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Abstract

A function f : {−1, 1}n → R is called pseudo-Boolean. It is well-
known that each pseudo-Boolean function f can be written as f(x) =∑

I∈F f̂(I)χI(x), where F ⊆ {I : I ⊆ [n]}, [n] = {1, 2, . . . , n}, and

χI(x) =
∏

i∈I xi and f̂(I) are non-zero reals. The degree of f is max{|I| :
I ∈ F} and the width of f is the minimum integer ρ such that every
i ∈ [n] appears in at most ρ sets in F . For i ∈ [n], let xi be a ran-
dom variable taking values 1 or −1 uniformly and independently from
all other variables xj , j ̸= i. Let x = (x1, . . . ,xn). The p-norm of f is
||f ||p = (E[|f(x)|p])1/p for any p ≥ 1. It is well-known that ||f ||q ≥ ||f ||p
whenever q > p ≥ 1. However, the higher norm can be bounded by the
lower norm times a coefficient not directly depending on f : if f is of de-

gree d and q > p > 1 then ||f ||q ≤
(

q−1
p−1

)d/2

||f ||p. This inequality is

called the Hypercontractive Inequality. We show that one can replace d
by ρ in the Hypercontractive Inequality for each q > p ≥ 2 as follows:
||f ||q ≤ ((2r)!ρr−1)1/(2r)||f ||p, where r = ⌈q/2⌉. For the case q = 4 and
p = 2, which is important in many applications, we prove a stronger
inequality: ||f ||4 ≤ (2ρ+ 1)1/4||f ||2.

1 Introduction

Fourier analysis of pseudo-Boolean functions1, i.e., functions f : {−1, 1}n → R,
has been used in many areas of computer science (cf. [1, 5, 10, 13, 14]), social
choice theory (cf. [6, 11, 12]), combinatorics, learning theory, coding theory,
and many others (cf. [13, 14]). We will use the following well-known and easy
to prove fact [13]: each function f : {−1, 1}n → R can be uniquely written as

f(x) =
∑
I∈F

f̂(I)χI(x), (1)

1Often functions f : {0, 1}n → R are called pseudo-Boolean [3]. In Fourier Analysis, the
Boolean domain is often assumed to be {−1, 1}n rather than the more usual {0, 1}n and we
will follow this assumption in our paper.
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where F ⊆ {I : I ⊆ [n]}, [n] = {1, 2, . . . , n}, and χI(x) =
∏

i∈I xi and f̂(I)

are non-zero reals. Formula (1) is the Fourier expansion of f and f̂(I) are the
Fourier coefficients of f . The right hand size of (1) is a polynomial and the
degree max{|I| : I ∈ F} of this polynomial will be called the degree of f .
For i ∈ [n], let ρi be the number of sets I ∈ F such that i ∈ I. Let us call
ρ = max{ρi : i ∈ [n]} the Fourier width (or, just width) of f . The Fourier width
was introduced in [9] without giving it a name.

The degree and width can be viewed as dual parameters in the following
sense. Consider a bipartite graph G with partite sets V and T , where V is the
set of variables in f and T is the set of terms in f in (1), and zt is an edge
in G if z is a variable in t ∈ T. Note that the degree of f is the maximum
degree of a vertex in T and the width of f is the maximum degree of a vertex
in V . These two parameters are quite independent. Indeed, while the function
f(x) =

∏n
i=1 xi has degree n and width 1, the function f(x) =

∑
1≤i<j≤n xixj

has degree 2 and width n− 1.
For i ∈ [n], let xi be a random variable taking values 1 or −1 uniformly and

independently from all other variables xj , j ̸= i. Let x = (x1, . . . ,xn). Then
f(x) is a random variable and the p-norm of f is ||f ||p = (E[|f(x)|p])1/p for

any p ≥ 1. It is easy to show that ||f ||22 =
∑

I∈F f̂(I)2, which is Parseval’s
Identity for pseudo-Boolean functions. It is well-known and easy to show that
||f ||q ≥ ||f ||p whenever q ≥ p ≥ 1. However, the higher norm can be bounded
by the lower norm times a coefficient not depending on f : if f is of degree d
then

||f ||q ≤
(
q − 1

p− 1

)d/2

||f ||p. (2)

The last inequality is called the Hypercontractive Inequality. (In fact, the Hy-
percontractive Inequality is often stated differently, but the Hypercontractive
Inequality in the original form and (2) are equivalent.) Since ||f ||2 is easy to
compute, the Hypercontractive Inequality is quite useful for p = 2 and is often
used for p = 2 and q = 4; this special case of the Hypercontractive Inequal-
ity has been applied in many papers on algorithmics, social choice theory and
many other areas, see, e.g., [1, 2, 6, 8, 9, 10, 11, 12] and was given special
proofs (cf. [7] and the extended abstract of [12]). We will call this case the
(4,2)-Hypercontractive Inequality.

The coefficient before ||f ||p in (2) is not optimal. For example, it is easy
to show that ||f ||4 ≤ 31/4||f ||2 for d = 1 [13]. This is a strong inequality, but
it is proved only for a restricted class of pseudo-Boolean functions, linear func-
tions. In fact, one can extend this inequality to a larger class of pseudo-Boolean
functions, those of width 1 (i.e., all functions of the form c0 +

∑m−1
j=1 cjχKj (x),

where K1, . . . ,Km−1 is a partition of [n] into non-empty subsets). This is a
consequences of Theorem 1 which replaces the coefficient 3d/2 before ||f ||2 in
the (4,2)-Hypercontractive Inequality by (2ρ+ 1− 2ρ

m )1/4, where ρ is the width
of f and m = |F|. Clearly, for many functions 2ρ+ 1 < 9d (since ρ ≤ 2n−1 we
will always have 2ρ+1 < 9d whenever d > 0.32n) and then Theorem 1 provides
an important special case of the Hypercontractive Inequality with a smaller co-
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efficient. In fact, Theorem 1 improves Lemma 7 in [9]. While in Lemma 7 [9],
the coefficient before ||f ||2 is (2ρ2)1/4 (ρ ≥ 2), in Theorem 1, we decrease it to
(2ρ+ 1− 2ρ

m )1/4. We provide examples showing that this coefficient is tight.
Due to Theorem 1, we know that the width can replace the degree as a pa-

rameter in the coefficient before ||f ||2 in the (4,2)-Hypercontractive Inequality.
A natural question is whether the same is true in the general case of the Hy-
percontractive Inequality for pseudo-Boolean functions. We show that we can
replace d by ρ for each q ≥ p ≥ 2 as follows: ||f ||q ≤ ((2r)!ρr−1)1/(2r)||f ||p,
where r = ⌈q/2⌉.

Note that the value of the coefficient before ||f ||p in the Hypercontractive In-
equality can be important for proving some results. For example, the main result
in [9] has three parts, where in order to prove Part 2 the (4, 2)-Hypercontractive
Inequality is used with the bound 3d/2, but in order to prove Part 3 a (4, 2)-
Hypercontractive Inequality using the width is required. Lemma 7 in [9] was
sufficient for that purpose, but Theorem 1 in this paper would give a better
result.

2 (4,2)-Hypercontractive Inequality

In (1), let F = {I1, . . . , Im}, fj(x) = f̂(Ij)χIj (x) and wj = f̂(Ij), j ∈ [m]. If
∅ ∈ F , we will assume that I1 = ∅.

Theorem 1. Let f(x) be a pseudo-Boolean function of width ρ ≥ 0. Then
||f ||4 ≤ (2ρ+ 1− 2ρ

m )1/4||f ||2.

Proof. If ρ = 0 then f(x) = c, where c is a constant and hence ||f ||4 = ||f ||2 = c.
Thus, assume that ρ ≥ 1. Let S be the set of quadruples (p1, p2, p3, p4) ∈ [m]4

such that
∑4

j=1 |{i} ∩ Ipj | is even for each i ∈ [n], S′ = {(p1, p2, p3, p4) ∈ S :
p1 = p2} and S′′ = S \S′. Note that if a product fp(x)fq(x)fs(x)ft(x) contains
a variable xi in only one or three of the factors, then E[fp(x)fq(x)fs(x)ft(x)] =
E[P ] · E(xi) = 0, where P is a polynomial in random variables xl, l ∈ [n] \ {i}.
Thus,

E[f(x)4] =
∑

(p,q,s,t)∈S

E[fp(x)fq(x)fs(x)ft(x)].

Observe that if (p, q, s, t) ∈ S′ then p = q and s = t and, thus,∑
(p,q,s,t)∈S′ E[fp(x)fq(x)fs(x)ft(x)] =

∑m
p=1

∑m
s=1 w

2
pw

2
s . For a pair (p, q) ∈

[m]2, letN(p, q) = |{(s, t) ∈ [m]2 : (p, q, s, t) ∈ S′′}|. Let a quadruple (p, q, s, t) ∈
S′′. Since p ̸= q, there must be an i which belongs to just one of the two sets
Ip and Iq. Since (p, q, s, t) ∈ S′′, i must also belong to just one of the two sets
Is and It (two choices). Assume that i ∈ Is. Then by the definition of ρ, s can
be chosen from a subset of [m] of cardinality at most ρ. Once s is chosen, there
is a unique choice for t. Therefore, N(p, q) ≤ 2ρ.

Note that (p, q, s, t) ∈ S′′ if and only if (s, t, p, q) ∈ S′′ which implies that
there are at most N(p, q) tuples in S′′ of the form (s, t, p, q). We also have

E[fp(x)fq(x)fs(x)ft(x)] ≤ wpwqwswt ≤ (w2
pw

2
q + w2

sw
2
t )/2.
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Thus,

∑
(p,q,s,t)∈S′′

E[fp(x)fq(x)fs(x)ft(x)] ≤
∑

1≤p̸=q≤m

2N(p, q)
w2

pw
2
q

2
≤ 2ρ

∑
1≤p ̸=q≤m

w2
pw

2
q .

Hence,

E[f(x)4] ≤
m∑

p=1

m∑
s=1

w2
pw

2
s+2ρ

∑
1≤p ̸=q≤m

w2
pw

2
q = (2ρ+1)

m∑
p=1

m∑
s=1

w2
pw

2
s−2ρ

m∑
p=1

w4
p.

We have ∑m
p=1 w

4
p∑m

p=1

∑m
s=1 w

2
pw

2
s

≥
∑m

p=1 w
4
p∑m

p=1

∑m
s=1[w

4
p/2 + w4

s/2]
=

∑m
p=1 w

4
p

m
∑m

p=1 w
4
p

=
1

m
.

Thus, E[f(x)4] ≤ (2ρ + 1 − 2ρ
m )
[∑m

i=1 w
2
i

]2
= (2ρ+ 1 − 2ρ

m )E[f(x)2]2. The last
equality follows from Parseval’s Identity.

The following two examples show the sharpness of this theorem.
Let f(x) = 1+

∑n
i=1 xi. By Parseval’s Indentity, E[f(x)2] = n+1. It is easy

to check that E[f(x)4] = (n + 1) +
(
4
2

)(
n+1
2

)
= 3n2 + 4n + 1. Clearly, ρ = 1

and m = n + 1 and, thus, 2ρ + 1 − 2ρ
m = 3 − 2

n+1 . Also, E[f(x)4]/E[f(x)2]2 =
3n2+4n+1
(n+1)2 = 3− 2

n+1 .

Let f(x) =
∑

I⊆[n] χI(x). Clearly, E[f(x)2] = m = 2n. To compute E[f(x)4]
observe that when p, q and s are arbitrarily fixed we have E[fp(x)fq(x)fs(x)ft(x)] ̸=
0 for a unique (one in 2n) choice of t. Hence, E[f(x)4] = m4/2n = 23n. Thus,
E[f(x)4]/E[f(x)2]2 = 2n. Observe that ρ = 2n−1 and 2ρ+ 1− 2ρ

m = 2n as well.

3 Hypercontractive Inequality

A multiset may contain multiple appearances of the same element. For multisets
we will use the same notation as for sets, but we will stress it when we deal with
multisets. We do not attempt to optimize g(r) in the following theorem.

Theorem 2. Let f(x) be a pseudo-Boolean function of width ρ ≥ 1. Then for

each positive integer r we have ||f ||2r ≤ [g(r)ρr−1]
1
2r · ||f ||2, where g(r) = (2r)!.

Proof. Observe that E[f(x)2r] =
∑(

2r
α1...αm

)
E[fα1

1 (x) · · · fαm
m (x)], where the

sum is taken over all partitions α1 + · · ·+ αm = 2r of 2r into m non-negatives
summands. Consider a non-zero term E[fα1

1 (x) · · · fαm
m (x)]. Note that each vari-

able xi appears in an even number of the factors in fα1
1 (x) · · · fαm

m (x).We denote
the set of all such m-tuples α = (α1, . . . , αm) by E . Then

E[f(x)2r] =
∑
α∈E

(
2r

α

) m∏
i=1

wαi
i . (3)
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It is useful for us to view fα1
1 (x) · · · fαm

m (x), α ∈ E , as a product of 2r factors
fi(x), i.e.,

E[fα1
1 (x) · · · fαm

m (x)] = E[ft1(x) · · · ft2r (x)].

Let I be a subset of the multiset {t1, . . . , t2r} (I is a multiset). We call I
is nontrivial if it contains at least two elements (not necessarily distinct). A
subset J of I is called minimally even if J is nontrivial, E[

∏
i∈J fi(x)] ̸= 0 but

E[
∏

i∈K fi(x)] = 0 for each nontrivial subset K of the multiset J . If I1 = ∅
(that is ∅ ∈ F) and 1 is an element of I without repetition (i.e., only one copy
of 1 is in I), then {1} is also called a minimally even subset. (Thus, if I contains
two or more elements 1 then {1, 1} is minimally even, but {1} is not; however,
if I contains just one element 1, then {1} is minimally even.)

Let µ1 be an element in the multiset T1 := {t1, . . . , t2r} such that w2
µ1

=
max{w2

ti : ti ∈ T1}, and let M1 be a minimally even subset of T1 containing µ1.

For j ≥ 2, let µj be an element in the multiset Tj := {t1, . . . , t2r} \ (∪j−1
i=1Mi)

such that w2
µj

= max{w2
ti : ti ∈ Tj}, and let Mj be a minimally even subset of

Tj containing µj . Let s be the largest j for which µj is defined above. Observe
that s ≤ r as at most one of the minimally even sets M1,M2, . . . ,Ms has size
one. If s < r, for every j ∈ {s + 1, s + 2, . . . , r} let µj be an element in the
multiset T1 such that w2

µj
= max{w2

q : q ∈ T1 \ {µ1, . . . , µj−1}}.
Let α ∈ E . For every i ∈ [m], let βi = βi(α) be the number of copies

of i in the multiset {µ1, . . . , µr}. Let E ′ := {β(α) : α ∈ E}. The 2r terms
in
∏

t∈T1
wt =

∏m
i=1 w

αi
i can be split into r pairs such that each pair contains

exactly one element with its index in the multiset {µ1, . . . , µr} and, furthermore,
in each pair, the element with its index in the multiset has at least as high an
absolute value as the other element. Therefore the following holds.

m∏
i=1

wαi
i ≤

m∏
i=1

w
2βi(α)
i . (4)

For an m-tuple β ∈ E ′, let N(β) be the number of m-tuples α ∈ E such
that β = β(α). We will now give an upper bound on N(β), by showing how to
construct all possible α with β(α) = β. Let M = {µ1, . . . , µr} be the multiset
containing βi copies of i. We first partition M into any number of non-empty
subsets. This can be done in at most r! ways, since we can place µ1 in the “first”
subset, µ2 in the same subset or in the “second” subset, etc. Each of the subsets
will be a subset of a minimal even multiset. Thus, while any multiset, M ′

i , is
not a minimally even subset, there is an xj of odd total degree in

∏
t∈M ′

i
ft(x).

Thus, to construct a minimally even subset from M ′
i , we have to add to M ′

i an
element q such that fq(x) contains xj , which restricts q to at most ρ choices.
Continuing in this manner, observe that we have at most ρ choices for the r
extra elements we need to add. As the very last element we add has to be
unique we note that we construct at most r!ρr−1 partitions of T1 into minimally
even subsets in this way. For each such partition, we have α = (α1, . . . , αm),
where αi is the number of occurrences of i in T1. Note that every α for which
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β(α) = β can be constructed this way, which implies that

N(β) ≤ ρr−1r!. (5)

Let α ∈ E and β(α) = (β1, . . . , βm). By the construction of β(α), each
non-zero βi appears in the multiset {β1, . . . , βm} at least as many times as in
{α1, . . . , αm}. This implies that(

2r

α

)
/

(
r

β(α)

)
≤ (2r)!/r!. (6)

By Parseval’s Identity,

E[f(x)2]r =

(
m∑
i=1

w2
i

)r

=
∑(

r

b1 . . . bm

)
w2b1

1 · · ·w2bm
m , (7)

where the last sum is taken over all partitions b1 + · · · + bm = r of r into m
non-negatives integral summands.

Now by (3), (4), (5), (6) and (7), we have

E[f(x)2r] =
∑

α∈E
(
2r
α

)∏m
i=1 w

αi
i

≤
∑

α∈E
(
2r
α

)
(
(

r
β(α)

)
/
(

r
β(α)

)
)
∏m

i=1 w
2βi(α)
i

≤
∑

β∈E′ N(β)((2r)!/r!)
(
r
β

)∏m
i=1 w

2βi

i

≤ (2r)!ρr−1
∑

β∈E′

(
r
β

)∏m
i=1 w

2βi

i

≤ (2r)!ρr−1E[f(x)2]r.

We can get a better bound on N(β) in the proof of this theorem as follows.
Note that the number of partitions of a set of cardinality r into non-empty
subsets is called the rth Bell number, Br, and there is an upper bound on Br:

Br <
(

0.792r
ln(r+1)

)r
[4]. This upper bound is better than the crude one, Br ≤ r!,

that we used in the proof of this theorem, but our bound allowed us to obtain
a simple expression for g(r). Moreover, we believe that the following, much
stronger, inequality holds.

Conjecture 1. There exists a constant c such that for every pseudo-Boolean
function f(x) of width ρ ≥ 1 we have ||f ||2r ≤ c

√
rρ||f ||2 for each positive

integer r.

If Conjecture 1 holds then it would be best possible, in a sense, due to the
following example. Let f(x) =

∑n
i=1 xi. By Parseval’s Indentity, E[f(x)2] = n.

We will now give a bound for E[f(x)2r]. Define (a1, a2, . . . , a2r) to be a good
vector if all ai belong to [n] = {1, 2, . . . , n} and any number from [n] appears in
the vector zero times or exactly twice. The number of good vectors is equal to(
n
r

) (2r!)
2r , which implies that E[f(x)2r] ≥

(
n
r

) (2r!)
2r = n!

(n−r)! ×
(2r)!
2rr! .
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Note that (2r)!
2rr! = (2r − 1)!! > (r/e)r and, when n tends to infinity, n!

(n−r)!

tends to nr = E[f(x)2]r. Therefore, the bound in Conjecture 1 (for ρ = 1)
cannot be less than c

√
r for some constant c.

Theorem 2 can be easily extended as follows.

Corollary 1. Let f(x) be a pseudo-Boolean function of width ρ ≥ 1. Then for
each q > p ≥ 2 we have ||f ||q ≤ ((2r)!ρr−1)1/(2r)||f ||p, where r = ⌈q/2⌉.

Proof. Let r = ⌈q/2⌉. Using Theorem 2 and the fact that ||f ||s ≥ ||f ||t for each
s > t > 1, we obtain

||f ||q ≤ ||f ||2r ≤ ((2r)!ρr−1)1/(2r)||f ||2 ≤ ((2r)!ρr−1)1/(2r)||f ||p.

4 Further Research

It would be interesting to verify Conjecture 1 and decrease the coefficient before
||f ||p in Corollary 1.
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