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Abstract

Under minimal assumptions on smoothness of the drift, it is shown
that estimates on the rate of beta–mixing for an SDE with an iden-
tity diffusion matrix coefficient remain valid for Euler’s discretization
scheme.

1 Introduction

Consider a stochastic differential equation in Rd,

dXt = F (Xt) dt+ σdWt X0 = x0 ∈ Rd, (1)

with a bounded Borel drift F : Rd → Rd, non-degenerate constant duffision
matrix σ of dimension d×d and d-dimensional Wiener process Wt. The pro-
cess (Xt) is a strong solution of the equation (1), which is a homogeneous,
strong Markov process and unique in distributions as well as pathwise unique
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solution (see [12, 23]). Under certain assumptions on the coefficient F , esti-
mates of convergence to equilibrium and β-mixing have been established, in
particular, in [8, 20, 22]. The latter estimates may be important in limit the-
orems and other applications. However, in modelling, often approximation
schemes are used,

Xh
(n+1)h = Xh

nh + F (Xh
nh)h+ ξn+1

√
h, Xh

0 = x ∈ Rd, (2)

where (ξn, n ≥ 1) is a sequence of i.i.d. centered random variables with a
common density p, which are not necessarily Gaussian. Hence, an impor-
tant question arises, whether similar uniform mixing estimates related to
this scheme hold true, independently of the discretization level. Emphasize
that in this context “uniform” relates to h, but of course, not to the initial
data, likewise for the limiting diffusion, where such estimates are only locally
uniform to the initial data. In other words, we would like to be sure that
similar mixing bounds hold true for the whole class of the processes defined
by the scheme (2) with any h small enough.

In [21, 22, 9], convergence and β-mixing rates have been established for
stochastic difference equations of a non-linear auto-regression type,

Xn+1 = g(Xn) + ξn+1, X0 = x0 ∈ Rd. (3)

Equations (2) and (3) look similar; in particular, for any h > 0 fixed, one
could just set g(x) = x+F (x)h and replace ξn+1 in (3) by ξn+1

√
h, as in (2),

so that mixing rates for (2) follow from those for (3). The real question is
whether one can get uniform bounds for all h small enough. This question
is addressed in this paper. It turns out that for the scheme (2) the answer is
positive under rather mild assumptions.

The idea of the method of this paper is (1◦) to check recurrence properties,
and (2◦) verify directly some version of a local mixing condition for the family
of Markov chains (cf. [22, 10]), uniformly with respect to h ≤ h0 for some
h0 > 0. Step (1◦) is more or less standard. In step (2◦), we use beloved
in probability theory Central Limit Theorem and small times, – that is, nh
should be small enough, but not tending to zero, – to ensure that the drift
term does not spoil local mixing properties too much. Techniques from local
theorems, or, in other words, Fourier analysis is used in this step, see [5].
The authors think that this method was not applied earlier in this area and
for such purposes.

We consider the case where the process (Xh
nh, n ≥ 0) possesses a transi-

tion density phnh(x, y) given Xh
0 = x with respect to the Lebesgue measure;
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notation (X0
t , t ≥ 0) is used for solution of the equation (1). Let B be some

compact set (usually a closed ball, which will be commented later in due
course). The local Markov–Dobrushin’s mixing condition may have a few
close versions; the one which we are going to check has the following form.

Local Markov–Dobrushin’s Condition. There exists some bounded
Borel set B of positive Lebesgue measure and values h0 > 0 and T > 0 such
that for any integer n such that nh ≤ T ≤ (n+ 1)h,

inf
0<h≤h0

inf
x,x′∈B

∫
Rd

phnh(x, y) ∧ phnh(x′, y) dy =: ρ > 0. (4)

Here a ∧ b = min(a, b). The constant ρ may depend on B, h0, T, and on the
class of processes determined by all assumptions on the equation and on the
approximations.

Notice that in some cases it could be useful to have a similar condition for
any T greater than some positive value; a statement of such kind is provided
in the Corollary 1.

The name of this condition arose from a global assumption (i.e. with
B = Rd) proposed and used in [3] in the problem of limit theorems for non-
homogeneous Markov processes, which is now known as Dobrushin’s ergodic
assumption (or coefficient). For homogeneous Markov chains (of course, with
a finite state) a similar and also global condition was known long ago in
the Ergodic Theorem since A. A. Markov [14], the paper being reprinted in
[15]. However, here the name of the condition (4) is proposed for the first
time. In coupling, a construction based on the same idea – sometimes called
Markov’s contraction – in the global form was proposed by Vasserstein [19]
and, whence, is known in the literature as Vasserstein’s coupling.

A little bit different, also local version of the condition (4) was used in
mixing problems in [20] and other papers by the same author. In this paper
we use a variant that better suits the method.

In the sequel, we will establish the condition (4) for any ball BR in place
of B. In [10], the Malliavin calculus was used to check this condition; natu-
rally, it required some regularity of both the function F and of the density
p. Our approach in this paper is different and uses practically no regular-
ity conditions at all. The main assumptions are just that the function F is
bounded, and that the density p is strictly positive everywhere and bounded
away from zero on some open set, possesses a finite third moment, and, for
example, is bounded. This, of course, covers a rather general class of densi-
ties. Under a stronger assumption that the process has a locally bounded and
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locally bounded away from zero transition density there is an easier technique
based on “small sets” condition and local version of “condition C” by Doob
[4] (apparently proposed by Doeblin), even though the latter technique may
provide a slower rate of convergence than ours. However, our assumptions
below have another advantage because they are clearly more relaxed. The
authors believe that a method that requires weaker assumptions and pro-
vides better estimates should be preferred. Also, the assumptions in this
paper are considerably weaker than those in [10], although, the potential
of this method in the variable diffusion case (not considered in this paper
either) is yet unclear. In compare to the famous Doeblin–Doob’s condition
from [4], our condition (4) looks more suitable because the latter provides
a quantitative bound for the rate of convergence, unlike the former one. In
any case, Doeblin–Doob’s condition does not allow to control any constant in
the rate of convergence, nor it defines any class of processes where such rate
could be uniform on that class. Finally, although we do not claim here that
our estimates below are optimal, the results in [7] and [24] prompt that for a
wide class of processes our estimates in a certain sense have nearly optimal
order. This provides some reason to drop the question of how our estimates
relate to maximal coupling, which can be constructed for certain classes of
processes. In any case, the authors are not aware of any precise bounds ob-
tained via the latter technique, although apparently such estimates if they
existed should have been the best.

The referee recommended to discuss how our method relates to other
well-known coupling methods presented, in particular, in [1] or in [16]. The
authors are not aware of applications of other methods to the setting under
consideration. In principle, if one manages to construct a “small set” —
that is, a set with respect to which an appropriate recurrence holds true and
on which all transition measures are all equivalent with uniformly bounded
derivatives with respect to each other and, more than that, both recurrence
and the supremum of those derivatives are uniform with respect to the dis-
cretization step — then the main results of this paper could have been ob-
tained as a corollary, possibly, with some other constants. The question is,
however, exactly about how establish the required properties without assum-
ing stronger conditions. In principle, it follows from a combination of Doob’s
method in [4] with localization and recurrence that such set exists, however,
without any indication about exact value of time when those derivatives be-
come, indeed, bounded. Doob’s methods relates upon existence of Lebesgue’s
derivative of measure, which, apparently, does not admit any effective de-

4



scription, even in the situation of uniform ergodicity. Actually, construction
of a small set is always based on bounded derivatives. However, clearly, not
all derivatives may be bounded. The method used in this paper does not use
this boundedness. Moreover, Nummelin’s approach is often correctly called
generalized regeneration. Coupling used in this paper is not a generalized
regeration and, as it was mentioned above, provides better estimates even if
the former were possible.

Briefly, relationship of the methods may be formulated as follows. Gen-
eralized regeneration is technically easier, however, it requires some special
condition – let us call it local bounded deriative for simplicity – and often
does not provide the best estimates. If boundedness of derivatives is not
assumed nor established efficiently, then some other method is needed. This
is precisely a situation considered in the present paper.

To make the idea of the approach more explicit, we state and prove main
results firstly for a simple case R = R1 and normally distributed (ξn), and
then repeat it for the general case. In the latter, we use essentially local
theorems techniques based on the Fourier transform, and uniform version
of Prokhorov’s theorem for densities, due to Statulevicius, Lapinskas and
Shervashidze. However, notice that the bound in the Gaussian case, with
the Laplace function, is, of course, more precise.

It would be natural to pose a similar question for SDEs with variable
diffusions, with an idea to use local theorem approximations such as estab-
lished in [11]. We do not pursue this goal here, because this technique would
inevitably require some regularity from the drift, not speaking of diffusion.
In this paper we aim to explore least possible conditions on regularity of the
drift, which seems to be doable for a constant diffusion coefficient. Emphasize
that the absence of smoothness condition apparently does not allow applica-
tion of any technique based on regularity, such as, for example, Malliavin’s
calculus nor even the method of parametrix. The authors are planning to
consider the case of variable diffusion in the future.

The paper is organized as follows. We formulate the main results in
the Section 2, along with some corollaries. The latter relate to mixing and
convergence rates to equilibrium distributions, and follow easily from the
combination of the Theorem 2 and the techniques and results from [20, 22, 8].
The section 3 contains auxiliary lemmae. The proofs of the main theorems
and their corollaries and applications are given in the Sections 4-6.
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2 Main results and their applications

Assumptions

(A1) The function F is bounded,

|F | ≤ C1. (5)

(A2) There exist an open nonempty set U such that the density p satisfies
the following condition:

inf
x∈U

p(x) ≥ cU = C2 > 0. (6)

Without any loss of generality, we assume in the sequel that U is a ball,
U = Br0(x0) ≡ {x : |x− x0| < r0}, with some r0 > 0, x0 ∈ Rd.

(A3) Random variables (ξn, n ≥ 1) are IID, Eξ1 = 0, the symmetric covari-
ance matrix Cov(ξ1) = V is positive definite and there exists C3 < ∞
such that

E|ξ1|3 ≤ C3. (7)

(A4) There is an integer n1 ≥ 1 such that the density qn1 of the normalized

sum n
−1/2
0

∑n1

k=1 ξk is bounded,

sup
x∈Rd

qn1(x) ≤ C4 <∞. (8)

The assumption (A1) will be required in both of the Theorems 1 and 2;
the assumptions (A2)–(A4) will be used only in the Theorem 2, because the
Theorem 1 uses a Gaussian distribution (for which (A2)–(A4) are, of course
satisfied). Notice that a simple sufficient condition for (A4) is just to assume
p bounded that is, n0 = 1 in (A4). See, e.g., [2, Theorem 19.1] about some
statements equivalent to (A4).

Main results

Let us formulate results about local Markov–Dobrushin’s condition for solu-
tions of the equation (2).
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Theorem 1 Let d = 1, (Xh
nh) satisfy (2), ξj ∼ N (0, 1), and the assumption

(A1) hold true. Then, for every K > 0 small enough, there exists c0 > 0
which depends only on the values K and C1, such that for all 0 < nh ≤ K,∫

R
phnh(x1, y) ∧ phnh(x2, y) dy ≥ c0

(
1− 2Φ0

(
|x2 − x1|√

nh

))
, x1, x2 ∈ R, (9)

where Φ0(x) = 1√
2π

∫ x
0
e−y

2/2 dy. In particular, for any bounded Borel set

B0 ⊂ R1,

inf
x1,x2∈B0

∫
R
phnh(x1, y) ∧ phnh(x2, y) dy ≥ C

(
1− 2Φ0

(
diam(B0)√

nh

))
. (10)

The bound (10) prompts an interesting possibility to optimize the rate of
convergence or/and mixing by varying the set B0 treated as a “small set”,
that is, a set where mixing occurs, while outside this set we only wait until the
process hits B0 again; this is a standard idea for establishing mixing bounds.
So, if we, say, increaseB0, then the mixing rate on this set may decrease, while
the recurrence properties may become better, and vice versa. Even more,
the same inequality prompts also that in some models mixing may occur
everywhere over the state space, although with different rates depending on
the location. This could be, possibly, also used for optimization, but the
question is open and we do not touch it here.

Theorem 2 Let (Xh
nh) satisfy (2), assumptions (A1)–(A4) hold true, and

K1 ≤ nh ≤ K2 with some constants 0 < K1 < K2 <∞. Then, for every K2

small enough, there exist c0, c1, c2, n1 > 0 such that for any x1, x2 ∈ Rd,∫
Rd

phnh(x1, y)∧phnh(x2, y) dy ≥ c0(1−c1(|x2−x1|+|x1−x2|2)−c2n−1/3), (11)

provided that n ≥ n1. All these constants c0, c1, c2 and n1 here depend only
on the values C1, C2, C2, C3, C4, n0, and on the set U from the assumptions
(A1)–(A4).

Corollary 1 Under the assumptions of the Theorem 2, for any T > 0 there
exists h0 > 0 such that the local Markov–Dobrushin’s condition (4) holds true.

Remark. Notice that without conditions that provide uniform recurrence
we do not claim that the inequality (4) is uniform with respect to T, nor,
say, with respect to T ≥ C for any C > 0, although the latter may be proved
under uniform recurrence and certain mild additional assumptions.
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Applications

The first application relates to mixing bound under additional assumptions
on recurrence and moments. Some examples shall be found below; how-
ever, we emphasize that it is the Theorem 2 about verifying local Markov–
Dobrushin’s condition that is the main result of the paper. Let us also stress
out that the assumptions used for establishing the condition (4) are prac-
tically not related to recurrence assumptions. Further applications could
be limit theorems, cf. [5]. The Theorem 3 may also be useful in filtering
problems, cf. [6].

Let us remind the definition of the β-mixing coefficient for the process Xt

in continuous time,

βt,x = sup
s≥0

Ex var
FX
≥t+s

(
Px(B | FX≤s)− Px(B)

)
,

where FXI = σ{Xs : s ∈ I} and Ex is expectation given the starting point x,
and var is the total variation distance between measures. In the same form
the definition above is applied to the discrete version Xh of the process;
in such a case notation βht,x will be used with t = nh, n = 0, 1, 2, . . . Let
βt,x ≡ β0

t,x.
Let us remind for better comparison some convergence and mixing bounds

established earlier for discrete and continuous time in earlier papers by the
authors. Our next aim will be to give similar bounds uniform with respect
to h when h is small enough. In the next Proposition, notation 〈 〉 stands
for the standard inner product in Rd. The value of h in this Proposition is
fixed, unlike in all previous and next results of the paper.

Proposition 1 ([8, 20, 22]) Assume that the (discrete) assumption (4)
holds true and there exist p ∈ [0, 1] and r > 0 such that for all x large
enough

〈F (x), x/|x|〉 ≤ −r/|x|p, 0 ≤ p ≤ 1, r > 0.

Then, for each h ≥ 0, in each of the three cases below, the distributions
µht,x = L(Xh

nh | Xh
0 = x) converge to a unique invariant measure µhinv in the

topology of the total variation norm as t → ∞; the variable t takes values
nh, n = 0, 1, . . . Moreover, the following bounds hold true, with the same
convention about time t:
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1. If p = 0 and there exists ε > 0 such that E exp(ε|ξ1|) < ∞, then for
each c1 > 0 small enough there exist c0, c2 > 0 such that

var(µht,x − µhinv) + βht,x ≤ c0 exp{c1|x| − c2t}.

2. If 0 < p < 1 and there exist α ≥ 1− p and K > 0 such that for every
0 ≤ κ < K the following moment is finite, E exp(κ|ξ1|α) < ∞, then
for any c1 > 0 small enough there exist c0, c2 > 0 such that

var(µht,x − µhinv) + βht,x ≤ c0 exp{c1|x|1−p − c2t
1−p
1+p}.

3. If p = 1, m > 4, E|ξ1|m < ∞ and r > rm := m−1
2

E|ξ1|2, then there
exists c0 > 0 such that for any 0 < k < m/2,

var(µht,x − µhinv) + βht,x ≤ c0(1 + |x|m)(1 + t)−k.

Remind that a similar result holds true for a “limiting” process in continuous
time, with h = 0, see [20, 22]. Let us underline that, generally speaking, all
constants in the Proposition 1 may depend on h, while our primary goal in
this paper is to obtain certain bounds with no dependence of this sort.

For the next application let us remind some recurrence assertions uniform
with respect to h small enough. Let

τ := inf(t ≥ 0 : |Xh
t | ≤ R).

Lemma 1 Let
〈F (x), x〉 ≤ −r|x|1−p, |x| > R0, (12)

with some p ∈ [0, 1]. Then the following estimates hold true.
1◦. If p = 0 and there exists K > 0 such that E exp(κ|ξ1|) < ∞ for any

0 < κ < K, then for every 0 < κ < K there exist h0 > 0 and C > 0 such
that

sup
h≤h0

sup
t≥0

Ex exp(κ|Xh
t |) ≤ C exp(κ|x|) <∞,

and for any R large enough and α > 0 small enough,

sup
h≤h0

Ex exp(ατ) ≤ C exp(κ|x|).
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2◦. If 0 < p < 1 and E exp{κ|ξ1|α} <∞ with some (0 < α ≤ 1− p and
any 0 < κ < K, then there exist h0 > 0 and C > 0 such that

sup
h≤h0

sup
t≥0

Ex exp(κ|Xh
t |α)1(t ≤ τ) ≤ C exp(κ|x|α),

and for any R large enough and every 0 < δ < α/(1 + p),

sup
h≤h0

Ex exp(τ δ) ≤ C exp(κ|x|α).

3◦. If p = 1, E|ξ1|m < ∞, m > 4, and r > m−1
2

E|ξ1|2, then there exist
C > 0 and h0 > 0 such that for every R large enough,

sup
h≤h0

sup
t≥0

Ex|Xh
t |m1(t ≤ τ) ≤ C(1 + |x|m),

and for every k < m/2,

sup
h≤h0

Exτ
k+1 ≤ C(1 + |x|m).

The condition with the inequality 0 < κ < K with some K > 0 appeared
in [10]. The Lemma 1 follows straight away from the auxiliary result in [10]
and [22] and an observation that those estimates – see [10, Lemmae 3, 5, 7]
and [22, Theorem 3, Lemma 1] – are uniform with respect to h ≤ h0. Notice
that to verify local Markov–Dobrushin’s condition, in [10] certain assump-
tions have been assumed on regularity of coefficients. The assumptions from
the Lemma 1 practically do not require any regularity. A “weakened” con-
dition with an indicator function 1(t ≤ τ) in 2◦ and 3◦ is nearly forced: this
condition is also sufficient for establishing rate of convergence (see [22]), and
at the same time under 3◦ its verification is much easier than without such
indicator.

Now let us apply the above results from the Theorem 2 and Lemma 1 to
mixing and convergence bounds for our approximation scheme uniform with
respect to small h.

Theorem 3 Let the family of processes (Xh
nh) satisfy (2). Suppose that

the function F is bounded, there exist R0 > 0, 0 ≤ p ≤ 1 and r > 0 such that

〈F (x), x〉 ≤ −r|x|1−p, |x| > R0,

and the sequence of i.i.d. random variables (ξn) satisfy the assumptions of
the Theorem 2. Then, in each of the cases 1–3 below,
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(a) the family of processes (Xh
nh) satisfies the local Markov–Dobrushin con-

dition (4) with some h0 > 0;

(b) for each 0 < h ≤ h0 with h0 small enough, there exists a unique in-
variant measure µhinv; the measures may be different for different values
of h but all constants and functions in the following estimates can be
chosen uniformly in h ≤ h0;

(c) for every 0 < h ≤ h0, the marginal distributions µt,x = µhnh,x = L(Xh
nh |

Xh
0 = x) converge to the invariant measure µhinv at some specific rate

on the scale of t, and β-mixing holds with the same rate, namely:

1. If p = 0 and E exp{κ|ξ1|} <∞, 0 < κ < K, then

var(µht,x − µhinv) + βht,x ≤ C(x) exp{−c(1 + t)},

with some c > 0 and C(x) = C exp(ε|x|), with some ε > 0.

2. If 0 < p < 1 and E exp{κ|ξ1|α} < ∞ holds with 0 < α ≤ 1 − p and
0 < κ < K, then

var(µht,x − µhinv) + βht,x ≤ C(x) exp{−c(1 + t)δ},

with any 0 < δ < α
1+p

and some constant c > 0 and a positive function

C(x) depending on δ.

3. If p = 1 and E|ξ1|m <∞, m > 4, and r > m−1
2

E|ξ1|2, then

var(µht,x − µhinv) + βht,x ≤ C(1 + |x|m)(1 + t)−k,

where C > 0 and any k < m
2

can be used.

Remark 1 Notice that integration in the condition (4) is over the whole
space Rd, while in earlier works [20, 22, 8] such integration was over the
set B, i.e.,

inf
0<h≤h0

inf
x,x′∈B

∫
B

phnh(x, y) ∧ phnh(x′, y) dy > 0.

This difference is not significant and does not affect the proof of the Propo-
sition 1 nor of the Theorem 3, given the moment assumptions. In fact, in all
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papers cited above, the set of integration could have been replaced by some
other set B′, bounded or not,

inf
0<h≤h0

inf
x,x′∈B

∫
B′
phnh(x, y) ∧ phnh(x′, y) dy > 0.

At the same time, for B = BR ≡ (x : |x| ≤ R) the latter inequality with
B′ = BR′ and some appropriate R′ < ∞ follows from (4) by virtue of the
assumptions (A1) and (A3). It could be said that it is entirely a convenience
of the calculus that determines the choice of the domain of integration in
local Markov–Dobrushin’s condition.

3 Auxiliary lemmae

Let p(1) and p(2) be two densities. The statements of the Theorems 1 and 2
deal with lower estimates of integrals like

∫
p(1)(y) ∧ p(2)(y) dy. We will also

work with a “discrete” analogue of this “integral value”. Let P (1) and P (2) be
two probability measures and (Aj) any finite or countable family of disjoint
sets, Ai ∩ Aj = ∅, i 6= j. The “discrete” analogue of the integral above is
defined as

∑
j P

(1)(Aj)∧P (2)(Aj). In the Lemmae 2 and 3 we establish lower
estimates of the “integral value” via the “discrete” one and vice versa.

Lemma 2 Let P (1), P (2) and Q be three probability measures on Rd, q(x)
the density of Q. Then the convolutions P (1) ∗Q and P (2) ∗Q have densities
p(1) and p(2), and for every finite or countable family (Aj) of disjoint sets,∫

Rd

p(1)(y) ∧ p(2)(y) dy ≥
∑
j

(
P (1)(Aj) ∧ P (2)(Aj)

)∫
Rd

inf
x∈Aj

q(y − x) dy.

Proof Since p(i)(y) =
∫
Rd q(y − x)P (i)(dx) and∫

Aj

q(y − x)P (i)(dx) ≥ P (i)(Aj) inf
x∈Aj

q(y − x),

then∫
Rd

p(1)(y) ∧ p(2)(y) dy
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≥
∫
Rd

[∑
j

P (1)(Aj) inf
x∈Aj

q(y − x)

]
∧

[∑
j

P (2)(Aj) inf
x∈Aj

q(y − x)

]
dy

≥
∫
Rd

∑
j

(P (1)(Aj) ∧ P (2)(Aj)) inf
x∈Aj

q(y − x) dy

=
∑
j

(
P (1)(Aj) ∧ P (2)(Aj)

)∫
Rd

inf
x∈Aj

q(y − x) dy. •

Lemma 3 Let Z(1) and Z(2) be two d-dimensional random variables with
densities p(1) and p(2), Y (1) and Y (2) two d-dimensional bounded random vari-
ables, i.e. P(|Y (i)| < m/2) = 1 for some m > 0 and i = 1, 2. Denote by P (1)

and P (2) the distributions of Z(1) + Y (1) and Z(2) + Y (2) respectively. Then
for every positive integer k there exists a countable family (Aj) of disjoint

sets with diameters at most km
√
d such that

∑
j

P (1)(Aj) ∧ P (2)(Aj) ≥
(

1− 1

k

)d ∫
Rd

p(1)(y) ∧ p(2)(y) dy.

Proof Firstly, we prove the lemma for the case d = 1 for the sake of
simplicity and in order to present the idea. Consider open intervals

Ii = {x ∈ R : im < x < (i+ 1)m}, i ∈ Z,

and define k sets,

Bl =
⋃
j∈Z

Ijk+l, l ∈ {0, 1, . . . , k − 1}

as it is shown on the following picture for k = 3.

�� �� �� ���� �� �� �� ⋃
Aj

⋃
Cj

B0 B0 B0B1 B1B2 B2 B2
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The sets are disjoint and cover R up to a set of zero Lebesgue measure, so∫
R
p(1)(y) ∧ p(2)(y) dy =

k−1∑
l=0

∫
Bl

p(1)(y) ∧ p(2)(y) dy.

Find an index l∗ such that∫
Bl∗

p(1)(y) ∧ p(2)(y) dy ≤ 1

k

∫
R
p(1)(y) ∧ p(2)(y) dy.

The set R \Bl∗ is a countable union of closed intervals

Cj = {x ∈ R : (jk + l∗ + 1)m ≤ x ≤ ((j + 1)k + l∗)m}, j ∈ Z.

On the picture l∗ = 1. Now consider sets Aj constructed by “expanding” the
sets Cj,

Aj =
{
x ∈ R : −m

2
+ (jk+ l∗+ 1)m < x < ((j+ 1)k+ l∗)m+

m

2

}
, j ∈ Z.

Since |Y (1)| < m/2 and |Y (2)| < m/2 with probability 1, then {Z(i) ∈ Cj} ⊂
{Z(i) + Y (i) ∈ Aj} and

P (1)(Aj) ∧ P (2)(Aj) ≥
∫
Cj

p(1)(y) ∧ p(2)(y) dy.

Therefore,∑
j

P (1)(Aj) ∧ P (2)(Aj) ≥
∫
R\Bl∗

p(1)(y) ∧ p(2)(y) dy

≥
(

1− 1

k

)∫
R
p(1)(y) ∧ p(2)(y) dy.

Consider the case d > 1. Let us start with open sets

I1i = {(x1, . . . , xd) ∈ Rd : im < x1 < (i+ 1)m}, i ∈ Z,

define B1
l =

⋃
j∈Z I

1
jk+l, l ∈ {0, 1, . . . , k − 1}, and fix such index l∗1 that∫

Rd\B1
l∗1

p(1)(y) ∧ p(2)(y) dy ≥
(

1− 1

k

)∫
Rd

p(1)(y) ∧ p(2)(y) dy.
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Next, consider the sets

I2i = {(x1, . . . , xd) ∈ Rd \Bl∗1
: im < x2 < (i+ 1)m}, i ∈ Z,

define B2
l =

⋃
j∈Z I

2
jk+l, l ∈ {0, 1, . . . , k − 1}, and fix such index l∗2 that∫

Rd\B1
l∗1
\B2

l∗2

p(1)(y) ∧ p(2)(y) dy ≥
(

1− 1

k

)2 ∫
Rd

p(1)(y) ∧ p(2)(y) dy.

Repeat this procedure in the same way d−2 times and get a countable union
of d-dimensional cubes,

Cj1,...,jd = {x ∈ Rd : (j1k + l∗1)m ≤ x1 ≤ ((j1 + 1)k + l∗1)m,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(jdk + l∗d)m ≤ xd ≤ ((jd + 1)k + l∗d)m}, j1, . . . , jd ∈ Z.

The sets Aj1,...,jd are constructed by “expanding” each cube Cj1,...,jd as it was
done for d = 1, and the rest of the proof follows the same lines as well. •

Lemma 4 If q(x) =
1

σ
√

2π
exp{− x2

2σ2
} and A is any set of diameter at

most 2a, then∫
R

inf
x∈A

q(y − x) dy ≥ 1− 2Φ0(a/σ) ≥ 1− ca/σ, (13)

where Φ0(x) =
1√
2π

∫ x

0

e−y
2/2 dy and c =

√
2/π. •

Proof We have,∫
R

inf
x∈A

q(y − x) dy ≥
∫
R

inf
|x|≤a

q(y − x) dy = 2

∫ ∞
0

q(y + a) dy

= 2

∫ ∞
a

q(y) dy = 1− 2Φ0(a/σ).

The second inequality follows due to the estimate Φ0(x) ≤ x√
2π

. •
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Lemma 5 Let (ξn) be a sequence of d-dimensional i.i.d. random variables
such that Eξn = 0, E|ξn|3 ≤ C < ∞, and such that normalized sums
sn = n−1/2

∑n
j=1 ξj have densities qn(x) bounded for some n = n1, and char-

acteristic functions fn(t). Then there exist positive constants c1, c2, and an
integer n0 such that∫

inf
|x|≤a

qn(y − x) dy ≥ 1− c1(a+ a2/2)− c2n−1/3, n > n0. (14)

Proof Everywhere in the proof we use the symbol c as a generic posi-
tive constant which does not depend on n nor a, and may change from one
occurrence to another.

Notice that due to the assumptions, there exists n1 such that for every
n > n1, the function fn ∈ L1(Rd) and the inversion formula

qn(x) =
1

(2π)d

∫
Rd

fn(t)e−i〈t,x〉 dt

holds true (see [2, Theorem 19.1]).
Denote by ϕ(x) the density and by g(t) the characteristic function of

the normal distribution with zero mean and covariance matrix σσ∗,

ϕ(x) = (2π det(σσ∗))−1/2 exp{−|σ−1x|2/2},
g(t) = exp{−|σ t|2/2}.

For each N > 0 we get,∫
inf
|x|≤a

qn(y − x) dy ≥
∫
|y|≤N

inf
|x|≤a

qn(y − x) dy

≥
∫
|y|≤N

inf
|x|≤a

{ 1

(2π)d

∫
e−i〈t,y−x〉(fn(t)− g(t)) dt

}
dy

+

∫
|y|≤N

inf
|x|≤a

{ 1

(2π)d

∫
e−i〈t,y−x〉g(t) dt

}
dy

≥ −
∫
|y|≤N

{ 1

(2π)d

∫
|fn(t)− g(t)| dt

}
dy

+

∫
|y|≤N

inf
|x|≤a

ϕ(y − x) dy

≥ −cNd

∫
|fn(t)− g(t)| dt

+

∫
|y|≤N

inf
|x|≤a

ϕ(y − x) dy. (15)
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To estimate the first term in the right hand side of (15) we apply a
standard approach for establishing local limit theorems (see, e.g., [5]). Let
us fix a small ε > 0, and consider the following four integrals,

I1 =

∫
|t|≤n1/6

|fn(t)− g(t)| dt,

I2 =

∫
n1/6<|t|≤ε

√
n

|fn(t)| dt,

I3 =

∫
|t|>ε

√
n

|fn(t)| dt,

I4 =

∫
|t|>n1/6

|g(t)| dt.

Via Taylor’s expansion for the function f1(t/
√
n) in the region |t|/

√
n ≤ ε,

we obtain,

fn(t) = fn1 (t/
√
n) =

(
1− 〈t, σσ

∗t〉
2n

+O

(
|t|3

n3/2

))n
= exp

{
−〈t, σσ

∗t〉
2

+O

(
|t|3

n1/2

)}
= g(t) exp

{
O

(
|t|3

n1/2

)}
, n→∞.

If |z| ≤M <∞, then |ez−1| ≤ c|z| with some 0 < c <∞. So, for |t|3 ≤ n1/2

we have the estimate,

I1 ≤
∫
|t|≤n1/6

g(t)
c|t|3

n1/2
dt ≤ c

n1/2

∫
Rd

|t|3g(t) dt ≤ c

n1/2
. (16)

For n1/6 < |t| ≤ ε
√
n we get,

|fn(t)| ≤ exp

{
−〈t, σσ

∗t〉+ εO(|t|2)
2

}
≤ exp

{
−〈t, σσ

∗t〉
4

}
,

provided ε > 0 is small enough. Here and later the following elementary
inequality is used: for any k > 0 and z0 > 0 there exists K > 0 such that for
all z ≥ z0 ∫

|t|≥z
exp{−k|t|2} dt ≤ exp{−Kz2}. (17)
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Therefore, by (17)

I2 ≤
∫
|t|>n1/6

exp

{
−〈t, σσ

∗t〉
4

}
dt ≤ exp{−cn1/3}. (18)

The random variables (ξn) possess a density, therefore,

sup
|t|≥ε
|f1(t)| < 1, (19)

and

I3 = nd/2
∫
|t|≥ε
|f1(t)|n dt ≤ nd/2 sup

|t|≥ε
|f1(t)|n−n0

∫
Rd

|fn0(t)| dt ≤ ce−cn.

However, here the right hand side may depend on the distribution of ξi, just
because the inequality (19) does depend on it, while our aim is a bound
uniform over the whole class of distributions described in the assumptions.
Hence, we will used the improved exponential bounds by R. Lapinskas [13]
and T. Shervashidze [17], which, in turn, extend the one-dimensional estimate
due to V. A. Statulevicius [18] and which do not depend on the distribution
mentioned above. For the reader’s convenience we state here the inequalities
from [13, 17] for the characteristic function fn1(t), t ∈ Rd, where the value
n1 is chosen so that the density pn1 is bounded by some constant C4 (see
(A4)). We use a notation s := E|Sm0 − ESm0|2. Then, the inequality from
[13] reads,

|fn1(t)| ≤ 1− |t|
2

96
[(4d)d−1s2(d−1)(

√
ds|t|+ π)2A2]−1, (20)

while the inequality (1.2) from [17] reads,

|fn1(t)| ≤ 1− |t|2[24× 22dV 2
d−1A

2(2s|t|+ π)2s2(d−1)]−1, (21)

where Vd−1 := π(d−1)/2Γ(1 + (d − 1)/2). As noticed in [17], the additional
assumption of non-degeneracy of the covariance matrix in [13] can be dropped
because it is always satisfied.

From either of (21) or (20), we get,

sup
|t|≥ε
|fn1(t)| := qε < 1, (22)

18



where the value qε depends only on s and C4.
We are now in a position to finish the proof of the Lemma. From (A4)

and the Plancherel theorem we get,∫
Rd

|fn1(t)|2 dt = (2π)d
∫
Rd

|qn1(x)|2 dx ≤ (2π)dC4. (23)

From (22) and (23), for n ≥ 3n1, we estimate,

I3 = nd/2
∫
|t|>ε
|fn1

1 (t)|[n/n1]−2|f 2n1
1 (t)| dt

≤
(

sup
|t|>ε
|fn1

1 (t)|
)[n/n1]−2

∫
|t|>ε
|fn1(t)|2 dt ≤ (2π)dC4e

−cn, (24)

where [·] stands for the integer part.

The integral I4 is estimated in the same way as I2 (see (18)),

I4 ≤ exp{−cn1/3}. (25)

The estimates (16), (18)–(25) altogether imply∫
Rd

|fn(t)− g(t)| dt ≤ c

n1/2
. (26)

Let us estimate the last term in the right hand side of (15). For the
standard Gaussian distribution,

inf
|x|≤a

ϕ(y − x) ≥ ϕ(y)e−ca|y|−ca
2/2.

Using the inequality e−z − 1 ≥ −z, z ∈ R, and the inequality (17), we get,∫
|y|≤N

inf
|x|≤a

ϕ(y − x) dy

≥
∫
|y|≤N

ϕ(y)e−ca|y|−ca
2/2 dy

= 1−
∫
|y|>N

ϕ(y) dy +

∫
|y|≤N

ϕ(y)(e−ca|y|−ca
2/2 − 1) dy

≥ 1− exp{−cN2} − ca
∫
Rd

(|y|+ a/2)ϕ(y) dy.

19



This estimate together with (26) and (15) shows that∫
Rd

inf
|x|≤a

qn(y − x) dy ≥ 1− c1(a+ a2/2)− exp{−cN2} − cNdn−1/2.

Taking ε > 0 small enough and N = ε
√

lnn, we arrive at (14). •

Lemma 6 Let b ≥ 2 and n > b+ 1 are two integers. Let

r = max{k ∈ Z : (bk − 1)/(b− 1) ≤ n},
kj = 1 + [(5/4)j], j = 1, . . . , r,

zj = br−j, j = 2, . . . , r,

z1 = n− z2 − . . .− zr.

Then

r∑
j=1

zj = n, (27)

r−1∑
j=1

kjzj√
zj+1

≤ c′
√
n, (28)

r−1∑
j=1

k2j z
2
j

zj+1

≤ c′′n, (29)

r−1∑
j=1

1

kj
≤ 4, (30)

with some positive constants c′, c′′ depending only on the value of b.

Proof Since

r∑
j=2

br−j = 1 + b+ . . .+ br−2 =
br−1 − 1

b− 1
< n,

relation (27) follows immediately by definitions of r and z1. Inequality (30)
holds due to the estimate,

r−1∑
j=1

1

kj
≤

∞∑
j=1

(
4

5

)j
= 4.
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For j ≥ 2,

kjzj√
zj+1

≤
2 ·
(
5
4

)j · br−j
b(r−j−1)/2

= 2
√
b · br/2 ·

(
5

4
√
b

)j
. (31)

If j = 1, then
k1z1√
z2
≤ 2n√

br−2
=

2bn

br/2
. (32)

By definition of r √
n/2 ≤ br/2 ≤

√
bn, (33)

therefore

r−1∑
j=1

kjzj√
zj+1

≤ 2bn√
n/2

+ 2
√
b ·
√
bn

∞∑
j=2

(
5

4
√
b

)j
=

(
2
√

2b+
25
√
b

8
√
b− 10

)
√
n.

The inequality (28) is proved. Similarly, the estimate

r−1∑
j=1

k2j z
2
j

zj+1

≤ 8b2n+ 4b2n
∞∑
j=2

(
25

16b

)j
=

(
8b2 +

2500b

256b− 400

)
n

proves the inequality (29). •

4 Proof of Theorem 1

Proof The idea is based on the following simple observation: one term
ξn
√
h in (2) is more influential than several terms like F (Xh

nh)h as long as
the value of h is small enough, because of the difference in scales (h = o(

√
h)

as h→ 0). The sums ξk+1

√
h + . . . + ξk+l

√
h have Gaussian densities which

are easy to calculate. Adding “drift terms” F (Xh
(k+1)h)h+ . . .+ F (Xh

(k+l)h)h
does not change the distributions too much.

Let b = 2 and n > 3 be arbitrary. By the Lemma 6 compute integers
k1, . . . , kr and z1, . . . , zr. Consider r − 1 random variables

U1 =

z1∑
i=0

F (Xh
ih)h,
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U2 =

z1+z2∑
i=z1+1

F (Xh
ih)h,

. . . . . . . . . . . . . . . . . . . . .

Ur−1 =

z1+...+zr−1∑
i=z1+...+zr−2+1

F (Xh
ih)h,

and r random variables

V1 =

z1∑
i=1

ξi
√
h,

V2 =

z1+z2∑
i=z1+1

ξi
√
h,

. . . . . . . . . . . . . . . . . . . . .

Vr =

z1+...+zr∑
i=z1+...+zr−1+1

ξi
√
h = ξn

√
h.

It follows from (2) that

Xh
nh = x+ V1 + U1 + V2 + . . .+ Vr−1 + Ur−1 + Vr,

where |Uj| ≤ C1(zj + 1)h < 2C1zjh with probability 1, and Vj ∼ N (0, zjh).
In the Lemma 2 take P (1) = δx, P

(2) = δx′ , where δx denotes the distri-
bution with unit mass concentrated at point x, A1 the closed interval with
endpoints x and x′, and let Q be the distribution of V1 with Gaussian den-
sity q. By the virtue of the Lemma 4 where 2a = |x − x′| and σ2 = z1h we
get the estimate∫

R
p(1)(y) ∧ p(2)(y) dy ≥

∫
R

inf
x∈A1

q(y − x) dy ≥ 1− 2Φ0

(
|x− x′|
2
√
z1h

)
,

where p(1) and p(2) are the densities of x+ V1 and x′ + V1.
In the Lemma 3 take Z(1) = x + V1, Z

(2) = x′ + V1, Y
(1) = Y (2) = U1,

m/2 = 2C1z1h and k = k1. Let us construct a family (Aj) of sets with sizes
not more than k1m such that∑

j

P (1)(Aj) ∧ P (2)(Aj) ≥
(

1− 1

k1

)∫
R
p(1)(y) ∧ p(2)(y) dy

≥
(

1− 1

k1

)(
1− 2Φ0

(
|x− x′|
2
√
z1h

))
, (34)
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where P (1) and P (2) stand for the distributions of x+V1+U1 and x′+V1+U1.
We apply the Lemma 2 with these P (1), P (2), the family (Aj) of disjoint

sets and Q and q standing for the distribution and the density of V2. Together
with (34) and the Lemma 4 where 2a = k1m = 4C1hk1z1 and σ2 = z2h we
get,∫

R
p(1)(y) ∧ p(2)(y) dy ≥

∑
j

(
P (1)(Aj) ∧ P (2)(Aj)

) ∫
R

inf
x∈Aj

q(y − x) dy

≥

(
1− 2Φ0

(
2C1

√
h · k1z1√
z2

))

×
(

1− 1

k1

)(
1− 2Φ0

(
|x− x′|
2
√
z1h

))
,

where p(1) and p(2) denote the densities of x+V1+U1+V2 and x′+V1+U1+V2.
In the Lemma 3 take Z(1) = x + V1 + U1 + V2, Z

(2) = x′ + V1 + U1 + V2,
Y (1) = Y (2) = U2, m/2 = 2C1z2h and k = k2. Construct a new family (Aj)
of sets with sizes not more than k2m such that∑

j

P (1)(Aj) ∧ P (2)(Aj) ≥
(

1− 1

k2

)∫
R
p(1)(y) ∧ p(2)(y) dy

≥
(

1− 1

k1

)(
1− 2Φ0

(
|x− x′|
2
√
z1h

))
×

(
1− 1

k2

)(
1− 2Φ0

(
2C1

√
h · k1z1√
z2

))
.

Continue these iterative applications of the Lemmae 2, 4 and 3 until the last
summand Vr is added. It results in the inequality,∫

R
p(1)(y) ∧ p(2)(y) dy ≥

r−1∏
j=1

(
1− 2Φ0

(
2C1

√
h · kjzj√

zj+1

)) r−1∏
j=1

(
1− 1

kj

)
×
(

1− 2Φ0

(
|x− x′|
2
√
z1h

))
,

where p(1) and p(2) are the conditional densities of Xh
nh given Xh

0 = x and
Xh

0 = x′ correspondingly, i.e. p(1)(y) = phnh(x, y) and p(2)(y) = phnh(x
′, y).
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The inequality (30) guarantees that the second product is bounded away
from zero. If the value of nh is small enough, the estimate (13) implies that
the first product is bounded from below by

r−1∏
j=1

(
1−

√
2/π · 2C1

√
h · kjzj√

zj+1

)
,

and by inequality (28) this product is bounded away from zero as well. Fi-
nally, it follows from inequality (33) that z1 ≥ n/4 (remind that b = 2),
therefore,∫

R
phnh(x, y) ∧ phnh(x′, y) dy ≥ C

(
1− 2Φ0

(
|x− x′|√

nh

))
, C > 0.

Hence, we get the desired bound. •

5 Proof of Theorem 2

Proof has the same structure as the one of the Theorem 1 except that the
Lemma 5 is used instead of the explicit estimate from the Lemma 4.

Choose an integer b so large that the Lemma 5 is applicable for n ≥ b,
and construct the “blocs” Uj and Vj exactly in the same way as in the proof
of the Theorem 1. Again, we have |Uj| < 2C1zjh, but Vj are not normally
distributed in general.

In the Lemma 2 take P (1) = δx, P
(2) = δx′ , A1 the closed parallelepiped

with the points x and x′ as its opposite vertices and its sides parallel to co-
ordinate system’s axes, and let Q be the distribution of V1 with density q.
Together with the Lemma 5 where 2a = 2a0 = |x− x′|/

√
z1h we get the es-

timate∫
p(1)(y)∧p(2)(y) dy ≥

∫
inf
x∈A1

q(y−x) dy ≥ 1−c1
(
|x− x′|√
z1h

+
|x− x′|2

2z1h

)
− c2

z
1/3
1

,

where p(1) and p(2) are the densities of x+ V1 and x′ + V1.
In the Lemma 3 take Z(1) = x + V1, Z

(2) = x′ + V1, Y
(1) = Y (2) = U1,

m/2 = 2C1z1h and k = k1. Construct a family (Aj) of sets with diameters
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not more than k1m
√
d such that∑

j

P (1)(Aj) ∧ P (2)(Aj) ≥
(

1− 1

k1

)d ∫
p(1)(y) ∧ p(2)(y) dy

≥
(

1− 1

k1

)d(
1− c1

(
|x− x′|√
z1h

+
|x− x′|2

2z1h

)
− c2

z
1/3
1

)
, (35)

where P (1) and P (2) stand for the distributions of x+V1+U1 and x′+V1+U1.
We apply the Lemma 2 with these P (1), P (2), the family (Aj) of dis-

joint sets and Q and q standing for the distribution and the density of V2.
Together with (35) and the Lemma 5 where 2a = 2a1 = k1m

√
d/
√
z2h =

4
√
dC1

√
hk1z1/

√
z2 and a2/2 = 2dC2

1hk
2
1z

2
1/z2, we get,∫

p(1)(y) ∧ p(2)(y) dy ≥
∑
j

(
P (1)(Aj) ∧ P (2)(Aj)

) ∫
inf
x∈Aj

q(y − x) dy

≥

(
1− c1

(
2
√
dC1

√
h
k1z1√
z2

+ 2dC2
1h
k21z

2
1

z2

)
− c2

z
1/3
2

)

×
(

1− 1

k1

)d(
1− c1

(
|x− x′|√
z1h

+
|x− x′|2

2z1h

)
− c2

z
1/3
1

)
,

where p(1) and p(2) denote the densities of x+V1+U1+V2 and x′+V1+U1+V2.
Continue these iterative applications of the Lemmae 2, 5 and 3 until

the summand Ur−1 is added. It results in the inequality,

∑
j

P (1)(Aj) ∧ P (2)(Aj) ≥

(
1− c1

(
|x− x′|√
z1h

+
|x− x′|2

2z1h

)
− c2

z
1/3
1

)

×
r−2∏
j=1

(
1− 2c1

(√
dC1

√
h
kjzj√
zj+1

+ d2C2
1h

k2j z
2
j

zj+1

)
− c2

z
1/3
j+1

)

×
r−1∏
j=1

(
1− 1

kj

)d
,

where P (1) and P (2) are the conditional distributions of Xh
nh−Vr given Xh

0 = x
and Xh

0 = x′ correspondingly, and (Aj) is a countable family of disjoint sets

with diameters at most 2a = 2ar−1 = 4
√
dC1hkr−1zr−1.
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The last step is to add Vr = ξn
√
h. This term has only one summand and

must be treated differently because the Lemma 5 is not applicable here.
Due to the formulae for kj and zj from the Lemma 6, we see that

2ar−1

2
√
zrh

≤ 2
√
dC1 kr−1zr−1

√
h ≤ 4

√
dC1b ·

(
5

4

)r−1√
h

= 5
√
dC1

(
5

4
√
b

)r−2
br/2
√
h = o(1), n→∞,

since 5
4
√
b
< 1, r grows as n increases, and br/2

√
h ≤
√
bnh is bounded due to

the assumptions of the Theorem 2. Therefore, a′ := a/
√
h→ 0, h→ 0, and,

hence, for all n large enough the open set U ≡ Br0(x0) contains some ball of
radius 2a′. Denote U ′ = {x : |x− x0| ≤ r0 − a′}. By change of variables,∫

inf
|x|≤a

qVr(y − x) dy ≥
∫

inf
|x|≤a

h−d/2p

(
y − x√

h

)
dy

≥
∫
U ′

inf
|x′|≤a′

p(z − x′) dz ≥ cU |U ′| ≥ cU |U |/2, h→ 0.

Here qVr denotes the density of the random variable Vr. Denote cU |U |/2 =
CU . Then,∫
phnh(x, y) ∧ phnh(x′, y) dy ≥ CU

(
1− c1

(
|x− x′|√
z1h

+
|x− x′|2

2z1h

)
− c2

z
1/3
1

)

×
r−2∏
j=1

(
1− 2c1

(√
dC1

√
h
kjzj√
zj+1

+ d2C2
1h

k2j z
2
j

zj+1

)
− c2

z
1/3
j+1

)

×
r−1∏
j=1

(
1− 1

kj

)d
. (36)

Inequality (30) implies that

inf
n

r−1∏
j=1

(
1− 1

kj

)d
≥ c > 0.

Due to (28)
r−1∑
j=1

kjzj√
zj+1

√
h ≤ c

√
nh ≤ c

√
T ,
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and
r−1∑
j=1

k2j z
2
j

zj+1

h ≤ c nh ≤ c T,

By definition of zj

r−1∑
j=2

z
−1/3
j ≤

∞∑
k=1

(
b−1/3

)k
=

1

b1/3 − 1
,

which can be made arbitrary small by choosing b large enough. Therefore, if
the value of nh is small enough, then the product

r−2∏
j=1

(
1− 2c1

(√
dC1

√
h
kjzj√
zj+1

+ d2C2
1h

k2j z
2
j

zj+1

)
− c2

z
1/3
j+1

)
is bounded away from zero.

Thus, the two products and the integral term in (36) are bounded away
from zero. Hence, there exist constants c0, c1, c2 > 0 such that∫

phn(x, y) ∧ phn(x′, y) dy ≥ c0

(
1− c1

(
|x− x′|√

T
+
|x− x′|2

2z1h

)
− c2
n1/3

)
.

This implies the desired inequality of the theorem. •

Remark 2 Emphasize that the method of the proof intrinsically suits the
nature of local Markov–Dobrushin’s condition; one might say the proof ex-
ploits the form of this condition itself. If one wished to compare to the “small
sets” condition, it should be noticed that for the global versions of both con-
ditions, the constant provided by Markov–Dobrushin’s condition is always
better, although, possibly in a non-strict sense. Indeed, “minorization” in
the small sets condition,

inf
x
Px(Xnh ∈ dy) ≥ εν(dy)

with some probability measure ν, directly implies

inf
x,x′

∫
Rd

phnh(x, y) ∧ phnh(x′, y) dy = inf
x,x′

∫
Rd

Px(Xh
nh ∈ dy)

ν(dy)
∧ Px′(Xh

nh ∈ dy)

ν(dy)
ν(dy)

≥
∫
Rd

(ε ∧ ε) ν(dy) = ε.
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6 Proof of Theorem 3

Proof follows from the calculus in [8, 22] by virtue of local Markov–
Dobrushin’s condition (4), which is uniform for 0 < h ≤ h0 and for some
T > 0, due to the Theorem 2. •

7 Proof of Corollary 1

Proof 1. Let T0 be small enough (see (38) below). Remind that U is an
open ball with a radius r0 and let

R0 := r0 ∧ (c−11 /4) ∧ (c
−1/2
1 /2), (37)

where c1 is the constant from the inequality (11). Denote by B′ the ball with
radius R0/2 and the same center as U , and let B′′ be a similar ball with the
radius 2R0/3. Let us choose

T0 ≤ R0(‖F‖B + 1)−1/3 =: T̃0. (38)

Let h satisfy the bound h ≤ h0, where h0 is small enough (see (42) below).
Let M0 > 0, and

pB′,T0 := inf
|x|≤M0

P(x+W T0 ∈ B′), (39)

where W is a Brownian motion with a covariance matrix V = cov(ξ), which
is positive definite due to the assumption (A2). Notice that pB′,T0 > 0 (more
than that, see (43) below). We have, due to the Central Limit Theorem,
W h
T0

=⇒ W T0 (weak convergence), where W T0 ∼ N (0, V T0); moreover, the

uniform version of the CLT implies supz∈Rd |P(W h
T0
≤ z) − P(W T0 ≤ z)| →

0, h→ 0. Hence, there exists h0 small enough such that for every |x| ≤M0,

inf
h≤h0

P(x+W h
T0
∈ B′′) ≥ pB′,T0/2 > 0. (40)

Then, because of the choice T0 ≤ T̃0, we have,

inf
|x|≤M0

inf
h≤h0

Px(Xh
T0
∈ B) ≥ pB′,T0/2 > 0. (41)

Now, for T = 2T0, the desired inequality (4) with ρ = c0p
2
B′,T0

/16 follows
from the Markov property, the choice (37) and from the bounds (11) and
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(41), if n ≥ n0, n0 ≥ [(4c2)
3], so that n−1/3 ≤ [(4c2)]

−1. Here c2 is the second
constant from (11). Indeed, if Xh and X̃h are two independent copies of our
Markov approximation of diffusion, then the integral from (4) is estimated
from below as follows,∫

Px(X
h
2T0
∈ dx′) ∧ Px̃(X̃h

2T0
∈ dx′)

≥ Px(X
h
T0
∈ B)Px̃(X̃

h
T0
∈ B) inf

(Xh
T0
,X̃h

T0
)∈B×B

∫
p(Xh

T0
, x′) ∧ p(Xh

T0
, x′) dx′

≥
(pB′,T0

2

)2 c0
4
.

Whence, in particular, it suffices to take

h0 ≤
T0

[(4c2)3]
. (42)

2. Notice that without loss of generality – for T0 small enough – we may
admit that actually

p̂B′,T0 := inf
T0≤t≤2T0

inf
|x|≤M0

P(x+W t ∈ B′) > 0, (43)

and, due to that, also

inf
T0≤t≤2T0

inf
h≤h0

P(x+W h
t ∈ B′′) ≥ p̂B′,T0/2 > 0. (44)

Hence, we may conclude that (4) holds true, in fact, for any T0 ≤ T ≤ 2T0
with ρ = c0p̂

2
B′,T0

/16, again if n−1/3 ≤ [(4c2)]
−1 and under (42).

3. Now for any T ≥ 2T0, define k := [T/T0]. Notice that in this case,

T/T0 − 1 ≤ k ≤ T/T0,

or,
T − T0 ≤ k T0 ≤ T ∼ k T0 ≤ T ≤ (k + 1)T0.

Now the inequality (4) follows from the Markov property and step 2 of this
proof with

ρ =
c0
4

(p̂B′,T̃0/2)2k.

•
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