|i− i′| + d(σ, σ′). Then one checks that π is 1-Lipschitz from S∗n to Cn. (A more
elegant construction would have used c 7→ c̄ to get a group structure on S∗n, but this
has bad metric properties.)
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Given a 1-Lipschitz function f : Cn → R, consider as above the function f̃ := f ◦π
on S∗n. Applying, for instance, the technique of Theorem 4.2 in [Led01] to get
concentration of measure in S∗n instead of Sn, we get that f̃ satisfies the Laplace
transform estimate∫

eλf̃ dν 6 eλ
∫
f̃dν+(r−1)λ2/2+λ2/8 6 eλ

∫
f̃dν+rλ2/2

with ν the uniform probability measure on S∗n. This implies that ν({f̃ >
∫
f̃ dν+t}) 6

e−t
2/2r. Just as above, this estimate then holds for f on Cn. �

Corollary 6. Let A be a subset of the set of crossovers Cn and let Ā := {c̄, c ∈ A}.
Suppose that d(A, Ā) > k. Then

#A 6 e−k
2/8n #Cn.

Proof. Consider the function f : Cn → R given by f(c) := 1
2

(
d(c, A)− d(c, Ā)

)
. This

function is 1-Lipschitz, and takes values at least k/2 on A. By symmetry the average
of f is 0. So applying the above, we get that the (relative) measure of A in Cn is at
most e−k2/8n. �

The following is a refined version of Corollary16, in which the set A is replaced
with a measure ξ, cardinals are replaced with entropies, and the distance d(A, Ā) is
replaced with W1(ξ, ξ̄).

Corollary 7. Let ξ be a probability measure on the set of crossovers Cn. Let ξ̄ be
the complement of ξ i.e. ξ̄(c) := ξ(c̄) for c ∈ Cn. Then

S(ξ) 6 ln #Cn −
1

8n
W1(ξ, ξ̄)2

with S the Shannon entropy.

Proof. The proof uses the following consequence of Proposition 5.

Lemma 8 (W1H inequality for crossovers). Let ξ be a probability measure on Cn.
Then

W1(ξ, µ)2 6 2nH(ξ|µ)

where µ is the uniform probability measure on Cn and H the relative entropy.

Indeed, by a result of Bobkov and Götze (Theorem 3.1 in [BG99]), the inequality
W1(ξ, µ)2 6 2γH(ξ|ν) for all measures ξ, is equivalent to the Laplace transform
estimate

∫
eλfdµ 6 eλ

∫
fdµ+γλ2/2 for all λ ∈ R and all 1-Lipschitz functions f . So the

lemma is actually equivalent to Proposition 5.
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Now, since W1(ξ, ξ̄) 6 W1(ξ, µ) +W1(µ, ξ̄) = 2W1(ξ, µ) by symmetry, we get

H(ξ|µ) >
1

8n
W1(ξ, ξ̄)2.

Finally, using H(ξ|µ) = ln #Cn−S(ξ), this rewrites in terms of the Shannon entropy
as

S(ξ) 6 ln #Cn −
1

8n
W1(ξ, ξ̄)2.

�

5. Positively curved Brunn–Minkowski inequality

Let us now prove Theorem 1. So let again A,B be two nonempty subsets of the
hypercube X = {0, 1}N , and let M be the set of midpoints of A and B. We have to
prove that

ln #M >
1

2
(ln #A+ ln #B) +

K d(A,B)2

8
, K =

1

2N
.

The difference with the case K = 0 is that we now consider all crossovers at once.
Let Cr be the set of r-crossovers. Let Y := {(a, b, c), a ∈ A, b ∈ B, c ∈ Cd(a,b)}.
Consider the map f : (a, b, c) 7→ Φc(a, b) from Y to M ×M . This map f may not be
one-to-one; but we will show that it is not too-many-to-one. The idea is that, given a
pair of midpoints (m,m′), the geometry of A and B allows to guess, to some extent,
which crossover was used, so that the cardinality of f−1(m,m′) is bounded. (This is
most clear when A is a singleton {00 . . . 00}, in which case there is no ambiguity on
the crossover: every ’1’ in m or m′ was taken from B.)

Let Yr := {(a, b, c) ∈ Y, d(a, b) = r} and let likewise (M ×M)r := {(m,m′) ∈
M ×M, d(m,m′) = r}. Now fix (m,m′) ∈ (M ×M)r. The fiber f−1(m,m′) is
in bijection with the set E of crossovers c ∈ Cr such that Φ−1

c (m,m′) ∈ A × B.
Consider, symmetrically, the set E ′ = {c ∈ Cr, Φ−1

c (m,m′) ∈ B × A}. By definition
Φc = (ϕc, ϕc̄), so the elements of E ′ are the complements of the elements of E.

We claim that d(E,E ′) > d(A,B). Indeed, if c ∈ E, c′ ∈ E ′ we have ϕ−1
c1

(m,m′) ∈
A and ϕ−1

c′ (m,m′) ∈ B. Since decoding is isometric (Proposition 3) we have d(c, c′) >
d(A,B).

Corollary 6 then states that the cardinality of E is at most #Cre
−d(A,B)2/8r. Since

the cardinality of E is also the cardinality of the fiber f−1(m,m′), this shows that
the map f : Yr → (M ×M)r is at most (#Cre

−d(A,B)2/8r)-to-one. Consequently,
#Yr 6 #Cre

−d(A,B)2/8r #(M ×M)r.
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Setting (A×B)r := {(a, b) ∈ A×B, d(a, b) = r}, we have #Yr = #(A×B)r×#Cr
so that

#(M ×M)r > ed(A,B)2/8r #(A×B)r.

Finally, summing over r from 1 to N we find

#(M ×M) > ed(A,B)2/8N#(A×B)

which proves Theorem 1.

6. Entropy of the set of midpoints

We now turn to the proof of Theorem 2.
Remember that, given a and b in the hypercube X, the midpoint measure mid(a, b)

is the uniform probability measure on all midpoints of a and b. The midpoint measure
of two probability measures µA and µB is defined as

mid(µA, µB) :=

∫∫
mid(a, b) dµA(a)dµB(b)

that is, the average of mid(a, b) where a and b are taken independently at random
under µA and µB.

The proof follows the same lines as in the deterministic case, using probability
measures instead of sets. The reader should think of the probability measures below
as being nothing but weighted sets, and their Shannon entropy as being the logarithm
of their cardinality. The main differences are as follows:

• In the set-theoretic version, a key point was an estimation of the cardinality of
the fibers of the map (a, b, c) 7→ (m,m′) = Φc(a, b). The lower bound on the
cardinality of the set {(m,m′)} followed. Here, we will use the associativity
of Shannon entropy to express the same relationship, yielding a lower bound
on the entropy of (m,m′) if the entropy of the fibers is known.
• The final result involves W1(µA, µB) instead of d(A,B). In the set-theoretic
version, we used the map c 7→ c̄ and the fact that Φc(a, b) = Φc̄(b, a) to
conclude that, if Φc(a, b) = Φc′(a

′, b′) then d(c̄, c′) = d(b, a′) > d(A,B). Then
Corollary 6 was used to bound the cardinality of the set E of such crossovers
c in a fiber. The refined version uses the relation d(c̄, c′) = d(b, a′) to turn
any coupling between E and Ē, into a coupling between A and B with the
same transportation distance. Then, Corollary 7 is used as a refined version
of Corollary 6 and yields a bound on the entropy of the crossovers c in a fiber.

So let a and b be independent random variables with law µA and µB. Let as above
Cr be the set of r-crossovers. Let c be a random variable uniformly distributed on
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Cd(a,b), independent of a and b conditionally to d(a, b). Let us define the random
variables m := ϕc(a, b) and m′ := ϕc̄(a, b). Thus the law of m is mid(µA, µB), as is
the law of m′.

Let us slightly abuse notation and denote by S((y)) the Shannon entropy of the
law of a random variable y. We have S((m,m′)) 6 S((m)) + S((m′)) but since m
and m′ have the same law mid(µA, µB), we get

S(mid(µA, µB)) >
1

2
S((m,m′)).

Consider as above the map Φ sending (a, b, c) to Φc(a, b) = (m,m′). Let Y(m,m′)

be the law of (a, b, c) knowing (m,m′). By the associativity of entropy, the Shannon
entropy of the law of (m,m′) is the entropy of the law of (a, b, c) minus the average
entropy of fibers of Φ, namely:

S((m,m′)) = S((a, b, c))− ES(Y(m,m′)).

The first term is computed as follows. The random variables a and b are indepen-
dent, and, conditionally to d(a, b), the variable c is independent of a and b with law
the uniform distribution Ud(a,b) on Cd(a,b). So

S((a, b, c)) = S((a)) + S((b)) + ES(Ud(a,b)) = S(µA) + S(µB) + E ln #Cd(a,b).

Let us turn to the second term ES(Y(m,m′)). This means we have to evaluate the
entropy of the fibers of Φ, as in the non-random case.

Let E(m,m′) be the law of c knowing (m,m′) (i.e., the third marginal of Y(m,m′)).
Given (m,m′), the value of c determines a and b, and so, S((a, b, c)|(m,m′)) =
S((c)|(m,m′)) i.e.

S(Y(m,m′)) = S(E(m,m′))

so that
S((m,m′)) = S(µA) + S(µB) + E ln #Cd(a,b) − ES(E(m,m′)).

If, at this point, we apply the crude estimate S(E(m,m′)) 6 ln #Cd(m,m′), we get
S((m,m′)) > S(µA) + S(µB) + E ln #Cd(a,b) − E ln #Cd(m,m′) = S(µA) + S(µB) since
d(a, b) = d(m,m′). This implies S((m)) > 1

2
(S(µA) + S(µB)) i.e. the case K = 0 in

the theorem.
As in the set-theoretic case, we will show that E(m,m′) has small Shannon entropy

by using concentration properties in the set of crossovers. Corollary 7 tells us that

S(E(m,m′)) 6 ln #Cd(m,m′) −
1

8d(m,m′)
W1(E(m,m′), Ē(m,m′))

2
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where Ē(m,m′) is the image of E(m,m′) by c 7→ c̄. Thus, we need to evaluate the
distance between E(m,m′) and Ē(m,m′), as in the deterministic case.

Actually we only need an estimate on average over (m,m′). We claim that

EW1(E(m,m′), Ē(m,m′))
2 > W1(µA, µB)2.

Indeed, let us fix (m,m′) for now, and let A(m,m′) and B(m,m′) be the laws of a
and b knowing (m,m′), respectively. Since a = ϕ−1

c (m,m′) and b = ϕ−1
c̄ (m,m′), any

coupling between E(m,m′) and Ē(m,m′) determines a coupling between A(m,m′) and
B(m,m′). Moreover, since decoding is isometric by Proposition 3, these couplings
will define the same transportation distance. So we get W1(A(m,m′), B(m,m′)) 6
W1(E(m,m′), Ē(m,m′)).

If for each (m,m′) we are given a coupling between A(m,m′) and B(m,m′), by
summation this defines a coupling between µA and µB and so W1(µA, µB) 6
EW1(A(m,m′), B(m,m′)). Thus W1(µA, µB) 6 EW1(E(m,m′), Ē(m,m′)). Then, by con-
vexity we get

W1(µA, µB)2 6 EW1(E(m,m′), Ē(m,m′))
2

as announced.
Putting everything together and using that d(m,m′) = d(a, b), we get

S((m,m′)) = S((a, b, c))− ES(Y(m,m′))

= S(µA) + S(µB) + E ln #Cd(a,b) − ES(E(m,m′))

> S(µA) + S(µB) + E ln #Cd(a,b) − E ln #Cd(m,m′) + E
[
W1(E(m,m′), Ē(m,m′))

2

8d(m,m′)

]
> S(µA) + S(µB) +

1

8N
EW1(E(m,m′), Ē(m,m′))

2

> S(µA) + S(µB) +
1

8N
W1(µA, µB)2

and so
S((m)) >

1

2
(S(µA) + S(µB)) +

1

16N
W1(µA, µB)2

which ends the proof.
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