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Abstract. A natural family of affine cubic surfaces arises from
SL(2)-characters of the 4-holed sphere and the 1-holed torus. The
ideal locus is a tritangent plane which is generic in the sense that
the cubic curve at infinity consists of three lines pairwise intersect-
ing in three double points. We show that every affine cubic surface
which is smooth at infinity and whose ideal locus is a generic tri-
tangent plane arises as a relative SL(2)-character variety of the
4-holed sphere. Every such affine cubic for which all the periodic
automorphisms of the tritangent plane extend to automorphisms
of the cubic arises as a relative SL(2)-character variety of a 1-holed
torus.

Introduction

Various moduli problems for surface group representations in SL(2)
lead to complex cubic surfaces in affine 3-space C3. There are two
classical examples of the following situation. Let Σ be a surface with
non-empty boundary. For each connected component of the boundary
fix a conjugacy class in SL(2). Consider the moduli space of flat SL(2)-
bundles over Σ whose holonomy on each component belongs to the fixed
conjugacy class. Then this moduli space is homeomorphic to an affine
cubic surfaces of the form

x2 + y2 + z2 + xyz = f(x, y, z)

where f(x, y, z) is a polynomial of degree 1 depending on the fixed
conjugacy classes.
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In a similar vein, we can restrict to flat SL(2)-bundles whose ho-
lonomy restricted to the boundary has fixed trace. In turn, these
correspond to SL(2)-representations of π1(Σ) whose restriction to the
boundary components are constrained to have fixed traces.

The cases of interest occur when Σ is homeomorphic to either a
1-holed torus or a 4-holed sphere. When Σ is a 1-holed torus, then
f(x, y, z) is a constant, which equals the boundary trace minus 2. When
Σ is a 4-holed sphere, and a, b, c, d are the traces of the restriction to
the four boundary components, then

f(x, y, z) = (ab+ cd)x+ (bc+ da)y + (ca+ bd)z

+ (4− a2 − b2 − c2 − d2 − abcd)

See (9) in p. 298 of [6] for this formula, and (7) in p. 301 for the
one-holed torus. This family of cubic surfaces appears in many dif-
ferent contexts. In addition to works cited below, it also appears in
Oblomkov’s work (see Theorem 2.1 of [15]) and in recent work of Gross,
Hacking and Keel (see Ex. 5.12 of [12]).

For fixed values of the boundary traces, the cubic surfaces that occur
are all of the form

(1) x2 + y2 + z2 + xyz = px+ qy + rz + s.

Since the isomorphism classes of cubic surfaces depend on four param-
eters, it is natural to ask if all cubic surfaces occur in this way.

This paper has two purposes. The first is to prove that every cubic
surface of this form (1) arises from a representation of the fundamental
group of the 4-holed sphere in SL(2,C), see Theorem 2. This theorem
may have been known classically. Versions in the real domain may
be found in Fricke-Klein. More recent statements may be found in
Boalch [4], Cantat-Loray [5], and Iwasaki [14]. Nevertheless we are not
aware of any published proof of this result, and the proof we present
here is elementary and direct.

The second purpose is to characterize cubic surfaces defined by (1).
These are the affine cubic surfaces that are non-singular at infinity and
that intersect the hyperplane at infinity in a generic tritangent plane.
We recall some terminology: a tritangent plane to a cubic surface is
a plane that intersects the surface in three lines. A generic tritangent
plane is a tritangent plane where the three lines are in general position.
If a tritangent plane is not generic, then the three lines meet at a
point, called an Eckardt point of the cubic surface. We will see the
classical fact that all non-singular cubic surfaces contain such a generic
tritangent plane, so the family (1) contains representatives of every
non-singular projective cubic surface.
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It is also classical that a singular cubic surface satisfies our two con-
ditions if and only if its singularities are of certain types that we list
below. From this we obtain a complete list of the possible singulari-
ties of the relative character varieties, namely A1, 2A1, 3A1, 4A1, A2,
A3 and D4. In a sequel we plan to discuss the classification of these
singularities and their interpretation in terms of representations of the
fundamental group of Σ.
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1. The Family of Cubics Surfaces

The affine cubic surfaces of the form (1) can be characterized as fol-
lows. The ideal locus (intersection of the projective completion with
the hyperplane at infinity) consists of smooth points. The ideal hy-
perplane is a tritangent plane which meets the surface in three lines in
general position (a generic tritangent plane.) Recall (see [16] for de-
tails) that a tritangent plane to a cubic surface S ⊂ P3 is a plane P that
intersect S in three lines. We say that S∩P is generic if S∩P consists
of three distinct lines, pairwise intersecting in three points. The plane
P is then tangent to S at the three points of intersection, hence the
name tritangent plane. If S is singular, we require, in addition, that
P ∩ S consists entirely of non-singular points of S.

A smooth cubic surface has 45 tritangent planes. Each tritangent
plane of a generic cubic surface is generic in the above sense. If P is
not generic, then the three lines of intersection of P with S go through
a single point, called an Eckardt point of S. Let us define an Eckardt
point of a smooth cubic surface S to be a point Q ∈ S where three lines
in S intersect. Then these three lines must be coplanar, since they are
all tangent to S at Q, and there can be no other lines in S passing
through Q, since otherwise we would have a plane intersecting S in a
curve of degree larger than 3. In this way, for any smooth cubic surface
S, we get a one to one correspondence between non-generic tritangent
planes and Eckardt points.

It is classically known that the maximum number of Eckardt points
is 18, achieved exactly by the Fermat cubic

X3 + Y 3 + Z3 +W 3 = 0.
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See p.152 (end of §100) of [16] for a list of the surfaces with Eckardt
points and the number of such points, namely 1,2,3,4,6,9,10,18.

Thus the generic smooth cubic surface S has no Eckardt points, and
most of the 45 tritangent planes to any S contain no Eckardt points.
In fact, for any surface, at least 27 of its tritangent planes are generic.

From a different point of view, the collection of smooth surfaces with
Eckardt points forms a divisor in the moduli space of smooth cubic
surfaces. This divisor is totally geodesic in the complex hyperbolic
structure on this space described in [1]. See §11 of [1] for a proof that
the surfaces with Eckardt points form a totally geodesic divisor.

With this information in mind, let us return to the characterization
of surfaces of the form (1). Pick a surface S with a generic tritangent
plane P . In a suitable homogeneous coordinate system (X, Y, Z,W )
for P3, P is given by the equation W = 0 and the intersection of S and
P described in by the equations

XY Z = 0, W = 0.

An affine cubic surface whose ideal locus is a generic tritangent plane
is therefore defined by a cubic polynomial of the form

xyz + f(x, y, z) = 0

where f(x, y, z) is polynomial of degree ≤ 2. Writing

f(x, y, z) = f11x
2 + f12xy + f22y

2

+ f13xz + f23yz + f33z
2

+ px+ qy + rz + s,

applying a translation xy
z

 7−→
x− f23

y − f13

z − f12


eliminates the cross term and we may assume:

f12 = f13 = f23 = 0.

Furthermore if any of f11, f22, f33 vanish, then S is singular at infinity.
Finally by applying the diagonal linear transformation with entries
(f22f33)

1
2 , (f11f33)

1
2 , (f11f12)

1
2 , we may assume that

f11 = f22 = f33 = 1.

Hence we obtain the normal form

x2 + y2 + z2 + xyz = px+ qy + rz + s.

Thus we have proved the following theorem:
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Theorem 1. A projective cubic surface is projectively equivalent to a
surface with Equation (1) if and only if it has a generic tritangent plane.
In particular, every smooth cubic surface is projectively equivalent to a
surface with Equation (1) for suitable p, q, r, s.

2. Surjectivity of the trace map

The relative character variety of the 4-holed sphere S0,4 is the re-
striction of the projection

V −→ C4

a
b
c
d
x
y
z


7−→


a
b
c
d



to the hypersurface V ⊂ C7 defined by

x2 + y2 + z2 + xyz = p(a, b, c, d)x(2)

+ q(a, b, c, d) y

+ r(a, b, c, d) z

+ s(a, b, c, d)

where

p(a, b, c, d) = ab+ cd(3)

q(a, b, c, d) = bc+ da

r(a, b, c, d) = ca+ bd

s(a, b, c, d) = 4− a2 − b2 − c2 − d2 − abcd
We show that every affine cubic of the form (2) arises as a relative
SL(2)-character variety of a 4-holed sphere for some choice of boundary
traces (a, b, c, d) That is,

Theorem 2. The mapping

C4 Φ−→ C4
a
b
c
d

 7−→

p(a, b, c, d)
q(a, b, c, d)
r(a, b, c, d)
s(a, b, c, d)
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is onto.

Theorem 2 characterizes affine cubic surfaces arising from the four-
holed sphere. Here is a characterization of those affine cubic surfaces
arising from the one-holed torus.

Theorem 3. Let Vp,q,r,s denote the affine cubic defined by (2). If the
finite group of automorphisms

∆ :=

{±1 0 0
0 ±1 0
0 0 ±1

} ⋂ SL(3)

preserves Vp,q,r,s, then p = q = r = 0. In that case V0,0,0,s corresponds
to a relative SL(2)-character variety of a 1-holed torus with boundary
trace s+ 2.

Lemma 4. The map Φ is proper.

The proof of Lemma 4 is based on the following observations: Differ-
ences of linear coefficients p, q, r factor as follows:

p− q = (a− c)(b− d)

q − r = (b− a)(c− d)(4)

r − p = (a− d)(b− c).
Sums of linear coefficients p, q, r likewise factor:

p+ q = (a+ c)(b+ d)

q + r = (b+ a)(c+ d)(5)

r + p = (a+ d)(b+ c)

Lemma 5. Suppose p(a, b, c, d), q(a, b, c, d) and r(a, b, c, d) are bounded.
Then at least three of a, b, c, d are within bounded distance of each other.

Proof. Suppose |p|, |q|, |r| ≤ C for some positive constant C. Then
the first equation in (4) implies

|a− c||b− d| ≤ 2C.

Thus at least one of the factors is ≤ C ′, where C ′ =
√

2C. Suppose
|c− a| ≤ C ′. Then the second equation in (4) implies |b− a| or |c− d|
is ≤ C ′. Suppose |b− a| ≤ C ′. By the triangle inequality,

|b− c| ≤ C ′′ = 2C ′.

Thus the three points a, b, c are within distance C ′′ of each other. The
proof of Lemma 5 is complete. �
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Proof of Lemma 4. Suppose that p, q, r, s are bounded:

|p|, |q|, |r|, |s| ≤ C

for some constant C > 0. In this proof C denotes a constant that can
vary from line to line, and depends on the the previous constants. By
Lemma 5, three of a, b, c, d are within bounded distance of each other.
We assume that a, b, c are within bounded distance of each other. The
remaining three cases being identical to this one. We must show that
|a|, |b|, |c|, |d| are within bounded distance of each other.

First suppose that d is within bounded distance of a. Then d is within
bounded distance of a, b and c. Assume all distances between any two
of a, b, c, d is ≤ C. Equations (5) immediately bound at least 3 of the
quantities |a+ b||, |b+ d|, etc. Pick any one of them, say |b+ d|. Then,
since |b−d| is bounded, |b| is bounded. Since all pairwise distances are
bounded, |a|, |b|, |c|, |d| are all ≤ C, as desired.

Thus we may assume that |a− d| is unbounded. Then so are |b− d|
and |c− d|. The proof that this cannot divides into two cases:

• |a+ d| is bounded.
• |a+ d| is unbounded.

Suppose the first case, that is, when |a + d| is bounded. Then |b + d|
and |c+d| also remain bounded. Moreover, d must also be unbounded,
since otherwise

|a− d| = |(a+ d)− 2d|
would be bounded. Then the difference between the function

s(a, b, c, d) = 4− a2 − b2 − c2 − abcd
and the quartic polynomial s(−d,−d,−d, d) in d can be estimated by
a polynomial of degree 3 in |d| Thus

|s(a, b, c, d)| ≥ C|d|4.
In particular |s| is unbounded, contrary to hypothesis.

Finally, consider the case when |a+d| is unbounded. Then |b+d| and
|c+ d| are also unbounded. Equations (5) bound all three quantities

|a+ b|, |b+ c|, |a+ c|.
Therefore |a|, |b| and |c| are all bounded, but |d| is unbounded. So, for
large d, the difference between the polynomial s(a, b, c, d) and the qua-
dratic polynomial s(0, 0, 0, d) can be estimated by a linear polynomial
in |d|. Thus

|s(a, b, c, d)| ≥ C|d|2,
hence |s| is unbounded, again contrary to hypothesis. The proof of
Lemma 4 is complete. �
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Conclusion of proof of Theorem 2. Since Φ is proper, its degree deg(Φ)
is defined. Since Φ is holomorphic, deg(Φ) ≥ 0. Moreover deg(Φ) > 0
if and only the image of Φ contains an open set. This occurs if and only
if Φ is surjective. To check that the image contains an open set, use the
inverse function theorem: pick a point where the Jacobian determinant
of Φ 6= 0. For example, at the point

a = b− c = 1, d = 0,

the Jacobian determinant is −4 6= 0. �

The more symmetric case.

Proof of Theorem 3. The finite group ∆ of automorphisms of the tri-
tangent plane acts on V by mapping

p 7−→ ±p
q 7−→ ±q
r 7−→ ±r

so that V is ∆-invariant ⇐⇒ p = q = r = 0. Then V is of the form

x2 + y2 + z2 + xyz = s

which is equivalent under the linear change of variablesxy
z

 7−→
−x−y
−z


to the standard form of the SL(2)-character variety of the 1-holed torus
with boundary trace s. (Compare Goldman [9].) The proof of Theo-
rem 3 is complete. �

In terms of the boundary traces a, b, c, d there are exactly two cases in
which this arises.

Theorem 6. Let p(a, b, c, d), q(a, b, c, d), r(a, b, c, d) be defined as in (3).
Then

p(a, b, c, d) = q(a, b, c, d) = r(a, b, c, d) = 0

if and only if (up to permutations of the variables a, b, c, d) one of the
two cases occurs:

• a = b = c = 0;
• a = b = c = −d.

Proof. We start with the following simple observation.
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Lemma 7. Suppose

p(a, b, c, d) = q(a, b, c, d) = r(a, b, c, d) = 0.

If one of a, b, c, d vanishes, then at least three of a, b, c, d vanish.

Proof. Suppose that a = 0. Then:

p(a, b, c, d) = 0 =⇒ cd = 0,

q(a, b, c, d) = 0 =⇒ bc = 0,

r(a, b, c, d) = 0 =⇒ bd = 0

Thus at least two of b, c, d must also vanish. �

Thus to prove Theorem 6, we may assume that all a, b, c, d are
nonzero. Then

a

c
= −d

b
=
c

a
since p(a, b, c, d) = 0 and q(a, b, c, d) = 0 respectively. Thus a/c equals
its reciprocal, and hence equals ±1. Thus b = ±a. Similarly c = ±a
and d = ±a. If a = b = c = d, or if a, b, c, d fall into two equal pairs,
then one of p, q, r will be nonzero. Thus three of a, b, c, d are equal
and the other one equals the negative. The proof of Theorem 6 is
complete. �

The first case, when a = b = c = 0, may be understood in terms of
the one-holed torus covering space of a disc with three branch points
of order two. (Compare [7] for details.)
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