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Abstract

We provide variants and improvements of the Brascamp-Lieb variance inequality
which take into account the invariance properties of the underlying measure. This
is applied to spectral gap estimates for log-concave measures with many symmetries
and to non-interacting conservative spin systems.

1 Introduction

Poincaré type inequalities, which provide upper estimates of variances of functions by
energy terms involving quadratic forms in their gradients, are versatile tools of mathe-
matical analysis. They allow for example to quantify the concentration of measure or
the ergodic behaviour of evolution processes. In the recent years, it has become clear
that they provide crucial information on the distribution of mass and on the central limit
theorem for convex bodies (see e.g. [1, 23, 6, 19]). Recall that for a Borel probability
measure ν on a Euclidean space (E, | · |), its Poincaré constant cp(ν) ∈ (0,+∞] is the
best constant for which we have

Varν(g) ≤ cp(ν)

∫
|∇g|2 dν (1)

for every g ∈ L2(ν) locally Lipschitz, where the variance with respect to ν is defined by

Varν(g) :=

∫ (
g −

∫
g dν

)2

dν.

For a random vector Y ∈ E, if ν is the law of Y (a relation denoted by Y ∼ ν), we
define cp(Y ) := cp(ν). Let us also recall here that when ν is log-concave (see below),
this Poincaré constant is finite, and we have, for instance, the following bound proved by
Kannan-Lovasz-Simonovits [23] and Bobkov [6]

cp(ν) ≤ 4 inf
a∈E

∫
E

|y − a|2dν(y) (2)

Spectral estimates enter in the asymptotic geometry of convex bodies and log-concave
measures mainly when the measure ν is isotropic. A probability measure ν (or a random
vector X ∼ ν) is isotropic if

∫
E
x dν(x) = EX = 0 and Cov(ν) :=

∫
E
x⊗ x dν(x) = EX ⊗

X = IdE. The KLS conjecture claims that the Poincaré constant of isotropic log-concave
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distributions is universally bounded, i.e. sup{cp(µ) ; n ≥ 1, µ isotropic log-concave probability on Rn} <
+∞. A weaker conjecture known as the variance conjecture claims a similar result but
when we use only the function f(x) = |x|2; since E|∇f(X)|2 = 2n when X is isotropic,
this conjecture amounts to the bound

Var(|X|2) ≤ C n (3)

for some universal constant C > 0 and for every isotropic log-concave vector X ∈ Rn.
We shall detail a bit more on this later.

The present paper has been very much inspired by the work of Klartag [25], who
obtained an optimal variance estimate in the case of log-concave measures which are
invariant under coordinate hyperplane reflections. His approach was based on a new
twist in the L2 method, introduced by Hörmander. Our goal is to extend these techniques
to a more general setting (non log-concave measures, more general symmetries) that is
adapted to applications in other topics. One of our main results, Theorem 3 appears
as an improvement of the classical Brascamp-Lieb variance inequality, where the log-
concavity assumption may be relaxed in the presence of symmetries and spectral gaps
for restrictions to certain subspaces.

The paper is organized as follows. In the next section, we recall the principle of the
L2 method (in the presence of invariances) and present a streamlined version of Klartag’s
argument as an introduction to our further study. Then, in Section §3 we establish an
abstract Poincaré-type inequality for measures and functions having well balanced invari-
ances. Our results, which involve the spectral gaps of conditioned measures orthogonal
to fixed-points subspaces of isometries leaving the measure invariant, go beyond the class
of log-concave measures. In Section §4 we apply these results to estimate the variance
of the norm of log-concave random vectors with many invariances (as a consequence, we
confirm the variance conjecture for log-concave measures having the invariances of the
simplex). Section §5 shows how to extend the variance estimates of Section §3 to general
functions. It uses a symmetrization procedure that relies on spectral properties of the
group of isometries of the underlying measure. Section §6 is devoted to spectral gap
estimates for log-concave probability measures, with, as before, special emphasis on the
measure having several invariances by reflections and on the Schatten classes. Section §7
gives an application to the study of spectral gap of conditioned spin systems. The last
Section §8 is mainly independent of the rest, as far as methods are concerned. It dis-
cusses the isotropy constant of convex bodies having well balanced invariances. In a final
Appendix, we collect some useful observations concerning groups generated by reflections
which provide examples satisfying our assumptions throughout the paper.

We conclude this introduction with precisions about the setting of our study and the
notation. We shall be working with a Borel probability measure µ on Rn with density,

dµ(x) = e−Φ(x) dx.

When Φ is convex, we say that µ is log-concave. In our proofs, we shall impose for
simplicity the condition (5) that Φ is of class C2 on Rn. However, the inequalities we
obtain are of course valid for a larger class of measure, by standard approximations that
we leave to the reader. For instance, conditions of the form D2Φ ≥ ρId can be interpreted
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in the sense of distributions. More importantly, we shall explain below why the results
extend to the case µ has some convex support K (not necessarily Rn, thus) provided Φ is
C2 on K (we take the value +∞ outside K). For instance, all the inequalities proved in
the paper for log-concave measures of the form (5) remain valid for general log-concave
measures having a convex support. In particular, the results apply to µK , the normalized
Lebesgue measure restricted to a convex body of K ⊂ Rn, i.e.

µK(A) =
|A ∩K|
|K|

, ∀A ⊂ Rn.

Given an isometry of the standard Euclidean space (Rn, ·, | · |), R ∈ On and a function
g on Rn, we say that g is R-invariant if g ◦R = g. A measure µ is R-invariant if its push-
forward by R-invariant is µ, or equivalently if its density is R-invariant. Accordingly, a
random vector X ∈ Rn is R-invariant if RX and X have the same law. These notions
extend in the obvious way to G-invariance where G ⊂ On is a group of isometries. It
is worth noting that if a function g (or a measure µ) is invariant under k isometries
R1, . . . , Rk ∈ On, then it is invariant under 〈{Ri}i≤k〉, the group of isometries generated
by these isometries. For a measure µ (resp. a random vector X ∈ Rn), we denote by
On(µ) (resp. On(X)) the group of all isometries leaving µ (resp. X) invariant. Similarly,
for a convex body K ⊂ Rn, we denote On(K) := {R ∈ On ; RK = K}. Recall that each
isometry R ∈ On comes with a linear subspace of fixed points,

Fix(R) := {x ∈ Rn ; Rx = x}.

For a group G of isometries, Fix(G) denotes the intersection of Fix(R) when R runs over
G.

We shall give special attention to the case of (orthogonal) hyperplane symmetries,
which we refer to as reflections. A reflection is characterized by the fact that its fixed
points form an hyperplane H = u⊥ with u a unit vector, and we shall later use the
following notation:

SH(x) := Su⊥(x) := x− 2(x · u)u, ∀x ∈ Rn. (4)

For a measure µ, we denote by Rn(µ) ⊂ On(µ) the group generated by the reflections
leaving µ invariant.

2 Generalities on the L2 method

Hörmander developed the L2 method for solving the ∂ equation, emphasizing the cen-
tral role played by the convexity, or rather plusubharmonicity, of the domain or of the
potential φ (see [22]). We will use only the “easy” part of the method, namely the a
priori spectral type inequalities (which are often referred to, in the real case, as Poincaré
or Brascamp-Lieb inequalities). Since Hörmander’s seminal work, the L2 method has
been recognised as a powerful way of obtaining spectral inequalities, in particular in
the context of statistical mechanics, where the method is also refered to as “Bochner’s
method”, since in many cases the argument boils down to Bochner’s integration by parts
formula (10). More recently, links with convex geometry have been emphasized. For
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instance, the L2 method was used to provide a local proof of functional (complex or real)
Brunn-Minkowski type inequalities in [11, 12]. But it is mainly the more recent paper
by Klartag [25] in which he proves the variance conjecture in the case of unconditional
distributions, that was the starting point of the present work. Before going on into this,
let us discuss a bit the L2 method itself.

Throughout the paper we shall work, unless otherwise stated, with a probability
measure µ on Rn of the form

dµ(x) = e−Φ(x) dx, with Φ : Rn → R of class C2. (5)

Introduce the natural Laplace operator on L2(µ) given by

Lu = ∆u−∇Φ · ∇u . (6)

This operator is well defined on C2-smooth functions and can be extended into a un-
bounded closed self-adjoint operator on L2(µ) with dense domain D(L) corresponding
to Neumann condition at infinity ensuring (7); however, this domain is not important
for our purposes and we stress that it is enough to know that it contains the space of
C2-smooth functions that are compactly supported, which we denote by

D := {u : Rn → R ; u of class C2 and compactly supported}.

For u ∈ D and f ∈ L2(µ) locally Lipschitz (this is just a sufficient requirement to
perform the integration by parts, in virtue of Rademacher’s differentiation theorem), we
have ∫

fLu dµ = −
∫
∇f · ∇u dµ (7)

Since we work with µ finite, the kernel of the self-adjoint operator L is given by the
constant functions and its orthogonal space will be denoted by

L2
0(µ) :=

{
f ∈ L2(µ) ;

∫
f dµ = 0

}
The variance of f is then the square of the L2-norm of the projection of f onto L2

0(µ). Note
that the Poincaré inequality (1) for µ amounts to the spectral gap estimate −L ≥ cp(µ)
on L2

0(µ) ∩ D, say.
The starting point of the argument is to dualize the Poincaré inequality using L. To

this aim, many authors impose that one can solve f = Lu for given f ∈ L2
0(µ), which

amounts to saying that L has a closed range (oddly enough, this was rather the conclusion
Hörmander was aiming at). This has the disadvantage that one has to enter into tedious
discussions and eventually impose further conditions on the measure µ. Instead, we shall
use a simple density argument. Let alone this point, the next Lemma is standard, except
maybe for the fact that we have included a discussion on the invariances, for later use.
So the classical and well-known statement corresponds to the case where G = {Id}, i.e.
no invariance is imposed.

Lemma 1. Let µ be a probability measure on Rn written as in (5), L be the operator given
by (6) and let G a group of isometries leaving µ invariant. If there exists an application
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A : x→ Ax from Rn to the set of positive n× n matrices such that, for every u ∈ D that
is G-invariant we have ∫ (

Lu
)2
dµ ≥

∫
A∇u · ∇u dµ, (8)

then for every f ∈ L2(µ) locally Lipschitz that is G-invariant we have,

Varµ(f) ≤
∫
A−1∇f · ∇f dµ. (9)

Proof. Let us fix f ∈ L2
0(µ) that is locally Lipschitz and G-invariant, and assume that

we have the dual spectral inequality (8) for functions u ∈ D that are G-invariant.
In order to avoid discussion about solvability of f = Lu, we will use the following

easy and classical fact, recalled in [12]: the space L(D) is dense in L2
0(µ). We also need

to check that one can use G-invariant functions u to approach f . For this, note first that,
for continuous functions, invariance by G or by the closure of G (in the usual topology of
On) is equivalent, so we can assume that G is compact, and equipped with a bi-invariant
Haar measure σ normalized to be a probability. If Luk → f in L2(µ) for some sequence
uk ∈ D, introduce ũk :=

∫
G
uk ◦ Rdσ(R). Then ũk ∈ D and by construction ũk is G-

invariant. By convexity of the norm, using that f and µ are G-invariant, we see that
Lũk → f in L2(µ), as wanted.

For an arbitrary function u ∈ D that is G invariant, we have, using (7) and the
assumption (8):

Varµ(f)−
∫

(f − Lu)2 dµ = −2

∫
∇f · ∇u dµ−

∫
(Lu)2 dµ

≤ −2

∫
∇f · ∇u dµ−

∫
A∇u · ∇u dµ

≤
∫
A−1∇f · ∇f dµ.

where we also used pointwise the inequality 2 v · w ≤ Av · v + A−1w · w for v, w ∈ Rn.
The conclusion then follows by the density argument recalled above.

The power of the L2 method relies on the fact that the dualization procedure of
Lemma 1 allows for the use of the “curvature” (or convexity) of the measure µ given
by (5), which enters through the following classical integration by parts formula: for
every u ∈ D we have∫

(Lu)2 dµ =

∫
D2Φ(x)∇u(x) · ∇u(x) dµ(x) +

∫ ∥∥D2u(x)
∥∥2

dµ(x) (10)

where
∥∥D2u(x)

∥∥2
:=

∑
i,j≤n

(∂2
iju(x))2 is the square of the Hilbert-Schmidt norm of the

Hessian of u at x ∈ Rn. In particular, we see that
∫

(Lu)2 dµ ≥
∫
D2Φ∇u · ∇ dµ,

which translates, when µ is strictly log-concave (meaning D2Φ > 0), into the celebrated
Brascamp-Lieb inequality [8]: for every f ∈ L2(µ) that is locally-Lipschitz

Varµ(f) ≤
∫ (

D2Φ
)−1∇f · ∇f dµ.
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In particular, if there exists ρ ∈ (0,+∞), such that D2Φ ≥ ρ Id pointwise, then cp(µ) ≤
ρ−1.

We can mention here that when µ has some convex support K, i.e. µ has a density
e−Φ with Φ of class C2 on K, and equal to +∞ outside K, then the integration by parts
above incorporates a boundary term, which, by the convexity of K is always nonnegative.
Therefore, formula (10) becomes an inequality ≥, which goes in the right direction for
running all the arguments we use in the paper. This explains why our results can directly
be extended to this more general class of measures. However, it seems like a challenging
question to be able to use, in this case, the extra information coming from the boundary
term.

Klartag used, among other things, a similar L2 argument to provide an optimal
bound for the variance of the function f(x) = |x|2 when µ is a log-concave unconditional
measure (actually, he worked with an unconditional convex body K). Unconditionality
means invariance with respect to the coordinate hyperplanes, i.e. under the reflections
Se⊥1 , . . . , Se⊥n . Klartag manages to use (10) in the form

∫
(Lu)2 dµ ≥

∫
‖D2u‖2 dµ when

µ is log-concave. He then proves a “H−1(µ)” estimate for the derivatives ∂if , which in
turn is controlled using the Wasserstein (optimal transport) distance; a transportation
argument closes the argument.

We want to emphasize the role of symmetry in the argument. The idea is that if u
has some invariance, then ∇u will have the “anti-invariance” (for instance we pass from
being even to being odd with respect to some direction, say). Let us see this principle
in action in the unconditional case by giving a simplified version of Klartag’s proof. We
shall work directly with measures instead of sets.

So let µ be be given by (5) with Φ convex such that Φ(±x1, . . . ,±xn) = Φ(x1, . . . , xn).
Let u ∈ D having the same invariances. The argument relies on a lower bound for
each

∫
(∂2
iiu)2 dµ. For notational simplicity, let us consider first the case i = 1 and

write x = (x1, y) for x ∈ Rn with y = (x2, . . . , xn). For fixed y ∈ Rn−1, the measure
e−Φ(x1,y) dx1 is a (finite) log-concave measure on R. Such measures are known to satisfy
a Poincaré inequality; the bound (2) for instance yields that for v : R→ R smooth with∫
R v(x1) e−Φ(x1,y) dx1 = 0,∫

R
v(x1)2e−Φ(x1,y) dx1 ≤ 4

∫
R x

2
1e
−Φ(x1,y) dx1∫

R e
−Φ(x1,y) dx1

∫
R
v′(x1)2e−Φ(x1,y) dx1 (11)

But u and Φ are unconditional, and so the function x1 → Φ(x1, y) is even and the function
x1 → ∂iu(x1, y) is odd, ensuring that

∫
R ∂1u(x1, y) e−Φ(x1,y) dx1 = 0. Then, (11) applies

with v(x1) = ∂1u(x1, y) and v′(x1) = ∂2
11u(x1, y).

To summarize, if for i = 1, . . . , n, we let Pi be the orthogonal projection onto the
coordinate hyperplane e⊥i and define

gi(x) = gi(Pix) := 4

∫
R x

2
i e
−Φ(Pix+xiei) dxi∫

R e
−Φ(Pix+xiei) dxi

,

we have from the argument explained above for i = 1 and from Fubini’s theorem that∫
1

gi(Pix)

(
∂iu(x)

)2
dµ(x) ≤

∫ (
∂2
iiu
)2
dµ.
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Using that
∑n

i=1

(
∂2
iiu
)2 ≤ ‖D2u‖2 in (10), we get a bound (8) which implies, by Lemma 1

the following estimate: for every function f ∈ L2(µ) that is unconditional and locally
Lipschitz,

Varµ(f) ≤
∫ n∑

i=1

gi(Pix)
(
∂if(x)

)2
dµ(x).

When we apply this estimate to the particular case f(x) = |x|2, the following happens.
We can use again Fubini’s theorem and Hölder’s inequality, to get that

Varµ(|x|2) ≤ 4
n∑
i=1

∫
x4
i dµ(x).

It is a well known and useful consequence of the Prékopa-Leindler inequality due to Borell
that Lp norms of convex homogeneous functions with respect to a log-concave measure
are equivalent [7]. In particular, there exists a numerical constant c > 0 such that for
every n ≥ 1, every log-concave probability measure µ on Rn and every even semi-norm
H – typically H(x) = x · θ or H(x) = |x| – the following reverse Hölder inequality holds:∫

H(x)4 dµ(x) ≤ c

(∫
H(x)2 dµ(x)

)2

. (12)

We have therefore proved that for an unconditional log-concave measure µ on Rn it holds
that Varµ(|x|2) ≤ C̃

∑n
i=1

( ∫
x2
i dµ(x))2. When µ is furthermore isotropic, i.e. with

covariance matrix equal to the identity, the previous bound reads as

Varµ(|x|2) ≤ c̃ n,

which answers positively the variance conjecture in the case of unconditional distributions.

3 Functions and measures with invariances

As apparent from the treatment we gave of the unconditional case, we shall need to work
with restrictions of measures onto subspaces. This idea has been used already been used
successfully in statistical mechanics, and our goal is to bring the invariances into the
game.

Let us start with some notation. For a subspace F ⊂ Rn, we denote by PF the
orthogonal projection onto F . Given a probability measure µ with density e−Φ on Rn, a
subspace E ⊂ Rn and a point x ∈ Rn, we denote by µx,E the probability measure on E
obtained by conditioning µ to fixed PE⊥x, i.e.

dµx,E(y) := e−Φ(y+P
E⊥x) dy∫

E
e−Φ(z+P

E⊥x) dz
, y ∈ E.

In other words, if X ∼ µ, then

E
(
X|PE⊥X = PE⊥x

)
∼ µx,E.
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The measure µx,E can be seen likewise as a measure on E or on x+E = PE⊥x+E. Note
that µx,E depends only on PE⊥x: µx,E = µP

E⊥x,E
. For suitable g : Rn → R, we shall

extensively use Fubini’s theorem in the form∫
g dµ =

∫
x∈E⊥

(∫
y∈E

g(x+ y) e−Φ(x+y) dy

)
dx,

or in the form ∫
f dµ =

∫ (∫
f dµx,E

)
dµ(x). (13)

Let us recall a restriction argument put forward by Helffer [20]. Here we work with a
measure µ satisfying (5) and the canonical basis {ei}. Using the Poincaré inequality for
the measures ν = µx,Rei in the form cp(ν)

∫
(Lνw)2dν ≥

∫
(w′)2dν we have∫

(Lu)2dµ =

∫ (
‖D2u‖2 +D2Φ∇u · ∇u

)
dµ

≥
∫ ∑

i 6=j

∂2
i,jΦ ∂iu ∂ju dµ+

∑
i

∫ ∫ (
(∂2
i,iu)2 + ∂2

i,iΦ (∂iu)2
)
dµx,Ei

dµ(x)

≥
∫ ∑

i 6=j

∂2
i,jΦ ∂iu ∂ju dµ+

∑
i

∫ (
cp(µx,Rei)

−1

∫
(∂iu)2dµx,Ei

)
dµ(x)

=

∫
K∇u · ∇u dµ.

where the n × n matrix K(x) is defined as follows: K(x)i,i = cp(µx,Rei)
−1 and for i 6= j,

K(x)i,j = ∂2
i,jΦ(x). Therefore, by Lemma 1 (with no invariance yet, i.e. G = {Id}), we

see that under the assumption that K(x) > 0 for every x ∈ Rn, we have the following
inequality: for every f ∈ L2(µ) that is locally Lipschitz,

Varµ(f) ≤
∫
K−1∇f · ∇f dµ.

Unlike in the Brascamp-Lieb inequality, log-concavity is not required here. This is par-
ticularly effective for perturbations of product measures.

We want to push forward this approach by working with functions sharing invariances
with the underlying measure. We will need the following property of such functions, which
is obvious for a reflection (it then follows from the even/odd character of the functions).

Fact 2. Let µ be a probability measure on Rn, R ∈ On(µ) and set E = Fix(R)⊥. For
every R-invariant function g and for every x ∈ Rn we have,∫

PE∇g(y) dµx,E(y) = 0.

In particular, the measure µx,E is centered.

Proof. Denote by ρ the density of µ and set a :=
∫
E
PE∇g(y) ρ(y)dy. By definition a ∈ E.

But since E = Fix(R)⊥ and R is normal, we have RE = E and PER = RPE, and so

a =

∫
E

PE∇g(Ry) ρ(Ry)dy =

∫
E

PER∇g(y) ρ(y)dy = Ra
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were we used that ρ and g are R-invariant. This shows that a ∈ Fix(R) = E⊥ and
therefore a = 0.

In the sequel, we shall be interested in the case when we have fixed-point subspaces
Ei = Fix(Ri)

⊥, i = 1, . . . ,m, that induce a decomposition of the identity of the form

m∑
i=1

ci PEi
= Id (14)

where the ci’s are positive reals. It will be used also in the form

∀v ∈ Rn,

m∑
i=1

ci |PEi
v|2 = |v|2.

This situation naturally arises when we consider measures having enough invariances by
reflections. The simplest example is when m = n, Ei = Rei and ci = 1, where {ei} is
the canonical basis of Rn (this corresponds to unconditional measures). More examples
appear in the appendix. Note that taking traces yields

∑
cidim(Ei) = n.

Theorem 3. Let µ be a probability measure on Rn given by (5). Assume there exists
R1, . . . , Rm ∈ On(µ) and c1, . . . , cm > 0 such that, setting Ei := Fix(Ri)

⊥, we have that
{Ei, ci} decompose the identity in the sense of (14). Assume that for all x ∈ Rn,

H(x) := D2Φ(x) +
m∑
i=1

ci
cp(µx,Ei

)
PEi

> 0.

Then for every locally Lipschitz and {Ri}i≤m-invariant function f : Rn → R we have,

Varµ(f) ≤
∫
H−1∇f · ∇f dµ.

In particular, if there exists ρ ∈ R such that D2Φ ≥ ρId and for all x, i, cp(µx,Ei
)−1+ρ ≥ 0,

then every for every locally Lipschitz and {Ri}i≤m-invariant function f : Rn → R,

Varµ(f) ≤
∫ ( m∑

i=1

ci

(
cp(µx,Ei

)−1 + ρ
)−1 ∣∣PEi

∇f(x)
∣∣2) dµ(x) (15)

≤ sup
i,x

(
cp(µx,Ei

)−1 + ρ
)−1

∫
|∇f |2dµ.

Proof. By Lemma 1, it is sufficient to prove that for every {Ri}-invariant u ∈ D, we have∫
(Lu)2dµ ≥

∫
H∇u · ∇u dµ, which rewrites, in view of (10) as∫

‖D2u‖2dµ ≥
∫ ∑ ci

cp(µx,Ei
)
|PEi
∇u|2dµ(x). (16)

To establish the latter, first note that for every symmetric matrix H,

‖H‖2 = Tr(H2) =
m∑
i=1

ci Tr(PEi
H2PEi

) ≥
m∑
i=1

ci Tr((PEi
HPEi

)2) =
m∑
i=1

ci‖PEi
HPEi

‖2.

(17)
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It follows that
∫
‖D2u‖2dµ ≥

∫ ∑
ci‖PEi

D2uPEi
‖2dµ.

Next, by Fact 2, we know that for all x, i,
∫
PEi
∇u dµx,Ei

= 0. Hence for all unit
vector and a ∈ Ei, we deduce that the function h = ∇u · a verifies

∫
h dµx,Ei

= 0 and
so
∫
h2dµx,E ≤ cp(µx,Ei

)
∫
|PEi
∇h|2 dµx,Ei

. By taking vectors a forming an orthonormal
basis of Ei we deduce that∫

|PEi
∇u|2 dµx,Ei

≤ cp(µx,Ei
)

∫
‖PEi

D2uPEi
‖2 dµx,Ei

.

Using Fubini’s theorem in the form of (13), we get that for all i = 1, . . . ,m,∫
‖PEi

D2uPEi
‖2 dµ ≥

∫
1

cp(µx,Ei
)
|PEi
∇u(x)|2 dµ(x).

Summing upon the index i gives (16), which concludes the proof of the general case.

For the special case when D2Φ ≥ ρId, we have H(x) ≥
∑
ci(ρ + cp(µx,Ei

))PEi
and

the result follows by bounding H−1 from above. Indeed, if a positive matrix verifies
H ≥

∑
ciαiPEi

with the αi > 0, then, for every vector v ∈ Rn, setting w = H−1v, we
have

H−1v · v = 2v · w −Hw · w ≤
m∑
i=1

ci

(
2PEi

v · PEi
w − αi|PEi

w|2
)
≤

m∑
i=1

ci
αi
|PEi

v|2.

Next, we present a variant of the previous result, which does not require invariances.

Theorem 4. Let µ be a probability measure on Rn given by (5) such that D2Φ ≥ ρId
on Rn for some ρ ≥ 0. Let E1, . . . , Em be subspaces of Rn and c1, . . . , cm > 0 such that
{Ei, ci} decompose the identity in the sense of (14). Then, for every locally Lipschitz
function f : Rn → R such that for every x ∈ Rn and i ≤ m,∫

PEi
∇f dµx,Ei

= 0, (18)

we have

Varµ(f) ≤
∫ ( m∑

i=1

ci

(
cp(µx,Ei

)−1 + ρ
)−1

|PEi
∇f(x)|2

)
dµ(x).

Proof. Here, we will not use Lemma 1 directly since our hypothesis does not translate
into a property of u. So we will run again the L2 duality argument and, unlike previously,
use an exact solution to f = Lu. This causes no problem, as the measure µ is now log-
concave and (2) ensures that L has a spectral gap. Hence, for f ∈ L2

0(µ) we can find a u

10



(in the domain of L) such that f = Lu. Then, on one hand

Varµ(f) =

∫
(Lu)2dµ ≥

∫ (
‖D2u‖2 + ρ|∇u|2

)
dµ

≥
∑
i

ci

∫ (
‖PEi

D2uPEi
‖2 + ρ|PEi

∇u|2
)
dµ

≥
∑
i

ci

[∫
cp(µx,Ei

)−1

(∫ ∣∣∣PEi
∇u−

∫
PEi
∇u dµx,Ei

∣∣∣2dµx,Ei

)
dµ(x)

+ρ

∫ (∫
|PEi
∇u−

∫
PEi
∇u dµx,Ei

|2 dµx,Ei

)
dµ(x)

]
=

∫ ∑
i

ci

(
cp(µx,Ei

)−1 + ρ
) ∣∣∣PEi

∇u−
∫
PEi
∇u dµx,Ei

∣∣∣2dµ(x),

where we have used the Poincaré inequality for µx,Ei
and the inequality

∫
g2dµx,Ei

≥
Varµx,Ei

(g). On the other hand, using now the hypothesis
∫
PEi
∇f dµx,Ei

= 0 gives

Varµ(f) =

∫
fLu dµ = −

∫
∇f · ∇u dµ = −

∫ m∑
i=1

ciPEi
∇f · PEi

∇u dµ

= −
∫ m∑

i=1

ciPEi
∇f ·

(
PEi
∇u−

∫
PEi
∇u dµx,Ei

)
dµ(x).

The claim then follows from the Cauchy-Schwarz inequality.

Remark 1. The following fact was crucial in the proof of the B-conjecture [12]: if D2Φ ≥
Id, then any function with

∫
∇f dµ = 0 verifies Varµ(f) ≤ 1

2

∫
|∇f |2dµ. The novelty

there was of course the improved 1/2 factor, which can be seen as a “second eigenvalue”
estimate. Applying the previous theorem with m = 1, E = Rn, ρ = 1 recovers it. Indeed
the hypothesis on the Hessian of Φ (which implies cp(µ) ≤ 1) gives by restriction a similar
inequality of the Hessian of the potential of µx,Ei

, which guarantees cp(µx,Ei
) ≤ 1.

4 Variance of the norm for log-concave measures

We present here a first application of the previous result to the study of the variance
conjecture (3) for measure with invariances. Indeed, the function f(x) = |x|2 is invariant
by all isometries, so we can apply the bound of the previous section when µ (resp. X ∼ µ)
is a log-concave measure (resp. a log-concave random vector) of Rn have well distributed
invariances. Introduce the quantity

v(n) := sup
{

Var(|X|2); X isotropic log-concave random vector in Rn
}
.

Recall that the variance conjecture predicts that v(n) ≤ c n for some universal constant
c. The Cauchy-Schwarz inequality immediately yields v(n) ≤ n2. Improving this trivial
estimate is a difficult problem, recently solved by several authors, which led to the solution
of the so-called central limit theorem for convex bodies. Up to date, the best known
estimate is due to Guédon and E. Milman [19]: v(n) ≤ C n5/3.

11



Theorem 5. Let X be a log-concave random vector in Rn. Assume that there exist
isometries R1, . . . , Rm ∈ On(X) and numbers c1, . . . , cm ≥ 0 such that, setting Ei =
Fix(Ri)

⊥, we have that {Ei, ci} decompose the identity in the sense of (14). Then,

Var(|X|2) ≤ 16
m∑
I=1

ci E|PEi
X|4,

and when X is also isotropic,

Var(|X|2) ≤ C

m∑
i=1

ci d
2
i ≤ C nmax

i≤m
di

where di := dim(Ei). Here C > 0 is some numerical constant.

Proof. Let us denote Fi = E⊥i . Theorem 3 applied to f(x) = |x|2 and X ∼ µ gives

Varµ(f) ≤ 4

∫ ∑
i

cicp(µx,Ei
) |PEi

x|2dµ(x).

Next, by the bound (2) applied to the log-concave measure µx,Ei
(for fixed i, x), we have

cp(µx,Ei
) ≤ 4

∫
Ei

|y|2dµx,Ei
(y) = 4E

[
|PEi

X|
∣∣∣PFi

X = PFi
x
]
.

Conditioning on PEi
X and applying Cauchy-Schwarz inequality, yields

Var(|X|2) ≤ 16
m∑
i=1

ciE
[
E
[
|PEi

X|2
∣∣∣PFi

X
] ∣∣PEi

X
∣∣2]

≤ 16
m∑
i=1

ciE
[
E
[
|PEi

X|4
∣∣∣PFi

X
]]

= c
m∑
i=1

ciE
[
|PEi

X|4
]
.

The second inequality follows from Borell’s lemma (12) and E|PEX|2 = dim(E) when X
is isotropic. The last one is derived from the relation n =

∑
i cidi.

Actually, one can relax the hypothesis on the structure of the isometries, by allowing
invariant directions.

Theorem 6. Let X be an isotropic log-concave random vector in Rn. Assume that there
exist isometries U1, . . . , Um ∈ On(X) and numbers c1, . . . , cm ≥ 0 such that

m∑
i=1

ci PFix(Ui)⊥ = PE,

where E =
(
∩i Fix(Ui)

)⊥
. Set d = dim

(
∩i Fix(Ui)

)
and di = codim

(
Fix(Ui)

)
. Then

Var(|X|2) ≤ 2v(d) + cnmax
i
di.

In particular, if d ≤ α
√
n and for all i, di ≤ α, then Var(|X|2) ≤ C(α)n.

12



Proof. Write X = (Y, Z) ∈ E × E⊥. Then Y and Z are log-concave isotropic random
vectors in E and E⊥. Since E⊥ = ∩iFix(Ui), X ∼ UiX = (UiY, Z) so UiY ∼ Y .
Since E ∩ ∩iFix(Ui) = {0}, we may apply the previous statement to Y ∈ E and get
Var(|Y |2) ≤ c(n − d) maxi di. For Z ∈ E⊥ we apply the trivial estimate Var(|Z|2) ≤
v(d) ≤ d2. Eventually Var(|X|2) = Var(|Y |2 + |Z|2) ≤ 2Var(|Y |2) + 2Var(|Z|2).

The preceding results are particularly useful in the case we have nice invariances
by reflections, since di = 1 then. Indeed, if Fix(R(X)) = {0}, then we can find a
decomposition of the identity by directions orthogonal to the hyperplane symmetries,
and therefore we get the desired bound Var(|X|2) ≤ c n. Actually, a little more is true,
in the spirit of the previous result.

Theorem 7. Let X be an isotropic log-concave random vector in Rn. Assume that there
exist reflections SH1 , . . . , SHm ∈ On(X) with dim

(⋂
iHi) ≤ α

√
n. Then Var(|X|2) ≤

C(α)n.
In particular, if

⋂
iHi = {0}, the vector X verifies the variance conjecture.

Proof. This relies on basic fact about reflection groups recalled in the appendix. More
precisely, the result follows from Lemma 27 and from the previous Theorem.

The previous statement gives that every isotropic log-concave distribution which has
the invariance of the simplex satisfies the variance conjecture.

Let us present another application, which does not involve reflections. Consider Sdp
the Schatten class, i.e. the space of d× d real matrices equipped with the norm ‖A‖pp =∑d

i=1 λi(A)p for p ∈ [1,+∞), where the λi(A) denote the singular values of A, i.e. the
eingenvalues of A∗A. Consider the linear applications Ri which flip the signs of all the
entries in the i-th row of a matrix. Clearly ‖RiA‖p = ‖A‖p. Moreover Fix(Ri) is of

dimension d and
∑d

i=1 PFix(Ri)⊥ = Id (see the Appendix for more details). Let n = d2 be
the dimension and let Bd

p ⊂ Rn be the unit ball for the Schatten norm ‖ · ‖p. Consider a
suitable dilation λBd

p ensuring that the random vector Xp,n ∼ µλBd
p

uniformly distributed

on λBd
p is isotropic. Theorem 5 then gives that

Var(|Xn,p|2) ≤ c nd = c n3/2

which is slightly better than the general bound of Guédon and E. Milman.

5 Invariant measures and general functions

The goal of this section is to get rid of the invariance hypotheses for the functions in
Theorem 3. We will prove that when some group of isometries G leaving the measure
invariant has nice spectral properties, then indeed Theorem 3 is valid for all functions.
For this, we will average (or symmetrize) through the group G. This method is inspired
in part by an argument of B. Fleury [15] who treated the case of unconditional measures.
Let us fix the setting.

Setting 8. Let G = {R1, . . . , Rm} be a set of m isometries and let G be the (compact)
group they generate, equipped with its (normalized) Haar measure γ. We assume that

13



• The set of generators G is stable under conjugation in G (i.e. gGg−1 = G, ∀g ∈ G).

• We consider the Cayley graph associated to these generators and we suppose that
some Poincaré inequality holds on G for some (generalized) discrete gradient. More
precisely, we assume that there exists positive numbers di such that:

∀f : G→ R, Varγ(f) ≤ E(f, f) :=

∫ m∑
i=1

di
[
f(gRi)− f(g)

]2
dγ(g). (19)

We impose the following structural condition on the weights di:

∀i, j ≤ m, ∀g ∈ G : Ri = g Rjg
−1 =⇒ di = dj (20)

This condition is obviously satisfied if we take all the di to be equal to the same
constant c > 0, and then the best constant c for which (19) holds is known to be the
Poincaré constant associated to (G, G) which we denote by cp(G).

A crucial observation that follows from the fact that G is stable under conjugation,
is that G acts as a permutation not only on G, but also on the set of fixed subspaces
Ei := Fix(Ri)

⊥, in the sense that for every g ∈ G there exists a permutation τ of
{1, . . . ,m} such that(

gE1, gE2, . . . , gEm
)

=
(
Eτ(1), Eτ(2), . . . , Eτ(n)

)
.

To check this, just note that Fix(gRig
−1)⊥ = g(Fix(Ri)

⊥) = gEi.
Let us first state a very simple but crucial observation:

Fact 9. Let u : Rn → R be an arbitrary function and R be an isometry leaving a measure
µ invariant. Then, setting E = Fix(R)⊥, we have that for every x ∈ Rn,∫ [

u ◦R− u
]
dµx,E = 0.

Proof. Set F = Fix(R) and let ρ be the density of µ. As for Fact 2, we use that RE = E.
For every fixed x ∈ Rn we have, since ρ ◦R = ρ,∫
E

[(u ◦R) · ρ](PFx+ y) dy =

∫
E

[(u ◦R) · (ρ ◦R)](PFx+ y) dy =

∫
E

[u · ρ](RPFx+ z) dz

where we used that R is an isometry of E and performed the change of variable z = Ry.
To conclude, use that RPF = PF .

We are ready to start the extension of variance estimates from invariant to non-
invariant functions. The first step is to estimate from above the variance of a general
function by the variance of the G-invariant function obtained by averaging.

Proposition 10. Under the Setting 8 with Ei := Fix(Ri)
⊥ we have, for every locally

Lipschitz function f on Rn and F :=
∫
f ◦ g dγ(g),

Varµ(f) ≤ Varµ(F ) + 4

∫ ∑
i

di cp(µx,Ei
) |PEi

∇f(x)|2dµ(x).
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Proof. Let X be a random vector with distribution µ and Γ a random isometry of distri-
bution γ, chosen independently of X. Then by the invariance properties of µ, the random
vector ΓX has distribution µ. Hence, using the classical decomposition of the variance

Varµ(f) = Varf(ΓX) = VarX (EΓf(ΓX)) + EX (VarΓf(ΓX))

= Varµ(F ) +

∫
Varγ(g 7→ f(gx)) dµ(x).

We estimate the second term by the discrete Poincaré inequality (19) on G:∫
Varγ(g 7→ f(gx)) dµ(x) ≤

∫ ∫
G

∑
i

di
(
f(gRix)− f(gx)

)2
dγ(g) dµ(x)

=

∫
G

∑
i

di

∫
Rn

(
f ◦ g(Rix)− f ◦ g(x)

)2
dµ(x) dγ(g)

The crucial point is that, setting h = f ◦ g, we have in view of Fact 9 that for all
x,
∫
Ei

(h ◦ Ri − h) dµx,Ei
= 0, which allows to apply the Poincaré inequality for the

restrictions of µ to subspaces parallel to Ei, without a remainder term, i.e. in the form∫
Ei

(h ◦Ri − h)2 dµx,Ei
≤ cp(µx,Ei

)

∫
Ei

|PEi
∇(h ◦Ri − h)|2dµx,Ei

.

Consequently, using Fubini’s theorem,∫ (
f ◦ g(Rix)− f ◦ g(x)

)2
dµ(x) ≤

∫
cp(µx,Ei

)

∫
Ei

|PEi
∇(h ◦Ri)− PEi

∇h|2dµx,Ei
dµ(x)

≤ 2

∫
cp(µx,Ei

)
(
|PEi
∇(f ◦ gRi)(x)|2 + |PEi

∇(f ◦ g)(x)|2
)
dµ(x)

Next, observe that |PEi
∇(f ◦ g)| = |PEi

g−1(∇f) ◦ g)| = |gPEi
g−1(∇f) ◦ g)| = |PgEi

(∇f) ◦
g)|. Hence, using the invariance of µ by G twice (first in the form cp(µx,Ei

) = cP (µgx,gEi
))

and using the fact that G acts as a permutation on (E1, . . . , Em)∑
i

∫
G

∫
cp(µx,Ei

)|PEi
∇(f ◦ g)(x)|2dµ(x) dγ(g)

=
∑
i

∫
G

∫
cp(µgx,gEi

)|PgEi
∇f(gx)|2dµ(x) dγ(g)

=

∫
G

∑
i

∫
cp(µy,gEi

)|PgEi
∇f(y)|2dµ(y) dγ(g)

=

∫
G

∑
j

∫
cp(µy,Ej

)|PEj
∇f(y)|2dµ(y) dγ(g) =

∑
i

∫
cp(µy,Ei

)|PEi
∇f(y)|2dµ(y)

By a similar calculation, using that that RiEi = Ei∑
i

∫
G

∫
cp(µx,Ei

)|PEi
∇(f ◦ gRi)(x)|2dµ(x) dγ(g)

=

∫
G

∑
i

∫
cp(µy,gRiEi

)|PgRiEi
∇f(y)|2dµ(y) dγ(g)

=

∫
G

∑
j

∫
cp(µy,Ej

)|PEj
∇f(y)|2dµ(y) dγ(g) =

∑
i

∫
cp(µy,Ei

)|PEi
∇f(y)|2dµ(y)
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Combining the above inequality gives the claim.

If a variance estimate of Sobolev type is available for G-invariant functions, it may
be applied to the above function F . The terms involving the gradient of F have to be
estimated in terms of the gradient of the initial function f . To do this, we first introduce
a natural definition. We shall say that a map from Rn to the set of quadratic forms on
Rn, Q : x 7→ Qx is invariant by a group G of isometries of Rn if for all x, u ∈ Rn and all
g ∈ G,

Qgx(gu) = Qx(u).

Lemma 11. Let G be a group of isometries equipped with its Haar probability measure
γ. Let µ be a G-invariant probability measure on Rn, and Q be a G-invariant function
on Rn with values in positive quadratic forms. Then for all f : Rn → Rn with gradient
in L2(µ), setting F =

∫
G
f ◦ g dγ(g), it holds∫
Qx(∇F (x)) dµ(x) ≤

∫
Qx(∇f(x)) dµ(x).

Proof. Since for all x, u 7→ Qx(u) is convex,∫
Q(∇F ) dµ =

∫
Qx

(∫
g−1(∇f)(gx) dγ(g)

)
dµ(x)

≤
∫ ∫

Qx

(
g−1(∇f)(gx)

)
dµ(x) dγ(g)

=

∫ ∫
Qg−1y

(
g−1(∇f)(y)

)
dµ(y) dγ(g)

=

∫ ∫
Qy (∇f(y)) dµ(y) dγ(g) =

∫
Q(∇f) dµ,

where we have use the invariance of µ and then the one of Q.

Lemma 12. Let G be a group of isometries of Rn.

1. If Φ : Rn → Rn is twice differentiable and G-invariant then D2Φ is also G-invariant
(in the sense of quadratic forms valued functions).

2. Let (E1, . . . , Em) be a m-tuple of subspaces of Rn, onto which G acts by permutation¿
Let c(x,Ei) be coefficients such that for all x, g, i, c(gx, gEi) = c(x,Ei). Then
(identifying quadratic forms and symmetric linear maps), x 7→

∑
i c(x,Ei)PEi

is
also G-invariant.

3. If x 7→ Qx is G-invariant with values in definite positive quadratic forms, then so
is the dual form map x 7→ Q∗x.

Proof. The first item is obvious by differentiating Φ(gx) = Φ(x). For the second item,
denoting the quadratic form by Qx, and using the properties of c gives

Qgx(gu) =
∑
i

c(gx,Ei)|PEi
gu|2 =

∑
i

c(gx,Ei)|g−1PEi
gu|2

=
∑
i

c(x, g−1Ei)|Pg−1Ei
u|2 =

∑
j

c(x,Ej)|PEj
u|2 = Qx(u),
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where in the last equality, we have used that g−1 induces a permutation of (E1, . . . , Em).
The last item is straightforward from the definition of the dual of a definite positive
quadratic form Q∗(x) = sup{(x · y)2/Q(y); y 6= 0}. Also, recall that if Q(x) = Ax · x for
all x, then Q∗(x) = A−1x · x.

We can now state the extensions of the estimates of Section 3 to general functions.

Theorem 13 (Extension of Theorem 3 to general functions). Let dµ(x) = e−Φ(x)dx be a
probability measure which is invariant by isometries R1, . . . , Rm and set Ei = Fix(Ri)

⊥.
Assume the conditions of Setting 8 are satisfied. Let c1, . . . , cm > 0 be coefficients also
satisfying the condition (20) and such that {Ei, ci} decompose the identity in the sense
of (14).

If pointwise, Hx := D2Φ(x) +
∑

i
ci

cp(µx,Ei
)
PEi

> 0, then for all f : Rn → R locally

Lipschitz we have

Varµ(f) ≤
∫ (

H−1
x + 4

∑
dicp(µx,Ei

)PEi

)
∇f(x) · ∇f(x) dµ(x).

In particular, if there exists α ≥ 0 such that for all x, D2Φ(x) ≥ −αId and for all i,
cp(µx,Ei

) < 1/α, then for all f : Rn → R locally Lipschitz,

Varµ(f) ≤
∫ ∑

i

(ci + 4di)
(
cp(µx,Ei

)−1 − α
)−1|PEi

∇f(x)|2 dµ(x).

These two inequalities hold in particular if we take di ≡ cp(G), the Poincaré constant
of the group.

Proof. Given f , the G-invariant function F =
∫
f ◦ g dγ satisfies Varµ(F ) ≤

∫
H−1∇F ·

∇F dµ thanks to Theorem 3. Next, Lemma 12 ensures that x → H−1
x is G-invariant.

Thus, by Lemma 11,
∫
H−1∇F ·∇F dµ is at most

∫
H−1∇f ·∇f dµ. The first claim thus

follows from Proposition 10.
For the second inequality, we apply (15) to the function F and so the same arguments

gives

Varµ(f) ≤
∫ ∑

i

ci
(
cp(µx,Ei

)−1−α
)−1|PEi

∇f(x)|2 dµ(x)+4

∫ ∑
i

dicp(µx,Ei
)|PEi

∇f(x)|2 dµ(x).

To conclude, note that, since α ≥ 0, we have cp(µx,Ei
) ≤

(
cp(µx,Ei

)−1 − α
)−1

.

Remark 2. Let us note that in all examples, the coefficients ci from the decomposition
of the identity will indeed verify condition (20). If not, this property can however be
enforced using the invariance by conjugation of G, by a standard averaging procedure.
Indeed, if

∑
c(Ri)PEi

= Id, then conjugating by g ∈ G,

Id = g ·

(∑
i

c(Ri)PEi

)
g−1 =

∑
i

c(Ri)PgEi
=
∑
j

c(gRjg
−1)PEj

,

using that any g ∈ G permutes the m-tuple (E1, . . . , Em). Averaging over G yields

Id =
∑
j

(∫
G

c(gRjg
−1) dγ(g)

)
PEj

,

and the new coefficients c′j :=
∫
G
c(gRjg

−1) dγ(g) then verify (20).
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A simple and useful instance of the previous theorem is when cp(G) ≤ κmini ci (or
more generally, when (19) holds with di ≤ κci). Indeed, we can then conclude that the
variance estimate (15) for invariant functions, passes to general function f : Rn → R, in
the case when −α = ρ ≤ 0, with only an additional multiplicative factor:

Varµ(f) ≤ (1 + 4κ)

∫ ∑
i

ci
(
cp(µx,Ei

)−1 − α
)−1|PEi

∇f(x)|2 dµ(x). (21)

≤ (1 + 4κ) sup
i,x

(
cp(µx,Ei

)−1 − α
)−1
∫
|∇f |2 dµ (22)

Let us present a few examples where we are in such a situation.

• Unconditional symmetries: in this case m = n, and Ri is the reflection of hyperplane
{x; xi = 0}. Obviously Ei = Rei and ci = 1 provide the decomposition

∑
i PEi

= Id.
The group G generated by these n reflections is commutative and isomorphic to
{−1, 1}n (with coordinate-wise multiplication). With our notation cp(G) = 1/4.
Indeed, by the usual tensorisation property it is enough to deal with the case n = 1,
which is quite simple as for f : {−1, 1} → R, and for the uniform probability
on the two-points space Var(f) = (f(0) − f(1))2/4, while the Dirichlet form is∫

(f(x)−f(−x))2dγ(x) = (f(0)−f(1))2. In particular for any n, cp(G) = 1/4 mini ci,
which ensures that (21) for general functions, at the expense of a additional factor
(1 + 4κ) = 2.

• The group of symmetries of the regular simplex of Rn, say with barycenter at 0,
can be represented as the group of permutations on its n+ 1 vertices u1, . . . , un+1.
It is generated by n(n+ 1)/2 reflections, which correspond to transpositions of two
vertices. Let us denote them Ri,j for 1 ≤ i < j ≤ n + 1. Then Ei,j = R(ui − uj).
The corresponding decomposition of the identity is

2

n+ 1

∑
1≤i<j≤n+1

PEi,j
= Id,

(the appendix explains why all the coefficients can be taken equal. Taking traces
gives their common value). Hence in this case ci,j = 2

n+1
. When the generating

set is taken to be the set {Rij} of all transpositions (which is indeed stable by
conjugation), the spectral gap of the Cayley graph of the symmetric group was
computed by Diaconis and Shahshahani [13]. Their result can be stated in our
notation as cp(G) = 1

2(n+1)
which is again equal to min ci,j/4. Thus (21) holds with

(1 + 4κ) = 2.

• The group of symmetries of the regular k-gon in the plane, has 2k elements: k
rotations and k reflections. The set G = {R1, . . . , Rk} of reflections generate the
group and is stable by conjugacy. The corresponding decomposition of the identity
is IdR2 = 2

k

∑k
i=1 PEi

hence ci = 2/k for all i. Next, the Cayley graph Γ of G for the
generating set G is a complete bipartite graph on 2k elements (direct and undirect
isometries being the two sets of vertices). With our notation 2cp(G) is the inverse
of the smallest positive eigenvalue of kI − A, where A is the adjancency matrix of
Γ and I the identity of the same size. The spectrum of this adjacency matrix is
easily computed. One obtains cp(G) = 1/(2k) = min ci/4, as before.
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• The latter two examples are finite irreducible reflection groups. These groups have
been classified by Coxeter. It is tempting to believe that a similar inequality between
the coefficients of the decomposition of the identity (given by Lemma 26) and the
spectral gap holds for all of them. Diaconis and Shahshahani have expressed the
spectral gap for Cayley graphs of groups, with conjugacy stable generating sets,
in terms of the characters of irreducible decompositions. Since the representation
theory of reflection groups is well understood, it is in principle possible to settle
this question.

• The group of direct isometries of the regular k-gon is generated by the set G of its
non-trivial rotations. For each such rotation Ri, 1 ≤ i ≤ k− 1, Ei = R2, hence one
can take ci = 1/(k − 1) in the decomposition of the identity. The corresponding
Cayley graph is the complete graph on k vertices. This leads to cp(G) = 1/(2k).
This example is not interesting in itself, since each Ei is equal to the whole space.
It will be of interest though as a factor in a product group.

It will be useful to consider groups of isometries having a product structure. This
is the case of reflection groups, which factor as direct products of irreducible reflection
groups. So let use assume that G = {R1, . . . , Rm} can be written as a disjoint union
G1 ∪ . . . ∪ G`, such that the sets Fix(Gi)⊥, i = 1, . . . , ` are orthogonal. This implies in
particular the G is the direct product of the corresponding groups G1, . . . , G`, which act
on different blocks of an orthogonal decomposition of Rn. For convenience let us denote
Gj = {Rj,1, . . . , Rj,mj

} and Ej,i = Fix(Rj,i)
⊥. Note that conjugation will respect the

product structure. Therefore, the Poincaré inequality (19) holds (with some abuse of
notation) with dij = cp(Gj) for all i ≤ mj, which satisfy (20). By doing so, we get in (21)
a result sharper than by using the Poincaré constant over the whole product, which is
cp(G) = maxj cp(Gj). In particular, if we have a decomposition of the identity {cij, Eij}
with

dij = cp(Gj) ≤ κmin
i
cj,i (23)

then, for all function f : Rn → R that is locally Lipschitz,

Varµ(f) ≤ (1 + 4κ)

∫ ∑
ij

cij
(
cp(µx,Eij

)−1 − α
)−1|PEij

∇f(x)|2 dµ(x).

In particular, if the decomposition of the identity is obtained by concatenating decom-
positions of the identity for each Gj on the subspace were it acts, having checked the
condition on each factor implies it on the whole space. This allows to get new examples
from the ones listed above, leading to interesting spectral inequalities, as discussed in the
next section. We will consider in particular direct products were the factors are isometry
groups of simplices in different dimensions, or groups of (direct or general) isometries of
regular polytopes in planes.
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6 Spectral gap estimate for log-concave measures

6.1 Using weighted Poincaré inequalities

We show next how to pass from the weighted Poincaré type inequalities that we have
established so far to spectral gap estimates, by using inequalities like (21), which is
stronger than (22). Let µ be a log-concave probability measure, invariant by isometries
R1, . . . , Rm satisfying Setting 8. We also assume that

∑
ciPEi

= Id, were ci > 0 satisfy
that ci = cj when Ri and Rj are conjugates in the group G that these isometries generate
(recall that Ei is the orthogonal of Fi := Fix(Ri)). By Theorem 13, we know that for any
locally Lipschitz function f ,

Varµ(f) ≤
∫ ∑

i

(ci + 4di)cp(µx,Ei
)|PEi

∇f(x)|2 dµ(x).

The restricted measures are also log-concave, so as in the proof of Theorem 5, we may
apply the bound (2). We obtain, with the probabilistic notation where X is a random
vector with distribution µ,

Varµ(f) ≤ 4
m∑
i=1

(ci + 4di)E
[
E
[
|PEi

X|2
∣∣∣PFi

X
] ∣∣PEi

∇f(X)
∣∣2] .

Setting κ = maxi di/ci and using the decomposition of the identity gives

Varµ(f) ≤ 4(1 + 4κ)E

[
m∑
i=1

ciE
[
|PEi

X|2
∣∣∣PFi

X
] ∣∣PEi

∇f(X)
∣∣2]

≤ 4(1 + 4κ)E
[

max
1≤i≤m

(
E
[
|PEi

X|2
∣∣∣PFi

X
]) ∣∣∇f(X)

∣∣2] .
The weight in front of the gradient may be unbounded. However a deep result of E.
Milman [28] ensures that for log-concave probabilities, any weight appearing in front of
the gradient in such inequality can be ”averaged out” of the integral up to a numerical
constant (because of the equivalence between L2 and L∞ Poincaré inequalities), and so
we get that there is a universal constant c0 such that

cp(µ) ≤ c0(1 + 4κ)E
[

max
1≤i≤m

E
[
|PEi

X|2
∣∣∣PFi

X
]]
. (24)

To estimate the latter expectation, we use the so-called ψ1-property of log-concave distri-
bution (which is related to the result of Borell [7] recalled at the end of Section §2): there
exists a universal constant c such that for any k ≥ 1, any log-concave random vector Y
in Rk and any even 1-homogeneous convex function H : Rk → R+,

E exp
( H(Y )

c
√
E
(
H(Y )2

)) ≤ 2.
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Setting D = c2 maxi E
(
|PEi

X|2
)
, using the convexity of ψ1/2(t) = exp(

√
1 + t), t ≥ 0 and

applying Jensen inequality twice, we get

ψ1/2

(
E
[

max
1≤i≤m

E
[
D−1|PEi

X|2
∣∣∣PFi

X
]])

≤ E max
1≤i≤m

E
[
ψ1/2

(
D−1|PEi

X|2
) ∣∣∣PFi

X
]

≤ E
∑

1≤i≤m

E
[
ψ1/2

(
D−1|PEi

X|2
) ∣∣∣PFi

X
]

=
∑

1≤i≤m

E
[
ψ1/2

(
D−1|PEi

X|2
)]

≤ e
∑

1≤i≤m

E
[
exp

(
D−1/2|PEi

X|
)]
≤ 2em.

This estimates leads to

cp(µ) ≤ c′(1 + 4κ)(1 + logm)2 max
i

E
(
|PEi

X|2
)
.

If µ is also isotropic, then cp(µ) ≤ c′(1+4κ)(1+logm)2 maxi dim(Ei). This estimates de-
pends on the number of isometries involved, so it is better to choose them parsimoniously.

In particular, note that in the previous estimation of E
[
max1≤i≤m E

[
|PEi

X|2
∣∣PFi

X
]]

,

what really matters is the number of different terms,

m′ := Card
(
{Ei ; i = 1, . . . ,m}

)
, (25)

for if Ei = Ej then E
[
|PEi

X|2
∣∣PFi

X
]

= E
[
|PEj

X|2
∣∣PFj

X
]

which contributes only once

in the supremum. So under the same assumptions, the bound for a log-concave isotropic
µ is rather

cp(µ) ≤ c′(1 + 4κ)(1 + logm′)2 max
i

dim(Ei). (26)

Let us illustrate the interest of such bound in the following application, which extends
Klartag’s result to more general sets of reflections.

Corollary 14. Let H1, . . . , Hm be hyperplanes of Rn such that ∩mi=1Hi = {0}. Let µ be
an isotropic log-concave measure on Rn, which is invariant by the hyperplane symmetries
SH1 , . . . , SHm. Then cp(µ) ≤ c log(1 + n)2, where c > 0 is a numerical constant.

Proof. The group generated by the reflections G that leave µ invariant might be quite
large and we want to apply (26) to a well chosen set of generators as discussed at the
end of the previous section. Indeed, the structure of reflection groups is fully described
by Coxeter’s classification theorem. As explained in the appendix, there is an orthogonal
decomposition Rn = E1 ⊕ · · · ⊕ E`, such that G contains a subgroup G′ = O(P1)× · · · ×
O(P`) where Pi is either a regular simplex of full dimension in Ei or a regular polygon
if Ei is a plane. Set Gi = O(Pi) if Pi is a regular simplex in dimension at least 3 and
Gi = SO(Pi) if Pi is a regular polygon, and set G′′ := G1 × · · · × G`. This subgroup of
G only fixes the origin. Let us describe precisely the generators of G′′ that we consider:

• If ni := dim(Ei) ≥ 3, then O(Pi) is generated by the ni(ni + 1)/2 hyperplane
symmetries of a regular simplex in Ei. We denote by Ri,j, 1 ≤ j ≤ ni(ni + 1)/2 the
hyperplane reflections on Rn which extend them to Rn (by acting as the identity
on E⊥i ).
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• If ni := dim(Ei) = 2, then Pi is a regular ki-gon. We consider all its non-trivial
rotations Ri,j, j = 1, . . . , ki − 1 as acting on the whole Rn. Obviously Ei,j =
Fix(Ri,j)

⊥ = Ei is of dimension 2 and Fi,j = Fix(Ri,j) = E⊥i . These spaces do not
depend on j, and so the contribute only once in (25).

We define G ′′ as the set of all Ri,j’s. It generates G′′ and is stable by conjugacy. More-
over, by the remarks at the end of the previous section, G′′,G ′′ satisfy all the required
hypotheses to carry on the previous analysis of cp(µ) (a decomposition of the identity is
obtained by putting together the ones on individual Ei’s. Note that it is obvious when
ni = 2. Also κ = 1/2). In order to conclude, we just need to estimate the number m′

(which is smaller than the number of generators in G ′′):

m′ =
∑
i,ni 6=2

ni(ni + 1)

2
+ card

(
{i; ni = 2}

)
≤
∑
i,ni 6=2

n2
i +

∑
i; ni=2

n2
i ≤

(∑
i

ni
)2

= n2.

Consequently, from (26) we get that cp(µ) ≤ c log(1 + n)2.

The method also applies to the case of the Schatten classes. The notation here are
those from the end of Section §4. So Xp,n ∼ µλBd

p
is an isotropic log-concave random

vector uniformly distributed on a multiple λBd
p of the unit ball of the Shatten space Sdp .

The dimension is n = d2. Consider again the linear applications Ri which flip the signs of
all the entries in the i-th row of a matrix, i = 1, . . . , d. The orthogonal of the fixed point
subpaces decompose the identity (with constant coefficients), and the group generated
by the Ri is {−1, 1}d (because the Ri’s commute and R2

i = Id), which has also constant
spectral gap. So the estimate (26) applies and we get that

cp(Xn,p) ≤ c
√
n log(1 + n)2,

for some universal constant c > 0.

6.2 Anti-invariance of eigenfunctions

The previous subsection recovers Klartag’s bound on the spectral gap for isotropic un-
conditional bodies [25], but by a different method. Below we briefly present a streamlined
version of his argument, which applies to rather general symmetries (even in comparison
to the previous subsection).

We consider a (strictly) log-concave probability measure µ with density e−Φ with Φ
smooth and D2Φ > 0. We also need that the spectral gap be achieved, i.e that there is
a (smooth) ϕ ∈ L2(µ) belonging to the domain of L such that

Lϕ = −λ1(µ)ϕ, where λ1(µ) :=
1

cp(µ)
.

This is the case if, for instance, D2Φ(x) ≥ ε0Id for all x ∈ Rn, for some ε0 > 0. Note that
this condition may be ensured by adding ε0|x|2/2 to the potential Φ(x) for an arbitrarily
small ε0 > 0.
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Proposition 15. Let µ be a strictly log-concave probability measure. Let R1, . . . , Rm ∈
On(µ) such that

⋂
i≤m Fix(Ri) = {0}. Then, if u is a non-zero eigenfunction for λ1(µ),

there exists j ≤ m such that the function

ϕ(x) := u(Rjx)− u(x), ∀x ∈ Rn (27)

is again a non-zero eigenfunction for λ1(µ).

It is worth noting that when the Ri’s are such that R2
i = Id (for instance when the Ri

are reflections or −Id), then the function ϕ of the theorem verifies ϕ(Rjx) = −ϕ(x) for
all x ∈ Rn. In the case of even measures and of unconditional measures, the existence of
an eigenfunction verifying this anti-symmetry was proved by Klartag [25].

Proof. Let u be an eigenfunction. Note that the functions u◦Ri are also eigenfunction, so
if the first conclusion of the theorem is false (i.e. if for any choice of j the corresponding ϕ
is zero), it means that for all i ≤ m we have that u◦Ri = u. Taking gradients, integrating
with respect to µ and using its invariance by Ri then gives R−1

i

∫
∇u dµ =

∫
∇u dµ. Hence∫

∇u dµ ∈ ∩iFix(Ri). Our assumptions on the Ri’s then implies that∫
∇u dµ = 0.

Consequently,
∫
∂iu dµ = 0 for i = 1, . . . , n, and therefore by the Poincaré inequality and

by (10), we have

λ1(µ)

∫
u2 dµ =

∫
|∇u|2 dµ ≤ 1

λ1(µ)

n∑
i=1

∫
|∇∂iu|2 dµ =

1

λ1(µ)

∫
‖D2u‖2 dµ

≤ 1

λ1(µ)

∫
(Lu)2 dµ = λ1(µ)

∫
u2 dµ.

Equality means, from the use of (10), that D2Φ(∇u) · ∇u = 0 on Rn and so ∇u = 0.
Therefore u is constant, and this constant must be zero (λ1 > 0). This shows that when
we start from a non-zero eigenfunction u, we can indeed find a j ≤ m such that the
corresponding ϕ = u ◦Rj − u is a non-zero eigenfunction.

The interest of having a non-zero eigenfunction of the form (27) comes from the mean
zero property given by Fact 9. Using the same argument as Klartag [25], we can deduce
from the existence of an “anti-invariant” eigenfunction an estimation on the spectral gap,
similar to the bound (22) holding under different hypotheses.

Corollary 16. Let µ be a log-concave function on Rn and R1, . . . , Rm ∈ On(µ) such that⋂
i≤m Fix(Ri) = {0}. Assumed that the spectral gap is achieved. Then we have, setting

Ei = Fix(Ri)
⊥,

cp(µ) ≤ max
i≤m

sup
x∈Fix(Ri)

cp(µx,Ei
).
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Proof. By the previous Proposition and Fact 9, we know that there exists j ≤ m and a
non-zero eigenfunction such that

∫
Ej
ϕdµx,Ej

= 0 for all x ∈ Rn. This implies that∫
Ej

ϕ2 dµx,Ej
≤ cp(µx,Ej

)

∫
Ej

|PEj
∇ϕ|2 dµx,Ej

≤ C(µ)

∫
Ej

|∇ϕ|2 dµx,Ej
,

setting C(µ) := maxi≤m supx∈Fix(Ri)
cp(µx,Ei

). The conclusion follows from Fubini’s theo-

rem, since by definition
∫
|∇ϕ|2 dµ = cp(µ)−1

∫
ϕ2 dµ.

To follow Klartag’s proof in order to reach bounds depending only on n for isotropic
measures, one upper bounds cp(µx,Ei

) as before, considers the probability µ|A measure
obtained by restricting µ to a set A = {x ∈ Rn; ∀i ≤ m, |PEi

x| ≤ C}, where C should
be tuned to ensure µ(A) ≥ 1/2 and thus dTV (µ, µ|A) ≤ 1 (while the maximum distance
is 2). Another result by E. Milman [28] ensures cp(µ) ≈ cp(µ|A). If µ|A has the same
invariances (which requires stability by conjugacy of the set of isometries), then applying
the previous theorem to µ|A gives cp(µ|A) ≤ c′C2. Eventually, one chooses C to be an
upper estimate of 2Emaxi |PEi

X| which is derived from the ψ1 property of log-concave
distributions. We skip the details.

7 An application to conservative spin systems

We now apply the previous tools to a conservative non-interacting unbounded spin sys-
tem. Below, µ will be a probability measure on R of the form dµ(t) = e−V (t)dt. For n ≥ 2
and m ∈ R, we consider the probability measure obtained by restriction of the product
measure µn = µ⊗ . . .⊗ µ on Rn to the affine hyperplane Hn

m = {x ∈ Rn;
∑

i xi = nm}:

µn|m := µn
(
·
∣∣ n∑
i=1

xi = nm
)
.

Equivalently, the density of µn|m with respect to Lebesgue’s measure of Hn
m is proportional

to

exp

(
−

n∑
i=1

V (xi)

)
.

As always, Hn
m ' Hn

0 ' Rn−1 is viewed as an Euclidean space for the structure inherited
from Rn.

Ergodic inequalities have been studied for these measures. Varadhan posed the fol-
lowing question [30]: for which kind of single-site potentials V is it true that the mea-
sures µn|m have a uniform spectral gap, i.e. supn,m cp(µn|m) < +∞? The same ques-
tion may be also asked for the stronger logarithmic Sobolev inequalities. After contri-
butions by Landim-Panizo-Yau [26], Caputo [9], Chafai [10], Grunewald-Otto-Villani-
Westdickenberg [18], a very satisfactory answer was recently given by Menz and Otto
[27]. They show that if V = φ + ψ, with infx ϕ

′′(x) > 0 and ‖ψ‖∞, ‖ψ′‖∞ < +∞, then
the measures µn|m satisfy a log-sobolev inequality with constants which do not depend on
n,m. In particular, if V is a bounded and Lipschitz perturbation of a strictly uniformly
convex function, then supn,m cp(µn|m) < +∞.
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The arguments of these articles are quite involved. They rely heavily on the fact that
the spectral gap is uniform, which allows induction on coordinates or coarse-graining
approaches. Our goal is to show how the symmetries can be exploited to provide a soft
proof of various results for these measures. Some of them apply to the sub-quadratic
case where it is known that the spectral gap cannot be uniform in m. Not much is
known in this case (note that the first name author and Wolff [5] have obtained precise
estimates of the spectral gap and log-Sobolev constants when µ is a Gamma distribution
with parameter at least 1).

The measure µn is obviously invariant by permutations of coordinates. Since Hn
m =

{x ∈ Rn;
∑

i xi = nm} is invariant as well, it follows that µn|m is invariant by the restric-
tions to Hn

m of permutations of coordinates of Rn. They obviously act as a permutation
of the points nme1, . . . , nmem which form a regular simplex in Hn

m with barycenter at
(m, . . . ,m). It is convenient to consider this point as the new origin for this hyperplane.
Summarizing, µn|m is invariant by the group of isometries of a regular simplex. Our pre-
vious results apply, and require the estimation of the Poincaré constants of restrictions
to lines which are orthogonal to the hyperplanes of symmetries. These restrictions have
a very simple structure, as we put forward next.

For 1 ≤ i < j ≤ n, let Si,j the hyperplane symmetry defined on Rn by Si,j(ek) = eτi,j(k)

where τi,j is the transposition of i and j, i.e. Si,j = S(ei−ej)⊥ . We shall view Si,j as a

hyperplane symmetry of Hn
m. Setting Ei,j := Fix(Si,j)

⊥ = R(ei − ej), we can note that
for x ∈ Hn

m we have x+ Ei,j ⊂ Hn
m.

Lemma 17. Let n ≥ 2. For any x ∈ Hn
m and all i < j,

cp(µ
n|m
x,Ei,j

) = cp(µ2 |(xi+xj)/2).

Proof. Since permutations of coordinates leave µn|m invariant, we can assume that i = 1,
j = 2. Then

x+ E1,2 =

{(
x1 +

s√
2
, x2 −

s√
2
, x3, . . . , xn

)
; s ∈ R

}
=

{(x1 + x2

2
+

t√
2
,
x1 + x2

2
− t√

2
, x3, . . . , xn

)
; t ∈ R

}
,

where we have chosen parametrizations of unit speed. Hence the density of µn|m at point
of x+ E1,2 is proportional to

exp

(
−V
(x1 + x2

2
+

t√
2

)
− V

(x1 + x2

2
− t√

2

)
− V (x3)− · · · − V (xn)

)
.

Note that the last n − 2 terms are constant on x + E1,2. Hence they disappear when
conditioning µn|m to this line:

µ
n|m
x,Ei,j

(dt) =
1

Z
exp

(
−V
(x1 + x2

2
+

t√
2

)
− V

(x1 + x2

2
− t√

2

))
dt,

where Z is the normalization constant. This measure corresponds to the normalized
restriction of µ2 to the line {y ∈ R2; y1 + y2 = x1 + x2}, that is to µ2|(x1+x2)/2.
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The next statement is then an obvious consequence of the results of the Section 5.

Proposition 18. Assume that there exists α ∈ R+ such that for all t ∈ R, V ′′(t) ≥ −α
and supm cp(µ2|m) < 1

α
. Then,

sup
n,m

cp(µn|m) ≤ 2 sup
m

(
cp(µ2|m)−1 − α

)−1
.

Proof. Recall that for a measure dν(x) = e−W (x)dx/Z, it is convenient to call W a
potential of ν. Since µ has a potential with second derivative bounded from below by
−α, so does the product measure µn: the Hessian of its potential is bounded from below
by −αId. By restriction, this property passes to µnm. Since the latter measure has
the symmetries of the regular simplex, we are in a position to apply Theorem 13 by
the remarks after (22) in the case of invariances by the symmetric group. Lemma 17
allows us to deal with the restrictions to lines which are orthogonal to hyperplanes of
symmetries.

In the sequel, let us adopt the notation a ≈ b for the existence of numerical constants
c, C > 0 such that ca ≤ b ≤ cB; by numerical constants we mean universal computable
constants (and so independent of n, m, V , etc.)

In the case convex single-site potentials, we can get a precise quantitative estimate of
the uniform Poincaré constant (finite or infinite):

Proposition 19. If the potential V is convex, then

sup
n,m

cp(µn|m) ≈ sup
m

cp(µ2|m) ≈ sup
m∈R

(∫ +∞

0

e−
[
V (m+t)+V (m−t)−2V (m)

]
dt

)2

.

Proof. Applying the previous Proposition with α = 0 (recall the convention for non-
negative numbers 1/0 = +∞) gives

sup
m

cp(µ2|m) ≤ sup
n,m

cp(µn|m) ≤ 2 sup
m

cp(µ2|m),

which gives the first approximate equality. Note that applying Corollary 16 would remove
the factor 2 and give an equality (this may require an approximation argument in order
to ensure the existence of an eigenfunction corresponding to the spectral gap).

Note that µ2|m can be viewed as the probability measure on R with density f(t)dt/
∫
f ,

where

f(t) = exp

(
−V
(
m+

t√
2

)
+ V

(
m− t√

2

))
is an even log-concave function on R. A result of Bobkov [6] (see also [23]) states that
for log-concave measures on the line, the bound (2) is sharp, and so

cp(µ2|m) ≈ Varµ2|m(t) =

∫
R t

2f(t)dt∫
R f(t) dt

.

Next, we apply a very classical fact about even log-concave measures on the real line (see
e.g. [2, 29]):

1

3
≤
f(0)2

∫ +∞
0

t2f(t) dt(∫ +∞
0

f(t) dt
)3 ≤ 2.
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It follows that

cp(µ2|m) ≈

(∫ +∞
0

f

f(0)

)2

=

(∫ +∞

0

exp
(
−V (m+ t/

√
2)− V (m− t/

√
2) + 2V (m)

)
dt

)2

.

The claim follows after an obvious change of variables.

The previous characterization allows to distinguish two different types of behaviours:

• If V (t) = |t|, one gets that
∫ +∞

0
e−
[
V (m+t)+V (m−t)−2V (m)

]
dt = |m|+ 1/2 and there is

no uniform spectral gap. The same happens if V (t) = |t|β for β ∈ [1, 2) as a study
of the corresponding integrals for m→∞ shows.

• If any strict uniform convexity property of V holds, of the form

∀m, t ∈ R, V (m+ t) + V (m− t)− 2V (m) ≥ ω(t) with

∫
R
e−ω <∞,

then we can guarantee a uniform spectral gap. This condition is more general
than the usual strict uniform convexity inf V ′′ > 0 and is verified e.g. by potential
V (t) = tβ, β > 2 (see below).

We conclude this section with an example of application. It is definitely less en-
compassing than the recent Menz-Otto theorem, but covers some cases of non-convex
potentials which were not treated by Caputo for technical reasons.

Corollary 20. Let C : R+ → R be a convex non-decreasing function. Let ψ : R+ → R
be twice continuously differentiable with ‖ψ‖∞, ‖ψ′′‖∞ < +∞. Let Vε(t) = C(t2) + εψ(t)
and dµε(t) = e−Vε(t)dt/Zε the corresponding probability measure. Then there exists ε0 > 0
such that for all ε ∈ [−ε0, ε0],

sup
n,m

cp(µn|mε ) < +∞.

Proof. Let us start with the case ε = 0. The single site potential is convex and we may
apply the previous proposition. Thanks to the convexity of C, used twice

V0(m+ t) + V0(m− t)− 2V0(m) = C(m2 + t2 + 2mt) + C(m2 + t2 − 2mt)− 2C(m2)

≥ 2
(
C(m2 + t2)− C(m2)

)
≥ 2
(
C(t2)− C(0)

)
= 2(V0(t)− V0(0)) ≥ V0(t)− V0(0).

Hence∫
R+

exp(−[V0(m+t)+V0(m−t)−2V0(m)])dt ≤
∫

exp(−V0(t)+V0(0))dt = Z0e
V0(0) < +∞.

The case of ε 6= 0 is obtained by perturbation. First note that V ′′ε (t) ≥ −|ε| ‖ψ′′‖∞.

Setting α := |ε| ‖ψ′′‖∞, we deduce that the potential Φ of µ
n|m
ε satisfies D2Φ ≥ −αId

pointwise.
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Thanks to Proposition 18, proving that for all m, cp(µ
2|m
ε ) ≤ 1/(2α) would be enough

to establish the uniform spectral gap inequalities for the measures µ
n|m
ε , n ≥ 2,m ∈ R.

But this follows from the classical Holley-Stroock bounded perturbation principle (on R):

if dν = egdµ then cp(ν) ≤ esup g−inf gcp(µ). Indeed the potential of µ
2|m
ε differs from the

one of µ
2|m
0 only by the term εψ(m+ t/

√
2)+εψ(m− t/

√
2) (and a constant term coming

from normalization, which does not contribute to the oscillation of the perturbation).
Hence

cp(µ2|m
ε ) ≤ e4|ε|‖ψ‖∞cp(µ

2|m
0 ) ≤ c(Z0e

V0(0))2e4|ε|‖ψ‖∞ ,

where we have used the estimate established in the ε = 0 case. Consequently, if |ε| verifies
that

c(Z0e
V0(0))2e4|ε|‖ψ‖∞ ≤ 1

2|ε| ‖ψ”‖∞
,

then we have uniform Poincaré constant for the measures µ
n|m
ε , n ≥ 2,m ∈ R. This is

obviously true when ε is close enough to zero.

Finally, let us state a result for log-concave single-site potentials, which just uses the
symmetries of µn|m. It follows from what we already proved for log-concave measures
with the symmetries of the simplex:

Theorem 21. Let µ be a log-concave measure on R. Let ` : Rn → R defined by `(x) =
xi
√
n/(n− 1), for any i ≤ n. Then for all n ≥ 2, m ∈ R,

Varµn|m(`) ≤ cp(µn|m) ≤ c(log n)2 Varµn|m(`),

where c is a universal constant.

Proof. Since the measure µn|m is invariant by an irreducible groups of isometries, it is
automatically a dilate (by

√
Varµn|m(`)) of an isotropic distribution. Note that ` is a

linear function with unit length gradient (in Hn
m Euclidean structure). Se the left-hand

side inequality just follows by applying the Poincaré inequality to `. The right-hand side
inequality is a particular case of what we have proved for isotropic log-concave measures
having the symmetries of the simplex.

The previous result applies even when there are no uniform bounds. The structure of
the measure may be used to estimate precisely the variance of linear functions (say of `).

8 Isotropy constant of bodies with invariances

This section investigates bounds on the isotropic constant of convex bodies (having, as
before, many invariances). This problem is central in the asymptotic theory of convex
bodies, and is closely related to the questions discussed in previous sections, although the
methods we will use here are rather different. We will work with convex bodies rather
than with measures, mainly for convenience and for historical reasons.

Recall that the isotropy constant of a convex body K ⊂ Rn is the positive number
defined by

L2
K = inf

T∈A(Rn)

1

|TK|1+ 2
n

∫
TK

|x|2

n
dx,
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where A(K) denotes the affine group. The infimum is achieved for a map T0 if and only
if the barycenter of T0K is at the origin, and there exists a constant M such that for all
θ ∈ Rn,

1

|T0K|1+ 2
n

∫
T0K

〈x, θ〉2 dx = M |θ|2.

One then says that T0K is in isotropic position. Note that necessarily, M = L2
K and

that K →
∫
K
|x|2dx/|K|1+2/n being invariant by dilations, one may find a minimizer also

satisfying |T0K| = 1. In the sequel, we shall also assume that our convex bodies have
barycenter at the origin.

A major open problem is whether the numbers LK are uniformly bounded, indepen-
dently of the dimension (a classical reference is [29]). This question is in fact related to
the variance conjecture, as established in [14]. It will be convenient to define L(d) as the
supremum of the isotropy constant of convex bodies in Rd. The best known upper bound
is due to Klartag [24]: L(d) ≤ cd1/4.

Given a subspace E ⊂ Rn, the measures |F ∩ E| and |PE(K)| refer to the Lebesgue
measure |·| in Euclidean space E; if d = dim(E), we shall sometimes use also the notation
| · |d, for clarity. By convention we have |A|d = 1 if d = 0 (i.e. E = {0}) and 0 ∈ A.

The isotropy constant is related to the size of sections of bodies in isotropic position.
This principle goes back to Hensley [21]. The next statement appears in the lecture notes
by Giannopoulos [17, pp 60-61]; it is a non-symmetric version of a result of Ball [2] (see
also [16] for sharp constants in the hyperplane case).

Theorem 22. Let n > m and let C ⊂ Rn be a convex body in isotropic position. Let E
be a subspace of Rn with codimension m. Then

|C ∩ E|
1
mLC ≤ κL(m) |C|

1
m
− 1

n ,

where κ is a universal constant.

Let us emphasize a useful property of subspaces obtained as fixed-point spaces of an
isometry of K.

Lemma 23. Let K ⊂ Rn be a convex body and U ∈ On(K).Then, for F := Fix(U) we
have

PFK = K ∩ F.

Proof. For k ≥ 1, let Uk := (Id + U + · · · + Uk)/(k + 1). We use that limk→∞ Uk = PF
(to see this, simply diagonalise U over C). The convexity of K ensures that Ukx ∈ K for
every x ∈ K, and taking limits gives PFx ∈ K. Hence PFK ⊂ K ∩ F .

As noted by several authors in the eighties, unconditional convex bodies have a
bounded isotropy constant. The next statement gives a similar result for more general
symmetries. Surprisingly, the symmetries may leave unchanged a large subspace.

Theorem 24. Let K be an origin-symmetric convex body in Rn. Assume that there
exists isometries U1, . . . , Um ∈ On(K) and coefficients c1, . . . , cm > 0 such that, setting
Ei = Fix(Ui)

⊥,
m∑
i=1

ciPEi
= PE,
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for some subspace E ∈ Rn. If the codimension d of E verifies d ≤ αn/ log n, then

LC ≤ C(α) max
i
L
(
dim(Ei)

)
.

Remark 3. Recall that ∩iFix(Ui) = E⊥. Hence, the condition on dmeans that dim(∩iFix(Ui)) ≤
αn/ log n. In other words, the group of isometries of K may not act on a subspace of
dimension n/ log(n).

Proof. First let us note that we may assume that K is isotropic. Indeed let A be the
positive matrix such that for all θ ∈ Rn,

∫
K

(x · θ)2dx = Aθ · θ. Then it is plain that

A−1/2K is isotropic. For any isometry U preserving K,

Aθ · θ =

∫
K

(x · θ)2dx =

∫
UK

(x · θ)2dx = AU−1θ · U−1θ.

Hence UAU∗ = A, that is AU = UA. Consequently UA−1/2K = A−1/2UK = A−1/2K.
So A−1/2K is isotropic and has the same isometric invariances.

It is convenient to set F0 = E and for i ≥ 1, Fi = Fix(Ui). Since PEi
= Id − PFi

for
i = 1, . . . ,m, the decomposition of the Theorem gives

m∑
i=0

c′iPFi
= Id, (28)

where c′0 = (
∑m

j=1 cj)
−1 and for i ≥ 1, c′i = cj/(

∑m
j=1 cj). This decomposition of the

identity allows us to apply the geometric version of the Brascamp-Lieb inequality (see
e.g. [3]): since K ⊂

⋂m
i=0{x ∈ Rn; PFi

x ∈ PFi
K},

|K| ≤
∫
Rn

m∏
i=0

1PFi
K(PFi

x)c
′
idx ≤

m∏
i=0

(∫
Fi

1PFi
K(xi) dxi

)c′i
= |PEK|c

′
0

m∏
i=1

|PFi
K|c′i .

Set di = dim(Ei) = n−dim(Fi). For i ≥ 1, since Fi = Fix(Ui) and Ui leaves K invariant,
we know by Lemma 23 and Theorem 22 that

|PFi
K| = |K ∩ Fi|n−di ≤ |K|

n−di
n

(
κL(di)

LK

)di
.

For the projection onto E, we first use the Rogers-Shephard inequality

|PEK|n−d ≤
(
n

d

)
|K|

|K ∩ E⊥|d
.

Next, by a result of Kannan-Lovasz-Simonovits [23], |K|1/nLKBn
2 ⊂ K (actually for

symmetric convex sets this can be found in a stronger form in the article by Milman and
Pajor [29]). Taking sections yields |K ∩ E⊥|d ≥ |K|d/nLdK |Bd

2 |d, hence

|PEK|n−d ≤
(
n

d

)
|K|n−d

n

LdK |Bd
2 |d
.
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Combining these bounds yields

|K| ≤

((
n

d

)
|K|n−d

n

LdK |Bd
2 |d

)c′0 m∏
i=1

(
|K|

n−di
n

(
κL(di)

LK

)di)c′i

.

Taking traces in (28) gives n = c′0(n − d) +
∑

i≥1 c
′
i(n − di) so that the terms in |K|

cancel out. The latter equality can be also stated as n− d =
∑

i≥1 cidi. Using also that
c′ = (c′0, c

′
1, . . . , c

′
m) is proportional to c = (1, c1, . . . , cm) and rearranging the terms gives

LK ≤

( (
n
d

)
|Bd

2 |d

) c′0
c′0d+

∑
j≥1 c′

j
dj

m∏
i=1

(
κL(di)

) c′idi
c′0d+

∑
j≥1 c′

j
dj

=

 (nd) 1
d

|Bd
2 |

1
d
d

 d
n m∏
i=1

(
κL(di)

) cidi
n

≤ (βn
√
d)

d
n

(
κmax

i
L(di)

)1− d
n

≤ β′e
3d
2n

logn max
i
L(di),

where β, β′ > 0 are universal constants. We have also used that infk L(k) > 0.

Corollary 25. Let K ⊂ R be a convex body with barycenter at the origin. Assume that
there exists (non necessarily orthogonal) symmetries S1, . . . , Sm with respect hyperplanes
H1, . . . , Hm such that for all i ≤ m, SHi

K = K and dim(
⋂
i≤mHi) ≤ α n

logn
. Then

LK ≤ C(α).

Proof. Since any compact subgroup of the linear group is affinely conjugated to a sub-
group of the orthogonal group, and since the isotropy constant is an affine invariant, we
may assume that the Si are orthogonal hyperplane symmetries. The reflection group G
that they generate satisfies Fix(G) ⊂

⋂
i≤mHi. Hence, by Lemma 27, there exists unit

vectors v1, . . . , v` and coefficients c1, . . . , c` such that Sv⊥i K = K and∑
i≤`

ciPRvi = PFix(G)⊥ .

Hence we may apply Theorem 24.

Appendix: Some observations concerning reflections

A reflection group is a subgroup of some On generated by reflections (i.e. by hyperplane
symmetries).

Lemma 26. Let G be a finite irreducible reflection group acting on Rn. Let V = {v ∈
Sn−1; Sv⊥ ∈ G}. Then, using the tensor notation (v ⊗ v)(x) = 〈x, v〉v for projections on
lines, we have ∑

v∈V

v ⊗ v =
card(V )

n
Id.
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Proof. Note that for v ∈ V and R ∈ G, it holds RSv⊥R
−1 = S(Rv)⊥ ∈ G. Hence R

restricted to V is a permutation of V . Set L =
∑

v∈V v ⊗ v. The previous observation
implies that

RLR−1 = RLR∗ =
∑
v∈V

Rv ⊗Rv = L.

Hence L is in the center of G. Let λ be an eigenvalue of the self-adjoint map L and E
the corresponding eigenspace. By the above commutation, E is globally invariant by all
elements of G and it is not empty. By irreducibility E = Rn and L = λId.

Lemma 27. Let R ⊂ On be a closed reflection group. Then there exist m ∈ N, unit
vectors v1, . . . , vm such that Sv⊥i ∈ R for all i ≤ m and coefficients c1, . . . , cm > 0 such
that

m∑
i=1

civi ⊗ vi = PE,

where E = Fix(R)⊥.

Proof. Classically Rn can we written as an orthogonal sum of Fix(R) and of spaces
E1, . . . , E` irreducible for the action of R. Also R can be written as a direct product
of reflection groups acting, in an irreducible manner, on the E ′is. Applying the previous
lemma gives a decomposition of IdEi

, summing them up yields the claimed decomposition
of the identity on Fix(R)⊥. Actually this argument works when the reflection group is
finite. However if it is infinite, it can be checked that the group acts on some Ei as the
whole orthogonal group, and it is not hard to find a decomposition of the identity on Ei
since all unit vectors are allowed.

In view of the previous lemma, a natural and convenient invariance hypothesis to
work with is the following: there exists isometries (Ui)

m
i=1 such that UiK = K and

positive coefficients (ci)
m
i=1 such that

m∑
i=1

ciPFix(Ui)⊥ = PE. (29)

This implies that for all x ∈ Rn, |PEx|2 =
∑
ci|PFix(Ui)⊥x|2. Hence ∩iFix(Ui) = E⊥.

Usually E will be a large space, meaning that the isometries actually operate on a large
part of the space. Let us provide concrete exemples of invariance hypotheses.

Unconditional convex bodies have attracted a lot of attention. They are invariant by
changes of signs of coordinates, or equivalently by reflection with respect to the coordinate
hyperplanes of an orthonormal base (e1, . . . , en). In this particular case, (29) boils down
to
∑
ei ⊗ ei = Id.

A natural extension is to consider sets K in Rkd which are unconditional by blocks
(of size d): (x1, . . . , xk) ∈ K =⇒ (±x1, . . . ,±xk) ∈ K. The isometries defined by Ri :
(x1, . . . , xk) 7→ (x1, . . . , xi−1,−xi, xi+1, . . . , xk) satisfy that Fix(Ri) = {x = (x1, . . . , xk) ∈
Rkd; xi = 0} and it is plain that

∑
i PFix(Ri)⊥ = Id.

This pattern naturally occurs when considering matricial norms which only depend
on the absolute values of matrices. Let us consider a norm on Mn(R) of the form ‖A‖ =
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f(A∗A) (Schatten norms ‖A‖p =
(
Tr((A∗A)p/2)

)1/p
, p ≥ 1 are the simplest examples).

Then if
Ei := Diag(1, . . . , 1, −1︸︷︷︸

i

, 1, . . . , 1),

then the maps Ri : A 7→ EiA are isometries of (Mn(R), ‖ · ‖2) since (EiA)∗EiA = A∗A.
Note that RiA is obtained from A by changing the signs of all the entries of the ith row
of A. Consequently the unit ball of any Schatten norm is unconditional by blocks of size
n. Note that Fix(Ri) = {A ∈ Mn(R); ai,j = 0, ∀j ≤ n} has codimension n while the
ambient space is of dimension n2. Plainly

∑
i PFix(Ri)⊥ = Id.

Thanks to Coxeter’s classification of irreducible finite reflection groups, one may ob-
tain many concrete examples of invariances. Among them, let us emphasize the group
of isometries of a regular simplex ∆n ⊂ Rn denoted O(∆n). By restriction to the
vertices {u1, . . . , un+1} of ∆n it is identified with the set of permutation of these ver-
tices. The group O(∆n) contains exactly n(n+ 1)/2 reflections: namely the S(ui−uj)⊥ , for
1 ≤ i < j ≤ n+ 1. They correspond to transpositions.

Another natural invariance hypothesis is related to the regular simplex: namely the
exchangeability condition. A set or a measure is exchangeable if it is invariant by per-
mutations of coordinates. Here one considers the isometries of Rn given by

Rσ : (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)),

where σ ∈ Sn. The group G = {Rσ; σ ∈ Sn} has a line of fixed points: Fix(G) = Rvn,
where vn = (1, . . . , 1). It is a reflection group generated by the images of transpositions
Rτi,j . On v⊥n , G acts as O(∆n−1). Indeed, it permutes the points (ei − vn/n)ni=1 which
form a regular simplex of v⊥n . Lemma 27 thus provides a decomposition of the form (29)

2

n

∑
i<j

ei − ej
2
⊗ ei − ej

2
= Pv⊥n .

One could in the same way introduce a block-exchangeability condition and derive a
corresponding decomposition.

We can also consider invariances involving only direct isometries. For instance, the
next statement encompasses the set SO(∆n) of direct isometries of the simplex.

Lemma 28. Let G be a finite reflection group acting on Rn, n ≥ 2. Set E = Fix(G)⊥.
Then there exists m, rotations U1, . . . , Um ∈ G ∩ SO(n) and coefficients c1, . . . , cm ≥ 0
such that

m∑
i=1

ciPFix(Ui)⊥ = PF ,

where F is E or a hyperplane of E (the latter occurs when G has an odd number of
one-dimensional irreducible factors). Note that by definition dim(Fix(Ui)

⊥) = 2.

Proof. First assume that G is irreducible and acts on Rn with n ≥ 2. Since it is generated
by reflections, the direct isometries in G are generated by products of two reflections, that
is rotations (since n ≥ 2 there are at least two distinct reflections). Let R ∈ G∩SO(n) be
such a rotation and consider the plane Π = Fix(R)⊥. For all U ∈ G, URU−1 ∈ G∩SO(n)
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and Fix(URU−1) = UFix(R)⊥ = UΠ. Also note that for every subspace Σ, UPΣU
−1 =

PUΣ. Consider
L =

∑
U∈G

PFix(URU−1)⊥ =
∑
U∈G

PUΠ.

From the above remarks and the group property, for all V ∈ G, V LV −1 = L. So L
commutes with all the elements of G. Since L is a symmetric positive map, it has at
least a non-zero eigenvalue λ. By the commutation, the eigenspace Eλ is stable by G and
thus by irreducibility it is the whole space. Hence L = λId. This proves the claim for an
irreducible group G.

For a general group, we consider the induced irreducible decomposition. On compo-
nents of dimension at least 2 we apply the above argument. We group the one-dimensional
components by two. On each such plane the the rotation of angle π is in the group, as
the product of minus identity on each irreducible line. The decomposition of the identity
of this plane is obvious (the origin is the only fixed point of the rotation). Summing up
all these decompositions, we obtain the claim. Note that when there is an odd number
of one dimensional irreducible components, one of them is left aside.

Finally, we recall a useful lemma, which uses more of the explicit description of finite
reflection groups, see [4].

Lemma 29. Let G be a reflection group on Rn. Assume that the set of its reflec-
tions is closed. If Fix(G) = {0} then there exists an orthogonal decomposition Rn =
F1

⊕
· · ·
⊕

F` and polytopes Pi ⊂ Fi for all i ≤ ` such that Pi is a (full dimension)
regular simplex in Fi, or a regular polygon if Fi is of dimension 2, such that

O(P1)× · · · × O(P`) ⊂ G.

If Ei is a line, then by convention Pi is a symmetric interval. Note that Fix(O(P1)×
· · · × O(P`)) = {0}. The interest of this result is to provide a simple reflection subgroup
of G with no nontrivial fixed points.
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Leindler theorems, including inequalities for log concave functions, and with an ap-
plication to the diffusion equation, J. Funct. Anal. 22 (1976), no. 4, 366–389.

[9] P. Caputo, Uniform Poincaré inequalities for unbounded conservative spin systems:
the non-interacting case, Stochastic Process. Appl. 106 (2) (2003) 223–244.
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