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Abstract. – We survey several Talagrand type inequalities and their

application to influences with the tool of hypercontractivity for both

discrete and continuous, and product and non-product models. The

approach covers similarly by a simple interpolation the framework of

geometric influences recently developed by N. Keller, E. Mossel and

A. Sen. Geometric Brascamp-Lieb decompositions are also considered

in this context.

1. Introduction

In the famous paper [T], M. Talagrand showed that for every function f on the

discrete cube X = {−1,+1}N equipped with the uniform probability measure µ,

Varµ(f) =

∫
X

f2dµ−
(∫

X

fdµ

)2

≤ C
N∑
i=1

‖Dif‖22
1 + log

(
‖Dif‖2/‖Dif‖1

) (1)

for some numerical constant C ≥ 1, where ‖ · ‖p denote the norms in Lp(µ), 1 ≤ p ≤ ∞,

and for every i = 1, . . . , n and every x = (x1, . . . , xN ) ∈ {−1,+1}N ,

Dif(x) = f(τix)− f(x) (2)

with τix = (x1, . . . , xi−1,−xi, xi+1, . . . , xN ). Up to the numerical constant, this

inequality improves upon the classical spectral gap inequality (see below)

Varµ(f) ≤ 1

4

N∑
i=1

‖Dif‖22 . (3)

The proof of (1) is based on an hypercontractivity estimate known as the Bonami-

Beckner inequality [Bo], [Be] (see below). Inequality (1) was actually deviced to recover

(and extend) a famous result of J. Kahn, G. Kalai and N. Linial [K-K-L] about influences

on the cube. Namely, applying (1) to the Boolean function f = 1A for some set

A ⊂ {−1,+1}N , it follows that

µ(A)
(
1− µ(A)

)
≤ C

N∑
i=1

2Ii(A)

1 + log
(
1/
√

2Ii(A)
) (4)



where, for each i = 1, . . . , N ,

Ii(A) = µ
(
{x ∈ A, τix /∈ A}

)
is the so-called influence of the i-th coordinate on the set A (noticing that ‖Di1A‖pp =

2Ii(A) for every p ≥ 1). In particular, for a set A with µ(A) = a, there is a coordinate

i, 1 ≤ i ≤ N , such that

Ii(A) ≥ a(1− a)

8CN
log
( N

a(1− a)

)
≥ a(1− a) logN

8CN
(5)

which is the main result of [K-K-L]. (To deduce (5) from (4), assume for example that

Ii(A) ≤
(a(1−a)

N

)1/2
for every i = 1, . . . , N , since if not the result holds. Then, from (4),

there exists i, 1 ≤ i ≤ N , such that

a(1− a)

CN
≤ 2Ii(A)

1 + log
(
1/
√

2Ii(A)
) ≤ 8Ii(A)

4 + log(N/4a(1− a))

which yields (5)). Note that (5) remarkably improves by a (optimal) factor logN what

would follow from the spectral gap inequality (3) applied to f = 1A. The numerical

constants like C throughout this text are not sharp.

The aim of this note is to amplify the hypercontractive proof of Talagrand’s original

inequality (1) to various settings, including non-product spaces and continuous variables,

and in particular to address versions suitable to geometric influences. It is part of

the folklore indeed (cf. e.g. [B-H]) that an inequality similar to (1), with the same

hypercontractive proof, holds for the standard Gaussian measure µ on RN (viewed as a

product measure of one-dimensional factors), that is, for every smooth enough function

f on RN and some constant C > 0,

Varµ(f) ≤ C
N∑
i=1

‖∂if‖22
1 + log(‖∂if‖2/‖∂if‖1)

. (6)

(A proof will be given in Section 2 below.) However, the significance of the latter for

influences is not clear, since its application to characteristic functions is not immediate

(and requires notions of capacities). Recently, N. Keller, E. Mossel and A. Sen [K-

M-S] introduced a notion of geometric influence of a Borel set A in RN with respect

to a measure µ (such as the Gaussian measure) simply as ‖∂if‖1 for some smooth

approximation f of 1A, and proved for it the analogue of (5) (with
√

logN instead of

logN) for the standard Gaussian measure on RN . It is therefore of interest to seek for

suitable versions of Talagrand’s inequality involving only L1-norms ‖∂if‖1 of the partial

derivatives. While the authors of [K-M-S] use isoperimetric properties, we show here

how the common hypercontractive tool together with a simple interpolation argument

may be developed similarly to reach the same conclusion. In particular, for the standard

Gaussian measure µ on RN , we will see that for every smooth enough function f on RN

such that |f | ≤ 1,

Varµ(f) ≤ C
N∑
i=1

‖∂if‖1
(
1 + ‖∂if‖1

)[
1 + log+

(
1/‖∂if‖1

)]1/2 . (7)
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Applied to f = 1A, this inequality indeed ensures the existence of a coordinate i,

1 ≤ i ≤ N , such that the geometric influence of A along i is at least of the order

of

√
logN

N , that is one of the main conclusions of [K-M-S] (where it is shown moreover

that the bound is sharp). In this continuous setting, the hypercontractive approach

yields more general examples of measures with such an influence property in the range

between exponential and Gaussian for which only a logarithmic Sobolev type inequality

is needed while [K-M-S] required an isoperimetric inequality for the individual measures

µi.

This note is divided into two main parts. In the first one, we present Talagrand

type inequalities for various models, from the discrete cube to Gaussian and more

general product measures, by the general principle of hypercontractivity of Markov

semigroups. The method of proof, originating in Talagrand’s work, has been used

recently by R. O’Donnell and K. Wimmer [OD-W1], [OD-W2] to investigate non-product

models such as random walks on some graphs which enter the general presentation below.

Actually, most of the Talagrand inequalities we present in the discrete setting are already

contained in the work by R. O’Donnell and K. Wimmer. It is worth mentioning that

an approach to the Talagrand inequality (1) rather based on the logarithmic Sobolev

inequality was deviced in [Ros] and [F-S] a few years ago. The abstract semigroup

approach applies in the same way on the sphere along the decomposition of the Laplacian.

Geometric Brascamp-Lieb decompositions within this setting are also discussed. In the

second part, we address our new version (7) of Talagrand’s inequality towards geometric

influences and the recent results of [K-M-S] by a further interpolation step on the

hypercontractive proof.

In the last part of this introduction, we describe a convenient framework in order to

develop hypercontractive proofs of Talagrand type inequalities. While of some abstract

flavor, the setting easily covers two main concrete instances, probability measures on

finite state spaces (as invariant measures of some Markov kernels) and continuous

probability measures of the form dµ(x) = e−V (x)dx on the Borel sets of Rn where V

is some (smooth) potential (as invariant measures of the associated diffusion operators

∆−∇V · ∇). We refer for the material below to the general references [Ba], [D-SC],

[Roy], [Aal], [B-G-L]...

Let µ be a probability measure on a measurable space (X,A). For a function

f : X → R in L2(µ), define its variance with respect to µ by

Varµ(f) =

∫
X

f2dµ−
(∫

X

fdµ

)2

.

Similarly, whenever f > 0, define its entropy by

Entµ(f) =

∫
X

f log fdµ−
∫
X

fdµ log

(∫
X

fdµ

)
provided it is well-defined. The Lp(µ)-norms, 1 ≤ p ≤ ∞, will be denoted by ‖ · ‖p.

Let then (Pt)t≥0 be a Markov semigroup with generator L acting on a suitable class

of functions on (X,A). Assume that (Pt)t≥0 and L have an invariant, reversible and
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ergodic probability measure µ. This ensures that the operators Pt are contractions in

all Lp(µ)-spaces, 1 ≤ p ≤ ∞. The Dirichlet form associated to the couple (L, µ) is then

defined, on functions f, g of the Dirichlet domain, as

E(f, g) =

∫
X

f(−Lg)dµ.

Within this framework, the first example of interest is the case of a Markov kernel

K on a finite state space X with invariant (
∑
x∈X K(x, y)µ(x) = µ(y), x ∈ X) and

reversible (K(x, y)µ(x) = K(y, x)µ(y), x, y ∈ X) probability measure µ. The Markov

operator L = K − Id generates the semigroup of operators Pt = etL, t ≥ 0, and defines

the Dirichlet form

E(f, g) =

∫
X

f(−Lg)dµ =
1

2

∑
x,y∈X

[
f(x)− f(y)

][
g(x)− g(y)

]
K(x, y)µ(x)

on functions f, g : X → R. The second class of examples is the case of X = Rn equipped

with its Borel σ-field. Letting V : Rn → R be such that
∫
Rn e−V (x)dx = 1, under

mild smoothness and growth conditions on the potential V , the second order operator

L = ∆ − ∇V · ∇ admits dµ(x) = e−V (x)dx as symmetric and invariant probability

measure. The operator L generates the Markov semigroup of operators (Pt)t≥0 and

defines by integration by parts the Dirichlet form

E(f, g) =

∫
Rn
f(−Lg)dµ =

∫
Rn
∇f · ∇g dµ

for smooth functions f, g on Rn.

Given such a couple (L, µ), it is said to satisfy a spectral gap, of Poincaré, inequality

if there is a constant λ > 0 such that for all functions f of the Dirichlet domain,

λVarµ(f) ≤ E(f, f). (8)

Similarly, it satisfies a logarithmic Sobolev inequality if there is a constant ρ > 0 such

that for all functions f of the Dirichlet domain,

ρEntµ(f2) ≤ 2 E(f, f). (9)

One speaks of the spectral gap constant (of (L, µ)) as the best λ > 0 for which (8) holds,

and of the logarithmic Sobolev constant (of (L, µ)) as the best ρ > 0 for which (9) holds.

We still use λ and ρ for these constants. It is classical that ρ ≤ λ.

Both the spectral gap and logarithmic Sobolev inequalities translate equivalently on

the associated semigroup (Pt)t≥0. Namely, the spectral gap inequality (8) is equivalent

to saying that

‖Ptf‖2 ≤ e−λt ‖f‖2
for every t ≥ 0 and every mean zero function f in L2(µ). Equivalently for the further

purposes, for every f ∈ L2(µ) and every t > 0,

Varµ(f) ≤ 1

1− e−λt
[
‖f‖22 − ‖Ptf‖

2
2

]
. (10)
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On the other hand, the logarithmic Sobolev inequality gives rise to hypercontractivity

which is a smoothing property of the semigroup. Precisely, the logarithmic Sobolev

inequality (9) is equivalent to saying that, whenever p ≥ 1 + e−2ρt, for all functions f in

Lp(µ),

‖Ptf‖2 ≤ ‖f‖p. (11)

For simplicity, we say below that a probability measure µ in this context is hypercon-

tractive with constant ρ.

A standard operation on Markov operators is the product operation. Let (L1, µ1)

and (L2, µ2) be Markov operators on respective spaces X1 and X2. Then

L = L1 ⊗ Id + Id⊗ L2

is a Markov operator on the product spaceX1×X2 equipped with the product probability

measure µ1 ⊗ µ2. The product semigroup (Pt)t≥0 is similarly obtained as the tensor

product Pt = P 1
t ⊗P 2

t of the semigroups on each factor. For the product Dirichlet form,

the spectral gap and logarithmic Sobolev constants are stable in the sense that, with the

obvious notation, λ = min(λ1, λ2) and ρ = min(ρ1, ρ2). This basic stability by products

will allow for constants independent of the dimension in the Talagrand type inequalities

under investigation. For the clarity of the exposition, we will not mix below products of

continuous and discrete spaces, although this may easily be considered.

Let us illustrate the preceding definitions and properties on two basic examples.

Consider first the two-point space X = {−1,+1} with the measure µ = pδ+1 + qδ−1,

p ∈ [0, 1], p + q = 1, and the Markov kernel K(x, y) = µ(y), x, y ∈ X. Then, for every

function f : X → R,

E(f, f) =

∫
X

f(−Lf)dµ = Varµ(f)

so that the spectral gap λ = 1. The logarithmic Sobolev constant is known to be

ρ =
2(p− q)

log p− log q
(= 1 if p = q). (12)

The product chain on the discrete cube X = {−1,+1}N with the product probability

measure µ = (pδ+1 + qδ−1)⊗N and generator L =
∑n
i=1 Li is associated to the Dirichlet

form

E(f, f) =

∫
X

N∑
i=1

f(−Lif)dµ = pq

∫
X

N∑
i=1

|Dif |2dµ

where Dif is defined in (2). By the previous product property, it admits 1 as spectral gap

and ρ given by (12) as logarithmic Sobolev constant. In its hypercontractive formulation,

the case p = q is the content of the Bonami-Beckner inequality [Bo], [Be].

As mentioned before, M. Talagrand [T] used thus hypercontractivity on the discrete

cube {−1,+1}N equipped with the product measure µ = (pδ+1 +qδ−1)⊗N to prove that

for any function f : {−1,+1}N → R,

Varµ(f) ≤ Cpq(log p− log q)

p− q

N∑
i=1

‖Dif‖22
1 + log

(
‖Dif‖2/2

√
pq ‖Dif‖1

) (13)

5



for some numerical constant C > 0 (this statement will be covered in Section 2 below).

This in turn yields a version of the influence result of [K-K-L] on the biased cube.

In the continuous setting X = Rn, the case of a quadratic potential V amounts

to the Hermite or Ornstein-Uhlenbeck operator L = ∆ − x · ∇ with invariant measure

the standard Gaussian measure dµ(x) = (2π)−n/2 e−|x|
2/2dx. It is known here that

λ = ρ = 1 independently of the dimension. (More generally, if V (x) − c |x|
2

2 is convex

for some c > 0, then λ ≥ ρ ≥ c.) Actually, L may also be viewed as the sum
∑n
i=1 Li

of one-dimensional Ornstein-Uhlenbeck operators along each coordinate, and µ as the

product measure of standard normal distributions. Within this product structure, the

analogue (6) of (13) has been known for some time, and will be recalled below.

2. Hypercontractivity and Talagrand’s inequality

This section presents the general hypercontractive approach to Talagrand type

inequalities including the discrete cube, the Gaussian product measure and more general

non-product models. The method of proof, directly inspired from [T], has been developed

recently by R. O’Donnell and K. Wimmer [OD-W1], [OD-W2] towards non-product

extensions on suitable graphs. Besides hypercontractivity, a key feature necessary to

develop the argument is a suitable decomposition of the Dirichlet form along “directions”

commuting with the Markov operator or its semigroup. These directions are immediate

in a product space, but do require additional structure in more general contexts.

In the previous abstract setting of a Markov semigroup (Pt)t≥0 with generator L,

assume thus that the associated Dirichlet form E may be decomposed along directions

Γi acting on functions on X as

E(f, f) =

N∑
i=1

∫
X

Γi(f)2dµ (14)

in such a way that, for each i = 1, . . . , N , Γi commutes to (Pt)t≥0 in the sense that, for

some constant κ ∈ R, every t ≥ 0 and every f in a suitable family of functions,

Γi(Ptf) ≤ eκt Pt
(
Γi(f)

)
. (15)

These properties will be clearly illustrated on the main examples of interest below, with

in particular explicit descriptions of the classes of functions for which (14) and (15) may

hold.

We first present the Talagrand inequality in this context. The proof is the prototype

of the hypercontractive argument used throughout this note and applied to various

examples.

Theorem 1. In the preceding setting, assume that (L, µ) is hypercontractive with

constant ρ > 0 and that (14) and (15) hold. Then, for any function f in L2(µ),

Varµ(f) ≤ C(ρ, κ)
N∑
i=1

‖Γif‖22
1 + log(‖Γif‖2/‖Γif‖1)
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where C(ρ, κ) = 4 e(1+(κ/ρ))+/ρ.

Proof. The starting point is the variance representation along the semigroup (Pt)t≥0
of a function f in the L2(µ)-domain of the semigroup as

Varµ(f) = −
∫ ∞
0

(
d

dt

∫
X

(Ptf)2dµ

)
dt = −2

∫ ∞
0

(∫
X

Ptf LPtfdµ

)
dt.

The time integral has to be handled both for the large and small values. For the large

values of t, we make use of the exponential decay provided by the spectral gap in the

form of (10) to get that, with T = 1/2ρ for example since ρ ≤ λ,

Varµ(f) ≤ 2
[
‖f‖22 − ‖PT f‖

2
2

]
.

We are thus left with the variance representation of

‖f‖22 − ‖PT f‖
2
2 = −2

∫ T

0

(∫
X

Ptf LPtfdµ

)
dt = 2

∫ T

0

E(Ptf, Ptf)dt.

Now by the decomposition (14),

‖f‖22 − ‖PT f‖
2
2 = 2

N∑
i=1

∫ T

0

(∫
X

(
Γi(Ptf)

)2
dµ

)
dt.

Under the commutation assumption (15),∫
X

(
Γi(Ptf)

)2
dµ ≤ e2κt

∫
X

(
Pt
(
Γi(f)

))2
dµ.

Since (Pt)t≥0 is hypercontractive with constant ρ > 0, for every i = 1, . . . , N and t ≥ 0,∥∥Pt(Γi(f)
)∥∥

2
≤
∥∥Γi(f)

∥∥
p

where p = p(t) = 1 + e−2ρt ≤ 2. After the change of variables p(t) = v, we thus reached

at this point the inequality

Varµ(f) ≤ 2 e(1+(κ/ρ))+

ρ

N∑
i=1

∫ 2

1

∥∥Γi(f)
∥∥2
v
dv. (16)

This inequality actually basically amounts to Theorem 1. Indeed, by Hölder’s inequality,∥∥Γi(f)
∥∥
v
≤
∥∥Γi(f)

∥∥θ
1

∥∥Γi(f)
∥∥1−θ
2

where θ = θ(v) ∈ [0, 1] is defined by 1
v = θ

1 + 1−θ
2 . Hence∫ 2

1

∥∥Γi(f)
∥∥2
v
dv ≤

∥∥Γi(f)
∥∥2
2

∫ 2

1

b2θ(v)dv
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where b = ‖Γi(f)‖1/‖Γi(f)‖2 ≤ 1. It remains to evaluate the latter integral with

2θ(v) = s, ∫ 2

1

b2θ(v)dv ≤
∫ 2

0

bsds ≤ 2

1 + log(1/b)

from which the conclusion follows.

Inequality (16) of the preceding proof may also be used towards a version of

Theorem 1 with Orlicz norms as emphasized in [T]. As in [T], let ϕ : R+ → R+ be

convex such that ϕ(x) = x2/ log(e + x) for x ≥ 1, and ϕ(0) = 0, and denote

‖g‖ϕ = inf

{
c > 0 ;

∫
X

ϕ
(
|g|/c

)
dµ ≤ 1

}
the associated Orlicz norm of a measurable function g : X → R. Then, for some

numerical constant C > 0, ∫ 2

1

‖g‖2v dv ≤ C ‖g‖
2
ϕ (17)

so that (16) yields

Varµ(f) ≤ 2C e(1+(κ/ρ))+

ρ

N∑
i=1

∥∥Γi(f)
∥∥2
ϕ
. (18)

Since as pointed out in Lemma 2.5 of [T],

‖g‖2ϕ ≤
C ‖g‖22

1 + log(‖g‖2/‖g‖1)
,

we see that (18) improves upon Theorem 1. To briefly check (17), assume by homogeneity

that
∫
X
g2/ log(e + g)dµ ≤ 1 for some non-negative function g. Then, setting gk =

g 1{2k−1<g≤2k}, k ≥ 1, and g0 = g 1{g≤1},∑
k∈N

1

k + 1

∫
X

g2kdµ ≤ C1 (19)

for some numerical constant C1 > 0. Hence, since gk ≤ 2k for every k,∫ 2

1

‖g‖2v dv =

∫ 2

1

(∑
k∈N

∫
X

gvkdµ

)2/v

dv

≤ 4

∫ 2

1

(∑
k∈N

2−(2−v)k
∫
X

g2kdµ

)2/v

dv

≤ C2

∑
k∈N

(∫ 2

1

(k + 1)2/v2−2(2−v)k/vdv

)
1

k + 1

∫
g2kdµ

where we used (19) as convexity weights in the last step. Now, it is easy to check that∫ 2

1

(k + 1)2/v2−2(2−v)k/vdv ≤ C3
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uniformly in k so that
∫ 2

1
‖g‖2v dv ≤ C1C2C3 concluding thus the claim.

We next illustrate the general Theorem 1 on various examples of interest.

On a probability space (X,A, µ), consider first the Markov operator Lf =
∫
X
fdµ−f

acting on integrable functions (in other words Kf =
∫
X
fdµ). This operator is

symmetric with respect to µ with Dirichlet form

E(f, f) =

∫
X

f(−Lf)dµ = Varµ(f).

In particular, it has spectral gap 1. Let now X = X1 × · · · × XN be a product

space with product probability measure µ = µ1 ⊗ · · · ⊗ µN . Consider the product

operator L =
∑N
i=1 Li where Li is acting on the i-th coordinate of a function f as

Lif =
∫
Xi
fdµi − f . The product operator L has still spectral gap 1. Its Dirichlet form

is given by

E(f, f) =

N∑
i=1

∫
X

f(−Lif)dµ =

N∑
i=1

∫
X

(Lif)2dµ.

We are therefore in the setting of a decomposition of the type (14). Moreover, it is

immediately checked that Li L = L Li for every i = 1, . . . , N , and thus the commutation

property (15) also holds (with κ = 0). Hence Theorem 1 applies for this model with

hypercontractive constant ρ = min1≤i≤N ρi > 0. In particular, Theorem 1 includes

Talagrand’s inequality (13) for the hypercube X = {−1,+1}N with the product measure

µ = (pδ+1 + qδ−1)⊗N with hypercontractive constant given by (12), for which it is

immediately checked that, for every r ≥ 1 and every i = 1, . . . , N ,∫
X

|Lif |rdµ = (pqr + prq)

∫
X

|Dif |rdµ.

Non-product examples may be considered similarly as has been thus emphasized

recently in [OD-W1] and [OD-W2] with similar arguments. Let for example G be a finite

group, and let S be a symmetric set of generators of G. The Cayley graph associated to

S is the graph with vertices the element of G and edges the couples (g, gs) where g ∈ G
and s ∈ S. The transition kernel associated to this graph is

K(x, y) =
1

|S|
1S(yx−1), x, y ∈ G,

where |S| is the cardinal of S. The uniform probability measure µ on G is an invariant

and reversible measure for K. This framework includes the example of G = Sn the

symmetric group on n elements with the set of transpositions as generating set and the

uniform measure as invariant and symmetric measure.

Given such a finite Cayley graph G with generator set S, kernel K and uniform

measure µ as invariant measure, the associated Dirichlet form may be expressed on

functions f : G→ R in the form (14)

E(f, f) =
1

2|S|
∑
s∈S

∑
x∈G

[
f(sx)− f(x)

]2
µ(x) =

1

2|S|
∑
s∈S
‖Dsf‖22

9



where for s ∈ S, Dsf(x) = f(sx)−f(x), x ∈ G. In order that the operators Ds commute

to K in the sense of (15) (with again κ = 0), it is necessary to assume that S is stable

by conjugacy in the sense that

for all u ∈ S, uS u−1 = S

as it is the case for the set of transpositions on the symmetric group Sn. The following

statement from [OD-W1] is thus an immediate consequence of the general Theorem 1.

Corollary 2. Under the preceding notation and assumptions, denote by ρ the

logarithmic Sobolev constant of the chain (K,µ). Then for every function f on G,

Varµ(f) ≤ 2e

ρ|S|
∑
s∈S

‖Dsf‖22
1 + log

(
‖Dsf‖2/‖Dsf‖1

) .
One may wonder for the significance of this Talagrand type inequality for influences.

For A ⊂ G and s ∈ S, define the influence Is(A) of the direction s on the set A by

Is(A) = µ
(
{x ∈ G;x ∈ A, sx /∈ A}

)
.

As on the discrete cube, given A ⊂ G with µ(A) = a, Corollary 2 yields the existence of

s ∈ S such that

Is(A) ≥ 1

C
a(1− a)ρ log

(
1 +

1

Cρa(1− a)

)
≥ 1

C
a(1− a) ρ log

(
1 +

1

Cρ

)
(20)

(where C ≥ 1 is numerical). However, with respect to the spectral gap inequality of the

chain (K,µ)

λVarµ(f) ≤ 1

2|S|
∑
s∈S
‖Dsf‖22 ,

we see that (20) is only of interest provided that ρ log(1 + (1/ρ)) >> λ. This is the case

on the symmetric discrete cube {−1,+1}N for which, in the Cayley graph normalization

of Dirichlet forms, λ = ρ = 1/N . On the symmetric group, it is known that the spectral

gap λ is 2
n−1 whereas its logarithmic Sobolev constant ρ is of the order of 1/n log n ([D-

SC], [L-Y]) so that ρ log(1 + (1/ρ)) and λ are actually of the same order for large n, and

hence yield the existence of a transposition τ with influence at least only of the order

of 1/n. It is pointed out in [OD-W2] that this result is however optimal. The paper

[OD-W1] presents examples in the more general context of Schreier graphs for which

(20) yields influences strictly better than the ones from the spectral gap inequality.

Theorem 1 may also be illustrated on continuous models such as Gaussian measures.

While the next corollary is stated in some generality, it is already of interest for products

of one-dimensional factors and covers in particular the example (6) of the standard

Gaussian product measure.
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Corollary 3. Let dµi(x) = e−Vi(x)dx, i = 1, . . . , N , on Xi = Rni be hypercontrac-

tive with constant ρi > 0. Let µ = µ1 ⊗ · · · ⊗ µN on X = X1 × · · · ×XN . Assume in

addition that V ′′i ≥ −κ, κ ∈ R, i = 1, . . . , N . Then, for any smooth function f on X,

Varµ(f) ≤ C(ρ, κ)
N∑
i=1

‖∇if‖22
1 + log

(
‖∇if‖2/‖∇if‖1

)
where ρ = min1≤i≤N ρi, and where ∇if denotes the gradient of f in the direction Xi,

i = 1, . . . , N .

Corollary 3 again follows from Theorem 1. Indeed, the product structure immedi-

ately allows for the decomposition (14) of the Dirichlet form

E(f, f) =

∫
X

|∇f |2dµ =
N∑
i=1

∫
X

|∇if |2dµ

along smooth functions with thus Γi(f) = |∇if |. On the other hand, the basic

commutation (15) between the semigroup and the gradients ∇i is described here as

a curvature condition. Namely, whenever the Hessian V ′′ of a smooth potential V on

Rn is (uniformly) bounded below by −κ, κ ∈ R, the semigroup (Pt)t≥0 generated by the

operator L = ∆−∇V · ∇ commutes to the gradient is the sense that, for every smooth

function f and every t ≥ 0,

|∇Ptf | ≤ eκt Pt
(
|∇f |

)
. (21)

In the product setting of Corollary 3, the semigroup (Pt)t≥0 is the tensor product of the

semigroups along every coordinate so that (21) ensures that

|∇iPtf | ≤ eκt Pt
(
|∇if |

)
(22)

along the partial gradients ∇i, i = 1, . . . , N and hence (15) holds on smooth functions.

This commutation property (with κ = −1) is for example explicit on the integral

representation

Ptf(x) =

∫
Rn
f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y), x ∈ Rn, t ≥ 0, (23)

of the Ornstein-Uhlenbeck semigroup with generator L = ∆ − x · ∇ and invariant and

symmetric measure the standard Gaussian distribution. The assumption V ′′ ≥ −κ
describes a curvature property of the generator L and is linked to Ricci curvature on

Riemannian manifolds. Since only κ ∈ R is required here, it appears as a mild property,

shared by numerous potentials such as for example double-well potentials on the line of

the form V (x) = ax4−bx2, a, b > 0. Recall that the assumption V ′′ ≥ c > 0 (for example

the quadratic potential with the Gaussian measure as invariant measure) actually implies

that µ satisfies a logarithmic Sobolev inequality, and thus hypercontractivity (with

constant c). We refer for example to [Ba], [L1], [B-G-L]... for an account on (21)

and the preceding discussion.

11



Corollary 3 admits generalizations in broader settings. Weighted measures on

Riemannian manifolds with a lower bound on the Ricci curvature may be considered

similarly with the same conclusions. In another direction, the hypercontractive approach

may be developed in presence of suitable geometric decompositions. The next statements

deal with the example of the sphere and with geometric decompositions of the identity

in Euclidean space which are familiar in the context of Brascamp-Lieb inequalities (see

[B-CE-L-M] for further illustrations in a Markovian framework).

A non-product example in the continuous setting is the one of the standard sphere

Sn−1 ⊂ Rn (n ≥ 2) equipped with its uniform normalized measure µ. Consider, for

every i, j = 1, . . . , n, Dij = xi∂j − xj∂i. These will be the directions along which the

Talagrand inequality may be considered since

E(f, f) =

∫
Sn−1

f(−∆f)dµ =
1

2

n∑
i,j=1

∫
Sn−1

(Dijf)2dµ.

The operators Dij namely commute in an essential way to the spherical Laplacian

∆ = 1
2

∑n
i,j=1D

2
ij so that (15) holds with κ = 0. Finally, the logarithmic Sobolev

constant is known to be n− 1 [Ba], [L1], [B-G-L].... Corollary 4 thus again follows from

the general Theorem 1.

Corollary 4. For every smooth enough function f : Sn−1 → R,

Varµ(f) ≤ 4e

n

n∑
i,j=1

‖Dijf‖22
1 + log

(
‖Dijf‖2/‖Dijf‖1

) .
Up to the numerical constant, this inequality improves upon the Poincaré inequality

for µ (with constant λ = n− 1).

We turn to geometric Brascamp-Lieb decompositions. Consider thus Ei, i =

1, . . . ,m, subspaces in Rn, and ci > 0, i = 1, . . . ,m, such that

IdRn =

m∑
i=1

ciQEi (24)

where QEi is the projection onto Ei. In particular, for every x ∈ Rn, |x|2 =∑m
i=1 ci|QEi(x)|2 and thus, for every smooth function f on Rn,

E(f, f) =

∫
Rn
|∇f |2dµ =

m∑
i=1

ci

(∫
Rn

∣∣QEi(∇Ptf)
∣∣2dµ).

Furthermore, QEi(∇Ptf) = e−tPt(QEi(∇f)) which may be examplified on the repre-

sentation (23) of the Ornstein-Uhlenbeck semigroup with hypercontractive constant 1.

Theorem 1 thus yields the following conclusion.

Corollary 5. Under the decomposition (24), for µ the standard Gaussian measure

on Rn, and for every smooth function f on Rn,

Varµ(f) ≤ 4
m∑
i=1

ci

∥∥QEi(∇f)
∥∥2
2

1 + log
(
‖QEi(∇f)‖2/‖QEi(∇f)‖1

) .
12



3. Hypercontractivity and geometric influences

In the continuous context of the preceding section, and as discussed in the intro-

duction, the L2-norms of gradients in Corollary 3 are not well-suited to the (geometric)

influences of [K-M-S] which require L1-norms. In order to reach L1-norms through the

hypercontractive argument, a further simple interpolation trick will be necessary.

To this task, we use an additional feature of the curvature condition V ′′ ≥ −κ,

κ ≥ 0, namely that the action of the semigroup (Pt)t≥0 with generator L = ∆−∇V · V
on bounded functions yields functions with bounded gradients. More precisely (cf. [L1],

[B-G-L]...), for every smooth function f with |f | ≤ 1, and every 0 < t ≤ 1/2κ,

|∇Ptf | ≤
1√
t
. (25)

This property may again be illustrated in case of the Ornstein-Uhlenbeck semigroup

(22) for which, by integration by parts,

∇Ptf(x) =
e−t

(1− e−2t)1/2

∫
Rn
y f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y).

With this additional tool, the following statement then presents the expected result.

The setting is similar to the one of Corollary 3. Dependence on ρ and κ for the constant

C ′(ρ, κ) below may be drawn from the proof. It will of course be independent of N .

Theorem 6. Let dµi(x) = e−Vi(x)dx, i = 1, . . . , N , on Xi = Rni be hypercontrac-

tive with constant ρi > 0. Let µ = µ1 ⊗ · · · ⊗ µN on X = X1 × · · · × XN , and set as

before ρ = min1≤i≤N ρi. Assume in addition that V ′′i ≥ −κ, κ ≥ 0, i = 1, . . . , N . Then,

for some constant C ′(ρ, κ) ≥ 1 and for any smooth function f on X such that |f | ≤ 1,

Varµ(f) ≤ C ′(ρ, κ)
N∑
i=1

‖∇if‖1
(
1 + ‖∇if‖1

)[
1 + log+

(
1/‖∇if‖1

)]1/2 .
Proof. We follow the same line of reasoning as in the proof of Theorem 1, starting

on the basis of (10) from

‖f‖22 − ‖PT f‖
2
2 = 2

N∑
i=1

∫ T

0

(∫
X

|∇iPtf |2dµ
)
dt ≤ 4

N∑
i=1

∫ T

0

(∫
X

|∇iP2tf |2dµ
)
dt

for some T > 0. By (21) along each coordinate, for each t ≥ 0,

|∇iP2tf | ≤ eκt Pt
(
|∇iPtf |

)
.

Hence, by the hypercontractivity property as in Theorem 1,

‖∇iP2tf‖2 ≤ eκt ‖∇iPtf‖p

13



where p = p(t) = 1 + e−2ρt ≤ 2. We then proceed to the interpolation trick. Namely, by

(25) and the tensor product form of the semigroup, |∇iPtf | ≤ t−1/2 for 0 < t ≤ 1/2κ,

so that in this range,

‖∇iP2tf‖2 ≤ eκ(1+1/p)t t−(1−1/p)/2 ‖∇if‖1/p1

(where we used again (22)). As a consequence, provided T ≤ 1/2κ,

‖f‖22 − ‖PT f‖
2
2 ≤ 4 e4κT

N∑
i=1

‖∇if‖1
∫ T

0

t−(1−1/p(t))‖∇if‖(2/p(t))−11 dt.

We are then left with the estimate of the latter integral that only requires elementary

calculus. Set b = ‖∇if‖1 and θ(t) = 2
p(t) − 1 ≤ 1. Assuming T ≤ 1,

∫ T

0

t−(1−1/p(t)) bθ(t)dt ≤
∫ T

0

t−1/2 bθ(t)dt.

Distinguish between two cases. When b ≥ 1,∫ T

0

t−1/2 bθ(t)dt ≤ b
∫ T

0

t−1/2dt ≤ 2b
√
T .

When b ≤ 1, use that θ(t) ≥ ρt/2 for every 0 ≤ t ≤ 1/2ρ. Hence, provided T ≤ 1/2ρ,∫ T

0

t−1/2 bθ(t)dt ≤
∫ T

0

t−1/2 bρt/2dt ≤ C
√
ρ
· 1[

1 + log(1/b)
]1/2

where C ≥ 1 is numerical. Summarizing, in all cases, provided T is chosen smaller than

min
(
1, 1

2ρ

)
, we have

∫ T

0

t−(1−1/p(t))bθ(t)dt ≤ 2C
√
ρ
· 1 + b[

1 + log+(1/b)
]1/2 .

Choosing for example T = min
(
1, 1

2ρ ,
1
2κ

)
and using (10), Theorem 6 follows with

C ′(ρ, κ) = C ′/ρ3/2T for some further numerical constant C ′. If κ ≤ cρ, then this

constant is of order ρ−1/2.

The preceding proof may actually be adapted to interpolate between Corollary 3

and Theorem 6 as

Varµ(f) ≤ C
N∑
i=1

‖∇if‖qq
(
1 + ‖∇if‖21/‖∇if‖

q
q

)[
1 + log+

(
‖∇if‖qq/‖∇if‖

2
1

)]q/2
for any smooth function f on X such that |f | ≤ 1, and any 1 ≤ q ≤ 2 (where C depends

on ρ, κ and q).
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As announced in the introduction, the conclusion of Theorem 6 may be interpreted in

terms of influences. Namely, for f = 1A (or some smooth approximation), define ‖∇if‖1
as the geometric influence Ii(A) of the i-th coordinate on the set A. In other words,

Ii(A) is the surface measure of the section of A along the fiber of x ∈ X = X1×· · ·×XN

in the i-th direction, 1 ≤ i ≤ N , averaged over the remaining coordinates (see [K-M-S]).

Then Theorem 6 yields that

µ(A)
(
1− µ(A)

)
≤ C(ρ, κ)

N∑
i=1

Ii(A)
(
1 + Ii(A)

)[
1 + log+

(
1/Ii(A)

)]1/2 .
Proceeding as in the introduction for influences on the cube, the following consequence

holds.

Corollary 7. In the setting of Theorem 6, for any Borel set A in X with µ(A) = a,

there is a coordinate i, 1 ≤ i ≤ N , such that

Ii(A) ≥ a(1− a)

CN

(
log

N

a(1− a)

)1/2

≥ a(1− a)(logN)1/2

CN

where C only depends on ρ and κ.

It is worthwhile mentioning that when N = 1, I1(A) corresponds to the surface

measure (Minkowski content)

µ+(A) = lim inf
ε→0

1

ε

[
µ(Aε)− µ(A)

]
of A ⊂ Rn1 , so that Corollary 7 contains the quantitative form of the isoperimetric

inequality for Gaussian measures

µ+(A) ≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

.

Recall indeed (cf. e.g. [L1-2]) that the Gaussian isoperimetric inequality indicates

that µ+(A) ≥ ϕ ◦ Φ−1(a) (a = µ(A)) where ϕ(x) = (2π)−1/2 e−x
2/2, x ∈ R,

Φ(t) =
∫ t
−∞ ϕ(x)dx, t ∈ R, and that ϕ ◦ Φ−1(u) ∼ u(2 log 1

u )1/2 as u → 0. This

conclusion, for hypercontractive log-concave measures, was established previously in [B-

L]. See [Mi1-2] for recent improvements in this regard.

Theorem 6 admits also generalizations in broader settings such as weighted measures

on Riemannian manifolds with a lower bound on the Ricci curvature (this ensures that

both (21) and (25) hold).

Besides the Gaussian measure, N. Keller, E. Mossel and A. Sen [K-M-S] also

investigate with isoperimetric tools products of one-dimensional distributions of the

type cαe−|x|
α

dx, 1 < α < ∞, for which they produce influences at least of the order of
(logN)β/2

N where β = 2(1 − 1
α ) (α = 2 corresponding to the Gaussian case). The proof

of Theorem 6 may be adapted to cover this result but only seemingly for 1 < α < 2.
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Convexity of the potentials |x|α ensures (21) and (25). When 1 < α < 2, measures

cαe−|x|
α

dx are not hypercontractive. Nevertheless, the hypercontractive theorems in

Orlicz norms of [B-C-R] still indicate that the semigroup (Pt)t≥0 generated by the

potential |x|α is such that, for every bounded function g with ‖g‖∞ = 1 and every

0 ≤ t ≤ 1,

‖Ptg‖22 ≤ C ‖g‖1 exp
(
− c t logβ

(
1 + (1/‖g‖1)

))
(26)

for β > 0 and some constants C, c > 0, and similarly for the product semigroup with

constants independent of N . The hypercontractive step in the proof of Theorem 6 is

then modified into∥∥|∇iP2tf |
∥∥2
2
≤ C‖∇if‖1

∫ 1

0

t−1/2 exp
(
− ct logβ

(
1 + (1/‖∇if‖1)

))
dt.

As a consequence, for any smooth f with |f | ≤ 1,

Varµ(f) ≤ C
N∑
i=1

‖∇if‖1
(
1 + ‖∇if‖1

)[
1 + log+

(
1/‖∇if‖1

)]β/2 . (27)

We thus conclude to the influence result of [K-M-S] in this range. When α > 2

(β ∈ (1, 2)), the potentials are hypercontractive in the usual sense so that the preceding

proofs yield (27) but only for β = 1. We do not know how to reach the exponent β/2 in

this case by the hypercontractive argument.

We conclude this note by the L1 versions of Corollaries 4 and 5. In the case of

the sphere, the proof is identical to the one of Theorem 6 provided one uses that

|Dijf | ≤ |∇f | which ensures that |DijPtf | ≤ 1/
√
t. The behavior of the constant is

drawn from the proof of Theorem 6.

Theorem 8. For every smooth enough function f : Sn−1 → R such that |f | ≤ 1,

Varµ(f) ≤ C√
n

n∑
i,j=1

‖Dijf‖1
(
1 + ‖Dijf‖1

)[
1 + log+

(
1/‖Dijf‖1

)]1/2 .
Application to geometric influences Iij(A) as the limit of ‖Dijf‖1 as f approaches

the characteristic function of the set A may be drawn as in the previous corresponding

statements. From a geometric perspective, Iij(A) can be viewed as the average over x

of the boundary of the section of A in the 2-plane x + span(ei, ej). We do not know if

the order n−1/2 of the constant in Theorem 8 is optimal.

As announced, the last statement is the L1-version of the geometric decompositions

of Corollary 5 which seems again of interest for influences. Under the corresponding

commutation properties, the proof is developed similarly.

Proposition 9. Under the decomposition (24), for µ the standard Gaussian measure

on Rn and for every smooth function f on Rn such that |f | ≤ 1,

Varµ(f) ≤ C
m∑
i=1

ci
‖QEi(∇f)‖1

(
1 + ‖QEi(∇f)‖1

)[
1 + log+

(
1/‖QEi(∇f)‖1

)]1/2
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where C > 0 is numerical.

Let us illustrate the last statement on a simple decomposition. As in the Loomis-

Whitney inequality, consider the decomposition

IdRn =

n∑
i=1

1

n− 1
QEi

with Ei = ei
⊥, i = 1, . . . , n, (e1, . . . , en) orthonormal basis. Proposition 9 applied to

f = 1A for a Borel set A in Rn with µ(A) = a then shows that there is a coordinate i,

1 ≤ i ≤ n, such that

∥∥QEi(∇f)
∥∥
1
≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

for some constant C > 0. Now, ‖QEi(∇f)‖1 may be interpreted as the boundary

measure of the hyperplane section

Ax·ei =
{

(x · e1, . . . , x · ei−1, x · ei+1, . . . , x · en); (x · e1, . . . , x · ei, . . . , x · en) ∈ A
}

along the coordinate x·ei ∈ R averaged over the standard Gaussian measure. By Fubini’s

theorem, there is x · ei ∈ R (or even a set with measure as close to 1 as possible) such

that

µ+(Ax·ei) ≥ 1

C
a(1− a)

(
log

1

a(1− a)

)1/2

. (28)

The interesting point here is that a is the full measure of A. Indeed, recall that the

isoperimetric inequality for µ indicates that µ+(A) ≥ ϕ ◦ Φ−1(a), hence a quantitative

lower bound for µ+(A) of the same form as (28). When A is a half-space in Rn, thus

extremal set for the isoperimetric problem and satisfying µ+(A) = ϕ ◦Φ−1(a), it is easy

to see that there is indeed a coordinate x · ei such that Ax·ei is again a half-space in the

lower-dimensional space. The preceding (28) therefore extends this property to all sets.
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Probabilités de Saint-Flour. Lecture Notes in Math. 1581, 1–114 (1994). Springer.
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