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Abstract

Many industrial experiments involve restricted rather than complete randomization. This
often leads to the use of split-plot designs, which limit the number of independent settings
of some of the experimental factors. These factors, named whole-plot factors, are often,
in some way, hard to change. The remaining factors, called sub-plot factors, are easier to
change. Their levels are therefore independently reset for every run of the experiment. In
general, model estimation from data from split-plot experiments requires the use of gener-
alized least squares (GLS). However, for some split-plot designs, the ordinary least squares
(OLS) estimator will produce the same factor-e�ect estimates as the GLS estimator. These
designs are called equivalent-estimation split-plot designs and o�er the advantage that esti-
mation of the factor e�ects does not require estimation of the variance components in the
split-plot model. While many of the equivalent-estimation second-order response surface
designs presented in the literature do not perform well in terms of estimation e�ciency (as
measured by the D-optimality criterion), Macharia and Goos (2010) showed that, in many
instances, it is possible to generate second-order equivalent-estimation split-plot designs that
are highly e�cient and, hence, provide precise factor-e�ect estimates. In the present paper,
we present an algorithm that allow us to (i) identify equivalent-estimation designs for sce-
narios where Macharia and Goos (2010) did not �nd equivalent-estimation designs, and (ii)
�nd equivalent-estimation designs that outperform those of Macharia and Goos (2010) in
terms of the D-optimality criterion.

Key Words: coordinate-exchange algorithm, D-optimality, equivalent estimation, generalized
least squares, ordinary least squares, split-plot design.
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1 Introduction

It is often impossible to conduct industrial experiments using a completely randomized design,
which requires that the levels of the experimental factors are set independently for every run. A
commonly used alternative to the completely randomized design is a split-plot design, in which
only the levels of a subset of experimental factors are reset independently for every run. The
levels of the remaining factors are set only a limited number of times to save time or costs. The
former factors are usually named the sub-plot factors, while the latter factors are referred to as
whole-plot factors. Oftentimes, the whole-plot factors' levels are, in some sense, hard to change.
Some of the typical scenarios in which split-plot designs are used are listed in Goos and Jones
(2011):

1. When several combinations of some experimental factors' levels are tested while some other
factors' levels are not reset, the resulting design is a split-plot design. This happens, for
example, when experimenters try out di�erent combinations during one run of an oven.
The oven temperature is not reset for all these observations.

2. In two-stage experiments, some of the factors may be applied in the �rst stage, whereas
others are applied in the second stage. In those cases, the �rst stage of the experiment
involves the production of various batches of experimental material using di�erent com-
binations of levels of the �rst-stage experimental factors. These batches are then split in
sub-batches after the �rst stage, each of which undergoes a di�erent treatment (dictated
by the levels of the second-stage factors) at each run in the second stage.

3. Experiments for simultaneously investigating the impact of ingredients of a mixture and
of process factors, are frequently conducted using a split-plot design. This can happen in
two ways. First, several batches can be prepared that undergo di�erent process conditions.
Second, processing conditions can be held �xed while consecutively trying out di�erent
mixtures.

4. When runs of an experimental design are performed one after another, experimenters are
often reluctant to change the levels of one or more (hard-to-change) factors because this is
impractical, time-consuming or expensive.

5. A special case of an experiment involving hard-to-change factors is a prototype experiment,
in which the levels of some of the factors de�ne a prototype, whereas the levels of other
factors determine operating conditions under which the prototype is tested. As changing
the levels of a prototype factor involves assembling a new prototype, these levels are held
constant for several observations under di�erent operating conditions.

6. Robust product experiments often involve crossed arrays, in which case they are frequently
run as split-plot designs. This is because the environmental factors (also named noise
factors) are usually hard to control and changing their levels is cumbersome.
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The design and analysis of split-plot industrial experiments has received considerable attention
in the literature in recent years. Letsinger, Myers and Lentner (1996) discussed response surface
methods for split-plot designs focusing on the analysis of these designs. They recommended the
use of generalized least squares (GLS) and restricted maximum likelihood (REML) for estimating
split-plot response surface models. Gilmour and Goos (2009) propose an alternative, Bayesian
strategy for split-plot data analysis, which is especially useful when the number of independent
settings of the whole-plot factors is small.

Huang, Chen and Voelkel (1998), Bingham and Sitter (1999) and Bingham, Schoen and Sitter
(2004) described the construction of two-level fractional factorial split-plot designs using the
aberration criterion. Multistratum response surface designs, of which split-plot designs are spe-
cial cases, are discussed in Trinca and Gilmour (2001). They present a sequential method for
constructing these designs, from stratum to stratum and starting in the highest stratum. Kulahci
and Bisgaard (2005) illustrated how split-plot designs can be constructed from Plackett-Burman
designs. Goos and Vandebroek (2001, 2003, 2004) and Jones and Goos (2007) propose exchange
algorithms for constructing D-optimal split-plot designs. Follow-up split-plot designs are dis-
cussed by Almimi, Kulahci and Montgomery (2008) and McLeod and Brewster (2008). A review
of the recent developments on the design of split-plot experiments can be found in Jones and
Nachtsheim (2009).

A subject that has received substantial attention in the recent split-plot design literature is the
equivalence of the ordinary least squares (OLS) and GLS estimators, following the work of Vin-
ing, Kowalski and Montgomery (2005). This is because split-plot designs for which OLS and
GLS produce the same factor-e�ect estimates o�er the advantage that the estimates of the fac-
tor e�ects do not depend on the estimates of the variance components in the split-plot model.
Vining, Kowalski and Montgomery (2005) discussed split-plot arrangements of central compos-
ite and Box-Behnken designs for which the OLS and GLS estimators of the model parameters
are equivalent and outlined some general conditions for this property to be ful�lled when cen-
tral composite or Box-Behnken designs are used. These types of designs are nowadays called
equivalent-estimation split-plot designs. Parker, Kowalski and Vining (2006, 2007a,b) describe
some follow-up work on the construction of equivalent-estimation designs from central composite
and Box-Behnken designs.

Goos (2006) compared the e�ciency of D-optimal split-plot designs with that of equivalent-
estimation designs and reported various instances where the equivalent-estimation designs pro-
posed in the literature were highly ine�cient. At the same time, he discovered various D-optimal
designs for which OLS and GLS are equivalent. These results inspired Macharia and Goos (2010)
to carry out a systematic study of the relationship between D-optimality and the equivalent-
estimation property. They discovered many scenarios for which D-optimal designs exist for which
OLS and GLS produce the same estimates and for which highly D-e�cient equivalent-estimation
designs can be found.

In this paper, we present two new algorithms to �nd D-optimal and D-e�cient equivalent-
estimation designs. Using these algorithms, we are able to �ll the gaps that were left by Macharia
and Goos (2010). First, we were able to identify equivalent-estimation designs for cases where
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Macharia and Goos (2010) failed to �nd such designs. Second, in several scenarios, we obtained
better equivalent-estimation designs than did Macharia and Goos (2010).

In the next sections, we introduce the split-plot model, specify the condition for the equivalence
of the OLS and GLS estimator, and de�ne the D-optimality criterion. Next, we describe our
algorithm for generating equivalent-estimation designs and discuss several interesting designs
produced by them. Finally, we list all the scenarios for which we found D-e�cient or D-optimal
equivalent-estimation designs.

2 The Split-Plot Design Model

A key feature of split-plot designs is that their runs appear in groups named whole plots. Within
every group, the levels of the whole-plot factors do not change. Every whole plot involves a
certain number of runs, often named sub-plots, for each of which the levels of the sub-plot
factors are reset independently. The general split-plot design model for an experiment with n
runs, b whole plots and k = n/b runs or subplots per whole plot is given by

Y = Xβ + Zγ + ε, (1)

where Y is an n×1 vector of responses, X is an n×p model matrix containing the settings of the
whole-plot factors, the sub-plot factors and their model expansions, β is a p-dimensional vector
containing the p �xed e�ects in the model and Z is an n× b matrix of zeros and ones assigning
the n runs to the b whole plots (i.e. the (i, j)th element of Z is one if the ith run belongs to
the jth whole plot and zero otherwise). The b-dimensional vector γ contains the random e�ects
of the b whole plots. Finally, ε is the n-dimensional vector of the random errors. The random
vectors γ and ε are assumed to be uncorrelated, with mean zero and covariance matrix σ2γIb and
σ2ε In respectively, where Ib and In are identity matrices of size b and n. As a result, the assumed
covariance matrix for the response vector Y is

V = σ2ε In + σ2γZZ
′
. (2)

If the entries of the response vector y and the model matrix X are arranged per whole plot, then
this covariance matrix can be written as

V = σ2ε In + σ2γD, (3)

where

D =


1k1

′
k 0k . . . 0k

0k 1k1
′
k . . . 0k

...
...

. . .
...

0k 0k . . . 1k1
′
k

 .
Here, 1k is an k-dimensional vector of ones and 0k is an k × k zero matrix. The block-diagonal
nature of the covariance matrix V means that responses from the same whole plot are correlated,
while those from di�erent whole plots are not.
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The GLS estimator of the factor e�ects is

β̂GLS = (X
′
V−1X)−1X

′
V−1Y .

This estimator has the covariance matrix

cov(β̂GLS) = (X
′
V−1X)−1.

The OLS estimator is given by
β̂OLS = (X

′
X)−1X

′
Y .

For equivalent-estimation split-plot designs, by de�nition, the OLS and GLS estimators given
above are the same, i.e.

β̂OLS = β̂GLS .

The equivalence of OLS and GLS is appealing because it implies that the V matrix and hence
the variances σ2γ and σ2ε need not be estimated in order to estimate the factor e�ects. This
is especially important for researchers who do not have access to software that allows REML
estimation of variance components. However, it is worth noting that knowledge or estimation of
the variance components remains essential for statistical inference of the estimated model. The
analysis of data from split-plot response surface designs in general is discussed in detail in Goos,
Langhans and Vandebroek (2006) and Goos and Jones (2011). Exact inference procedures for
data from a speci�c class of equivalent-estimation designs are discussed in Vining and Kowalski
(2008), whereas a check for split-plot model adequacy is proposed by Almimi, Kulahci and
Montgomery (2009).

3 Split-Plot Design Construction Strategies

The initial work on the design of split-plot response surface experiments by Goos and Vandebroek
(2001, 2003, 2004) was based on optimal experimental design ideas. More speci�cally, the focus
was on creating D-optimal split-plot designs. The D-optimality criterion seeks to minimize the
generalized variance of the parameter estimates, which is done by minimizing the determinant of
the variance-covariance matrix of the factor e�ects' estimates or, equivalently, by maximizing the
determinant of the information matrix about β. For a split-plot design, the information matrix
is given by

M = X
′
V−1X (4)

when the GLS estimator is used.

The D-e�ciency of a design is obtained by comparing the determinant of its information matrix
with that of the corresponding D-optimal design. Letting Mopt be the information matrix of the
D-optimal design with design matrix Xopt and M be the information matrix of a design with
design matrixX for the same design problem, the relative D-e�ciency of the design corresponding
to X is de�ned as

De� =

{
|M|
|Mopt|

}1/p

=

{
|X′

V−1X|
|X′

optV
−1Xopt|

}1/p

, (5)
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where p is the number of parameters in the model.

Goos and Vandebroek (2001, 2003, 2004) developed several point-exchange algorithms for con-
structing split-plot designs that require speci�cation of a candidate set containing all the possible
allowable combinations of the factor levels (i.e., all possible design points). The point-exchange
algorithms start from an initial design, that is partly generated at random and completed by re-
peatedly adding the point that gives the largest increase in the D-criterion value. The algorithms
proceed by exchanging design points from the initial design with points from the candidate set
until the design's value for the D-optimality criterion cannot be improved any more. The con-
struction of a candidate set can be problematic when the number of experimental factors is large
and/or the experimental space is highly constrained. To avoid this problem, Jones and Goos
(2007) described a �exible candidate-set-free coordinate-exchange algorithm for constructing D-
optimal split-plot designs. The algorithm starts from an initial design generated randomly and
then improves this design coordinate by coordinate until there are no more coordinate exchanges
that lead to an increase in the D-optimality criterion. Most often, point-exchange algorithms and
coordinate-exchange algorithms do not lead to qualitatively di�erent designs. However, Schoen,
Jones and Goos (2011) describe a case study in which a coordinate-exchange algorithm for con-
structing split-plot designs outperforms a point-exchange algorithm to a considerable extent.

While Goos (2006) and Parker, Kowalski and Vining (2007a) discussed a few instances where D-
optimal split-plot design possess the equivalent-estimation property, Macharia and Goos (2010)
provided a catalog of equivalent-estimation designs that were either D-optimal or highly D-
e�cient. They modi�ed the coordinate-exchange algorithm of Jones and Goos (2007) so that
it tests every intermediate design for the equivalent-estimation property, and came across many
new equivalent-estimation designs.

The necessary and su�cient condition for equivalence of OLS and GLS estimates, as given by
McElroy (1967), is the existence of a p× p nonsingular matrix, F, such that

XF = VX. (6)

Parker, Kowalski and Vining (2007a) give a general form of the equivalence condition tailored
to split-plot designs. By substituting Equation (3) in Equation (6) and pre-multiplying by
(X

′
X)−1X

′
they �nd that

F = σ2ε Ip + σ2γ(X
′
X)−1X

′
DX, (7)

so that the condition for OLS-GLS equivalence in the case of split-plot designs becomes

X(X
′
X)−1X

′
DX = DX. (8)

This condition can be rewritten as

(In −X(X
′
X)−1X

′
)DX = 0n×p, (9)

where 0n×p is an n×p matrix of zeros. This last expression means that a necessary and su�cient
condition for a split-plot design to be an equivalent-estimation design is that the matrix D has
to be in the column space of the design's model matrix X.
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To measure how close a design is to being an equivalent-estimation design, it is convenient to
introduce a short hand notation for the matrix in Equation (9):

C = (In −X(X
′
X)−1X

′
)DX.

To quantify how close this matrix is to a zero matrix, we calculate the sum of its squared
elements as c = trace(C′C). If we want to stress that this quantity, which is zero for an
equivalent-estimation design, is a function of the model matrix X of a design, we can write
c(X) = trace{C′(X)C(X)}. A measure of the extent to which the design is an equivalent-
estimation design then is

Ee� = 1− c(X)

c(Xopt)
= 1− trace{C′(X)C(X)}

trace{C′(Xopt)C(Xopt)}
. (10)

This measure, which we refer to as the equivalent-estimation e�ciency, takes the value one for
any design with model matrix X that satis�es the equivalent-estimation condition. Jones and
Nachtsheim (2011) use a similarly structured e�ciency measure to quantify the extent to which
the alias matrix of a design is close to a zero matrix.

4 Constructing e�cient equivalent-estimation designs

The equivalent-estimation designs reported by Macharia and Goos (2010) were all obtained as a
mere by-product of the coordinate-exchange algorithm proposed by Jones and Goos (2007). As
a result, nothing in their algorithm steered the design construction explicitly in the direction of
equivalent-estimation designs. We took a di�erent route and implemented an algorithm that has
a dual objective function, i.e. a weighted optimality criterion that does not just focus on �nding
D-optimal designs but also equivalent-estimation designs.

The objective function we use is

obj = λDe� + (1− λ)Ee�. (11)

The �rst term in that function, the D-e�ciency De� de�ned in Equation (5), receives a weight λ
between 0 and 1. The second term in the objective function is the equivalent-estimation e�ciency
Ee� we de�ned in Equation (10), with weight 1 − λ. A similar criterion was used by Jones and
Nachtsheim (2011), who constructed e�cient designs with minimal aliasing. In their approach,
the objective was to obtain highly e�cient designs for which the alias matrix was as close as
possible to the zero matrix. To �nd the designs reported in this paper, we set λ = 0.99 in the
objective function to indicate that we desired highly e�cient designs. The weight 1 − λ = 0.01
for the equivalent-estimation e�ciency Ee� in the objective function was large enough to direct
the search toward equivalent-estimation designs.

To maximize our dual objective function, we used the split-plot coordinate-exchange algorithm
of Jones and Goos (2007). As our primary goal was to �nd three-level equivalent-estimation
designs, we �rst utilized only −1, 0 and 1 as the possible levels for each of the factors in the
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algorithm. In some cases, however, we were unable to �nd three-level equivalent-estimation
designs. In these cases, we let the sub-plot factor levels take any value between −1 and 1. To
determine the optimal level of each sub-plot factor in each run of the design, we used Brent's
minimization algorithm (Brent (1973)). The algorithm, also known as the van Wijngaarden-
Deker-Brent method (Press et al. (2007)), is a one-dimensional minimization procedure that
combines the golden section search algorithm with the inverse quadratic interpolation method.
Convergence of the algorithm is guaranteed provided the given initial interval contains exactly
one minimum. Brent's algorithm has been used in the optimal experimental design literature by
Rodríguez, Jones, Borror and Montgomery (2010), who constructed G-optimal designs.

5 Illustrations

In this section, we report some of the most noticeable improvements of our results over those
in Macharia and Goos (2010). We discuss two scenarios for which no equivalent-estimation
design was found before, as well as two scenarios where we obtained an equivalent-estimation
design that was substantially better in terms of the D-optimality criterion than the best known
equivalent-estimation design.

A 21-run design involving three factors

Our algorithm enabled us to �nd a three-level equivalent-estimation design involving seven whole
plots of three runs for estimating a second-order response surface model in one whole-plot factor
w and two sub-plot factors s1 and s2. The design is displayed in Table 1. It has a D-e�ciency
of 89.8%. For this scenario, Macharia and Goos (2010) did not �nd an equivalent-estimation
design.

Two 36-run designs involving three factors

Another case where our algorithm yielded better results than the approach of Macharia and
Goos (2010) is where nine whole plots of four runs are used to estimate a second-order response
surface model in two whole-plot factors w1 and w2 and one sub-plot factor s. The three-level
equivalent-estimation design we obtained is shown in the left panel of Table 2. It has a D-
e�ciency of 98.7%. The right panel of Table 2 shows the equivalent-estimation design obtained
by Macharia and Goos (2010). That design is only 93.5% D-e�cient. So, in this scenario, the
new algorithm yields an equivalent-estimation design that is 5.6% more D-e�cient than the best
known equivalent-estimation design.

Table 3 shows two other three-level 36-run equivalent-estimation split-plot designs for three
experimental factors, each having six whole plots of six runs. Unlike in the previous case, the
designs involve one whole-plot factor w and two sub-plot factors s1 and s2. The design in the left
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Table 1: 21-run equivalent-estimation design involving 7 whole plots of 3 runs, one whole-plot
factor w, and two sub-plot factors s1 and s2

Whole plot w s1 s2

1 1 −1 0
1 1 0 1
1 1 1 −1

2 1 1 −1
2 1 −1 0
2 1 0 1

3 −1 1 −1
3 −1 1 1
3 −1 −1 0

4 −1 1 1
4 −1 1 −1
4 −1 −1 0

5 1 1 0
5 1 0 −1
5 1 −1 1

6 0 −1 −1
6 0 0 0
6 0 −1 1

7 0 −1 −1
7 0 −1 1
7 0 0 0

panel of the table was obtained using our algorithm, whereas the design in the right panel was
reported by Macharia and Goos (2010). The former design has a D-e�ciency of 98.8%, whereas
the latter design is only 89.0% D-e�cient. Hence, the new design performs 11.0% better in terms
of the D-optimality criterion.

A 60-run design involving four factors

In some instances, it is only possible to �nd equivalent-estimation designs by allowing the factor
levels to di�er from −1, 0 and 1. This is, for example, the case when the interest is in running
a 60-run split-plot design in ten whole plots of six runs for studying the impact of two whole-
plot factors w1 and w2 and two sub-plot factors s1 and s2. This is another instance for which
Macharia and Goos (2010), who restricted themselves to three-level designs, could not �nd an
equivalent-estimation design.

The best equivalent-estimation design we were able to �nd for this scenario involves three levels
only for the whole-plot factors, but many more di�erent levels for the sub-plot factors. This can
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Table 2: 36-run equivalent-estimation designs involving 9 whole plots of 4 runs, two whole-plot
factors w1 and w2, and one sub-plot factor s. The design in the left panel was obtained using
the algorithm described in this paper, while the design in the right panel was found by Macharia
and Goos (2010).

Whole plot w1 w2 s w1 w2 s

1 1 1 1 −1 0 −1
1 1 1 −1 −1 0 −1
1 1 1 −1 −1 0 1
1 1 1 1 −1 0 0

2 1 −1 −1 1 1 1
2 1 −1 1 1 1 −1
2 1 −1 −1 1 1 1
2 1 −1 1 1 1 −1

3 −1 1 1 1 −1 0
3 −1 1 −1 1 −1 1
3 −1 1 −1 1 −1 −1
3 −1 1 1 1 −1 −1

4 −1 −1 −1 −1 −1 1
4 −1 −1 −1 −1 −1 1
4 −1 −1 1 −1 −1 −1
4 −1 −1 1 −1 −1 −1

5 0 1 −1 1 −1 1
5 0 1 1 1 −1 −1
5 0 1 0 1 −1 0
5 0 1 0 1 −1 1

6 1 0 1 −1 1 1
6 1 0 0 −1 1 1
6 1 0 0 −1 1 −1
6 1 0 −1 −1 1 −1

7 −1 −1 1 1 0 −1
7 −1 −1 −1 1 0 −1
7 −1 −1 −1 1 0 1
7 −1 −1 1 1 0 0

8 0 −1 1 0 1 −1
8 0 −1 0 0 1 1
8 0 −1 −1 0 1 1
8 0 −1 0 0 1 0

9 −1 0 −1 0 −1 1
9 −1 0 0 0 −1 1
9 −1 0 1 0 −1 0
9 −1 0 0 0 −1 −1

10



Table 3: 36-run equivalent-estimation designs involving 6 whole plots of 6 runs, one whole-plot
factor w, and two sub-plot factors s1 and s2. The design in the left panel was obtained using
the algorithm described in this paper, while the design in the right panel was found by Macharia
and Goos (2010).

Whole plot w s1 s2 w s1 s2

1 1 0 −1 −1 −1 −1
1 1 1 1 −1 1 −1
1 1 1 −1 −1 1 1
1 1 −1 1 −1 −1 0
1 1 −1 0 −1 −1 1
1 1 1 1 −1 0 −1

2 −1 1 −1 1 1 −1
2 −1 0 −1 1 1 1
2 −1 1 1 1 −1 −1
2 −1 −1 1 1 1 0
2 −1 1 1 1 −1 1
2 −1 −1 0 1 0 1

3 −1 1 −1 −1 1 1
3 −1 −1 1 −1 −1 −1
3 −1 −1 −1 −1 1 −1
3 −1 1 1 −1 −1 1
3 −1 1 0 −1 0 1
3 −1 0 1 −1 −1 0

4 1 1 1 0 −1 1
4 1 −1 −1 0 −1 −1
4 1 1 −1 0 1 1
4 1 −1 1 0 0 0
4 1 0 1 0 1 −1
4 1 1 0 0 0 0

5 0 1 −1 1 1 1
5 0 −1 1 1 −1 −1
5 0 −1 −1 1 1 −1
5 0 1 0 1 0 −1
5 0 −1 −1 1 −1 1
5 0 0 0 1 −1 0

6 1 −1 −1 −1 −1 1
6 1 1 1 −1 −1 −1
6 1 1 −1 −1 1 1
6 1 −1 1 −1 1 −1
6 1 0 1 −1 0 −1
6 1 1 0 −1 1 0
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be seen from Table 4, where the design is shown. Obviously, running the design requires that
the sub-plot factors are highly controllable. The design has a D-e�ciency of 84.2% only, which
is due to the fact that the levels of the sub-plot factors are, in some cases, substantially di�erent
from −1, 0 and 1.

Table 4: 60-run equivalent-estimation design involving 10 whole plots of 6 runs, two whole-plot
factors w1 and w2, and two sub-plot factors s1 and s2.

Whole plot w1 w2 s1 s2 Whole plot w1 w2 s1 s2

1 −1 0 −0.25288 −0.71040 6 0 0 0.97861 0.98608
1 −1 0 −0.72584 −0.79763 6 0 0 −0.11000 −0.15295
1 −1 0 0.83486 0.54092 6 0 0 −0.97978 0.98263
1 −1 0 0.36873 0.86236 6 0 0 −0.01820 0.02622
1 −1 0 −0.98195 0.90678 6 0 0 0.99953 −0.99723
1 −1 0 0.90698 −0.99326 6 0 0 −1.00000 −1.00000

2 −1 1 −0.31684 −0.38804 7 1 −1 0.99962 −0.96872
2 −1 1 −1.00000 −0.79542 7 1 −1 1.00000 −1.00000
2 −1 1 1.00000 0.29917 7 1 −1 −0.92972 −1.00000
2 −1 1 −1.00000 0.95800 7 1 −1 1.00000 1.00000
2 −1 1 1.00000 −0.98796 7 1 −1 −0.97702 1.00000
2 −1 1 −0.04849 1.00000 7 1 −1 −1.00000 0.01574

3 0 1 −0.80187 0.29070 8 1 1 −1.00000 −0.71426
3 0 1 0.93467 0.75794 8 1 1 −0.54625 0.90832
3 0 1 −0.93572 −0.99059 8 1 1 0.08232 0.99987
3 0 1 0.99053 −0.20564 8 1 1 0.48161 −0.90413
3 0 1 0.15517 −1.00000 8 1 1 0.98423 −0.94444
3 0 1 −0.99421 0.99095 8 1 1 −0.95217 −0.30111

4 1 −1 −0.92930 0.99724 9 −1 −1 −1.00000 −0.71224
4 1 −1 1.00000 −0.99715 9 −1 −1 −0.20007 0.94995
4 1 −1 0.99966 0.97250 9 −1 −1 0.85249 −0.95141
4 1 −1 −0.98391 0.07376 9 −1 −1 1.00000 −0.42612
4 1 −1 −0.99357 −0.99933 9 −1 −1 −1.00000 −0.88513
4 1 −1 1.00000 −1.00000 9 −1 −1 1.00000 1.00000

5 0 1 −0.73483 0.90590 10 0 0 0.96057 −0.11086
5 0 1 0.10336 −0.09903 10 0 0 −1.00000 0.97592
5 0 1 0.99975 −0.99837 10 0 0 0.99870 0.99732
5 0 1 −0.97198 0.12662 10 0 0 −1.00000 −0.01926
5 0 1 0.94820 0.90729 10 0 0 −0.09485 −0.99837
5 0 1 −0.99593 −0.99905 10 0 0 0.00575 −1.00000

6 A catalog of equivalent-estimation designs

One of our goals was to �nd three-level equivalent-estimation designs for the 111 scenarios in-
vestigated by Macharia and Goos (2010) with up to three whole-plot factors and three sub-plot
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factors. The maximum number of runs we considered was 72, while the largest number of whole
plots was 12. The scenarios are all listed in Table 5, along with the D-e�ciencies of the newly
found equivalent-estimation designs (in the column labeled �New�) and those of the designs re-
ported by Macharia and Goos (2010) (in the column labeled �M & G�). We should note that two
of the D-e�ciencies reported in Macharia and Goos (2010) were o� by 0.2%. These cases are
indicated using the subscripts a and b in the last column of Table 5.

A remarkable result is that, in each of the 111 scenarios, we obtained an equivalent-estimation
design. This is unlike Macharia and Goos (2010), who failed to �nd an equivalent-estimation
design in 25 of the scenarios. As pointed out earlier, this is because these authors did not use an
algorithm geared towards �nding equivalent-estimation designs. The designs they obtained were
a by-product of the coordinate-exchange algorithm for �nding D-optimal split-plot designs. The
25 scenarios for which no equivalent-estimation design was found previously are indicated using
a �I� in the last column of Table 5.

Besides these 25 scenarios, there are 37 scenarios where we are able to present new equivalent-
estimation designs with a higher D-e�ciency than the design of Macharia and Goos (2010). These
scenarios are indicated using a �II� in the last column of Table 5. The largest improvement in D-
e�ciency was as large as 11% and was achieved for scenario 33, involving one whole-plot factor,
two sub-plot factors, and six whole plots of six runs. The old and new equivalent-estimation
design for this scenario are shown in Table 3. The second largest improvement was for scenario
90, where we obtained an 8.6% increase in D-e�ciency. In most of the 37 scenarios, however,
the improvements in D-e�ciency are smaller than 1%.

In the remaining 49 scenarios, we could not improve upon the designs of Macharia and Goos
(2010). In 10 cases, indicated using a �III� in the last column of Table 5, this is because the
D-optimal design happens to be an equivalent-estimation design. The D-e�ciency of the best
equivalent-estimation design in these cases is 100%. In the remaining 39 cases, indicated using
a �IV� in the last column of Table 5, the best equivalent-estimation design is not D-optimal.

Table 5: List of 111 scenarios for which an equivalent-
estimation split-plot design exists.

Number of Number of D-e�ciency
Scenario WP factors SP factors b k New M & G Case

1 1 1 4 2 93.5 93.3 II
2 1 1 4 3 100.0 100.0 III
3 1 1 4 4 99.4 99.4 IV
4 1 1 4 5 100.0 100.0 III
5 1 1 4 6 100.0 100.0 III
6 1 1 5 2 93.4 93.4 IV
7 1 1 5 3 100.0 100.0 III
8 1 1 5 4 99.1 98.9 II
9 1 1 5 5 100.0 100.0 III

Continued on next page
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Table 5: List of 111 scenarios for which an equivalent-
estimation split-plot design exists (continued).

Number of Number of D-e�ciency
Scenario WP factors SP factors b k New M & G Case

10 1 1 5 6 99.8 99.8 IV
11 1 1 6 2 97.1 97.1 IV
12 1 1 6 3 100.0 100.0 III
13 1 1 6 4 99.4 99.1 II
14 1 1 6 5 99.9 99.9 IV
15 1 1 6 6 99.8 99.8 IV
16 1 1 7 2 94.5 94.0 II
17 1 1 7 3 100.0 100.0 III
18 1 1 7 4 99.2 99.2 IV
19 1 1 7 5 99.9 99.9 IV
20 1 1 7 6 99.9 99.9 IV
21 1 2 4 3 96.5 96.4 II
22 1 2 4 4 98.3 98.3 IV
23 1 2 4 5 100.0 100.0 III
24 1 2 4 6 99.6 99.6 IV
25 1 2 5 3 92.4 92.1 II
26 1 2 5 4 97.8 95.8 II
27 1 2 5 5 99.7 99.7 IV
28 1 2 5 6 99.0 99.0 IV
29 1 2 6 2 96.4 96.4 IV
30 1 2 6 3 70.9 I
31 1 2 6 4 97.3 93.4 II
32 1 2 6 5 99.6 99.6 IV
33 1 2 6 6 98.8 89.0 II
34 1 2 7 2 89.6 I
35 1 2 7 3 89.8 I
36 1 2 7 4 82.6 I
37 1 2 7 5 99.5 99.5 IV
38 1 2 7 6 98.3 97.9 II
39 1 3 4 4 92.9 92.9 IV
40 1 3 4 5 99.4 98.8 II
41 1 3 4 6 98.5 98.5 IV
42 1 3 5 4 96.6 96.6 IV
43 1 3 5 5 98.9 98.9 IV
44 1 3 5 6 66.5 I
45 1 3 6 3 89.4 88.9 II
46 1 3 6 4 66.4 I
47 1 3 6 5 59.3 I

Continued on next page
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Table 5: List of 111 scenarios for which an equivalent-
estimation split-plot design exists (continued).

Number of Number of D-e�ciency
Scenario WP factors SP factors b k New M & G Case

48 1 3 6 6 43.5 I
49 2 1 7 2 94.0 93.9 II
50 2 1 7 3 99.6 99.5 II
51 2 1 7 4 98.5 98.5 IV
52 2 1 7 5 99.9 99.8 II
53 2 1 7 6 99.8 99.7 II
54 2 1 8 2 92.4 92.4 IV
55 2 1 8 3 99.9 99.9 IV
56 2 1 8 4 99.6 99.6 IV
57 2 1 8 5 100.0 100.0 III
58 2 1 8 6 99.7 99.5 II
59 2 1 9 2 92.7 92.0 II
60 2 1 9 3 99.7 99.7 IV
61 2 1 9 4 98.7 93.5 II
62 2 1 9 5 100.0 100.0 III
63 2 1 9 6 99.7 99.7 IV
64 2 1 10 2 93.2 92.9 II
65 2 1 10 3 99.6 99.6 IV
66 2 1 10 4 90.8 Ic

67 2 1 10 5 99.8 99.8 IV
68 2 1 10 6 83.1 Ic

69 2 1 11 2 90.9 I
70 2 1 11 3 99.6 99.6 IV
71 2 1 11 4 91.2 I
72 2 1 11 5 99.9 99.8 II
73 2 1 11 6 67.6 Ic

74 2 1 12 2 80.3 I
75 2 1 12 3 99.8 99.8 IV
76 2 1 12 4 94.2 I
77 2 1 12 5 100.0 99.9 II
78 2 1 12 6 47.5 Ic

79 2 2 7 3 97.2 97.2 IV
80 2 2 7 4 98.7 98.7 IV
81 2 2 7 5 99.9 99.9 IV
82 2 2 7 6 99.6 99.5 II
83 2 2 8 2 96.3 96.3 IVa

84 2 2 8 3 95.1 91.3 II
85 2 2 8 4 97.7 97.0 II

Continued on next page
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Table 5: List of 111 scenarios for which an equivalent-
estimation split-plot design exists (continued).

Number of Number of D-e�ciency
Scenario WP factors SP factors b k New M & G Case

86 2 2 8 5 99.9 99.9 IV
87 2 2 8 6 99.0 96.2 II
88 2 2 9 2 93.3 93.1 II
89 2 2 9 3 75.2 I
90 2 2 9 4 97.1 89.4 II
91 2 2 9 5 99.8 99.8 IV
92 2 2 9 6 96.8 96.5 II
93 2 2 10 2 95.4 93.1 II
94 2 2 10 3 55.1 I
95 2 2 10 4 50.2 Ic

96 2 2 10 5 99.6 99.4 II
97 2 2 10 6 84.2 Ic

98 2 2 11 2 94.2 94.2 IVb

99 2 2 11 3 38.5 Ic

100 2 2 11 4 60.6 Ic

101 2 2 11 5 66.3 Ic

102 2 2 11 6 55.7 Ic

103 2 3 7 4 99.7 99.7 IV
104 2 3 7 5 100.0 99.7 II
105 2 3 7 6 99.5 99.4 II
106 2 3 8 3 93.0 87.9 II
107 2 3 8 4 99.4 98.5 II
108 2 3 8 5 99.5 99.2 II
109 2 3 8 6 44.9 Ic

110 3 2 11 2 99.5 99.5 IV
111 3 3 12 4 93.7 93.3 II

a Macharia and Goos (2010) reported an incorrect D-e�ciency of 96.5%.
b Macharia and Goos (2010) reported an incorrect D-e�ciency of 99.4%.
c Equivalent-estimation design with more than three levels, obtained
using Brent's method for sub-plot factor levels.

In 100 of the 111 scenarios, we managed to �nd a three-level equivalent-estimation design. The
11 scenarios in which more than three levels were required are indicated using the subscript c in
the last column of Table 5.

A �le containing all the equivalent-estimation designs listed in Table 5 is available from the
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authors.

7 Discussion

The structure of a split-plot design generally requires the use of generalized least squares (GLS)
to estimate the model. This estimation approach is not always implemented in the statistical
software available to practitioners. This has led to the development of various methods for
constructing split-plot designs for which the OLS and GLS estimators produce the same point
estimates. Often, these designs provided statistically ine�cient estimates of the factor e�ects.
Macharia and Goos (2010) showed that, in many cases, it is possible to obtain highly D-e�cient
three-level equivalent-estimation split-plot designs such that the loss of precision in parameter
estimates is negligible if OLS is the estimation technique utilized.

In this paper, we present an algorithm that enabled us to �nd e�cient three-level equivalent-
estimation design in 100 out of 111 scenarios. Allowing the sub-plot factors to take more than
three levels yielded equivalent-estimation designs for the remaining 11 scenarios. As a result,
for second-order response surface designs, it seems possible to generate an equivalent-estimation
design for every split-plot scenario.

As stated in Macharia and Goos (2010), we also note that whether or not a design is an equivalent-
estimation design depends on the model actually �tted, just like the D-optimality of a design
depends on the speci�ed model. For example, dropping any of the terms associated with the
whole-plot factors destroys the OLS-GLS equivalence. Thus, reducing the model complexity
may lead to the loss of the OLS-GLS equivalence property. This is counterintuitive, as desirable
theoretical properties are usually easier to achieve for simple models.

Another point worth noting is that some of the equivalent-estimation designs we obtained involve
a large number of factor levels. An example of such a design is given in Table 4. Running such
a design requires perfect control of the levels of the sub-plot factors. In many applications,
however, it will be required that the factor levels have to be rounded. The resulting design will
then no longer possess the OLS-GLS equivalence property. However, the OLS and GLS estimates
will not be very di�erent in such cases. We recommend using the equivalent-estimation e�ciency
measure de�ned in Equation (10) to quantify the extent to which rounding a�ects the equivalent-
estimation property.
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