
BUNDLES OF RANK 2 WITH SMALL CLIFFORD
INDEX ON ALGEBRAIC CURVES

H. LANGE AND P. E. NEWSTEAD

Abstract. In this paper, we construct stable bundles E of rank
2 on suitably chosen curves of any genus g ≥ 12 with maximal
Clifford index such that the Clifford index of E takes the minimum
possible value for curves with this property.

1. Introduction

In a previous paper [8] (see also [4, 5, 9]), we constructed examples
of curves for which the rank-2 Clifford index Cliff2(C) is strictly less
than the classical Clifford index, thus producing counter-examples to
a conjecture of Mercat [10]. The purpose of the present paper is to
improve [8, Theorem 1.1] by substantially weakening the hypotheses;
the new result is best possible and enables us to construct examples
of curves C of any genus g ≥ 12 for which the Clifford index Cliff(C)
takes its maximum possible value

[
g−1
2

]
, while the rank-2 Clifford index

Cliff2(C) satisfies Cliff2(C) = 1
2

Cliff(C) + 2, which is the minimum
possible value for curves of Clifford index Cliff(C).

To state the results, we recall first the definition of Cliffn(C). For
any vector bundle E of rank n and degree d on C, we define

γ(E) :=
1

n

(
d− 2(h0(E)− n)

)
= µ(E)− 2

h0(E)

n
+ 2.

If C has genus g ≥ 4, we then define, for any positive integer n,

Cliffn(C) := min
E

{
γ(E)

∣∣∣∣ E semistable of rank n
h0(E) ≥ 2n, µ(E) ≤ g − 1

}
(this invariant is denoted in [7, 8, 9] by γ′n). Note that Cliff1(C) =
Cliff(C) is the usual Clifford index of the curve C. Moreover, as ob-
served in [7, Proposition 3.3 and Conjecture 9.3], the conjecture of [10]
can be restated in a slightly weaker form as

Conjecture. Cliffn(C) = Cliff(C).
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In fact, for n = 2, this form of the conjecture is equivalent to the
original (see [9, Proposition 2.7]).

Our main theorem can now be stated.

Theorem 3.3. Suppose that g, s, d are integers such that

s ≥ −1, g ≥ 2s+ 14 and d = g − s.
Then there exists a curve C of genus g having Cliff(C) =

[
g−1
2

]
and a

stable vector bundle E of rank 2 and degree d on C with γ(E) = g−s
2
−2.

Hence

Cliff2(C) ≤ g − s
2
− 2 < Cliff(C).

This theorem is a substantially strengthened version of [8, Theorem
1.1]; the hypotheses are now best possible in the sense that the theorem
fails for g ≤ 2s + 13. The stronger hypotheses in the original theorem
were needed to ensure that certain K3-surfaces contained no effective
divisors D such that D2 = 0 or D2 = −2. In the present paper, our
K3-surfaces may contain such divisors, but we are able to control these
and show that they do not affect the calculations required to prove
the theorem. The proof of the theorem itself is essentially the same as
that of [8, Theorem 1.1]; we give it in full for the sake of clarity and to
demonstrate how the hypotheses are used.

As a corollary to Theorem 3.3 we have

Theorem 3.8. Let γ be an integer, γ ≥ 5. Then there exists a curve
C with Cliff(C) = γ such that

Cliff2(C) =
γ

2
+ 2.

Moreover C can be taken to have genus either 2γ + 1 or 2γ + 2.

Following an extended discussion of curves on certain K3 surfaces in
section 2, the proofs of the theorems are given in section 3. We finish
with some open questions in section 4.

2. Some curves on a K3-surface

Let g, d, s be integers with

(2.1) d = g − s > 0, g ≥ 0, g ≥ 2s+ 13 and (d, g) 6= (7, 4).

Note that

d2 − 12g = g(g − 2s− 12) + s2 > 0.

It follows from [6, Theorem 6.1,2] that there exists a smooth K3-surface
S of type (2, 3) in P4 containing a smooth curve C of genus g and degree
d with

Pic(S) = HZ⊕ CZ,
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where H denotes the hyperplane bundle. In particular, we have

H2 = 6, C ·H = d and C2 = 2g − 2.

Proposition 2.1. Suppose (2.1) holds, g ≥ 2 and g+ s > 2. Then the
curve C is an ample divisor on S.

Proof. We show that C ·D > 0 for any effective divisor D on S which we
may assume to be irreducible. So let D ∼ mH + nC be an irreducible
curve on S. We have

C ·D = m(g − s) + n(2g − 2).

Note first that, since H is a hyperplane,

(2.2) D ·H = 6m+ (g − s)n > 0.

If m,n ≥ 0, then one of them has to be positive and then clearly
C ·D > 0. The case m,n ≤ 0 contradicts (2.2).

Suppose m > 0 and n < 0. Then, using (2.2) and (2.1), we have

C ·D = m(g − s) + n(2g − 2) > −n
6

(
g(g − 2s− 12) + s2 + 12

)
> 0.

Finally, suppose m < 0 and n > 0. Then, since we assumed D
irreducible, we have D2 ≥ −2 and

(2.3) nC ·D = −mD ·H +D2 ≥ −mD ·H − 2 ≥ −m− 2.

If m ≤ −3 , then nC ·D > 0. If m = −1, we have

C ·D = −(g − s) + n(2g − 2) ≥ g + s− 2 > 0.

The same argument works for m = −2, n ≥ 2. Finally, if m = −2 and
n = 1, we have

D2 = (C − 2H)2 = 2g − 2− 4d+ 24 = 4s− 2g + 22.

So D2 = −2 if and only if g = 2s + 12, contradicting (2.1). Thus
D2 ≥ 0 and (2.3) implies that C ·D > 0. �

We now investigate the possible existence of (−2)-curves on S. Note
that, if D is an irreducible effective divisor on S, we have

χ(D) =
D2

2
+ 2 ≥ 1,

with equality if and only if D is a (−2)-curve. It follows that a fixed
component of any effective divisor must be a (−2)-curve. Note that
any irreducible (−2)-curve F has

h0(S, F ) = 1, h1(S, F ) = h2(S, F ) = 0

(see [11]).

Proposition 2.2. Suppose that (2.1) holds and let F be an irreducible
(−2)-curve on S. Then one of the following holds:

• F ·H ≥ d− 5;
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• s = −3, F ·H = d− 6, F ∼ C −H;
• s = −3, g ≡ 0 mod 3, F ·H = d− 6, F ∼ g

3
H − C;

• s ≥ −1, g = 4s+ 16, F ·H = d− 8, F ∼ (s+ 4)H − C;
• s ≥ 1 and odd, g = 5

2
(s+ 5), F ·H = d− 10, F ∼ s+5

2
H − C.

Proof. Write F ∼ mH + nC and

r := F ·H = 6m+ dn.

The condition F 2 = −2 translates to

3m2 + dmn+ (g − 1)n2 = −1.

Inserting m = r−dn
6

, this gives

(2.4) n2[d2 − 12(g − 1)] = r2 + 12.

Suppose first that n2 ≥ 4 and r ≤ d−6. In order to get a contradiction,
it is enough to have

4[d2 − 12(g − 1)] > (d− 6)2 + 12,

which gives

d2 + 4d > 16g.

Inserting d = g − s, this is equivalent to

g(g − 2s− 12) + s2 − 4s > 0.

This holds by (2.1).

It remains to consider the case n2 = 1. If r ≤ d− 12, then in order
to get a contradiction, it is enough to have

d2 − 12(g − 1) > (d− 12)2 + 12,

which means 8d > 4g + 48. Inserting d = g − s, this is equivalent to
g > 2s+ 12, which is valid by (2.1).

The equation (2.4) with n2 = 1 implies that r − d is even. So we
need to consider the cases r = d− 6, r = d− 8 and r = d− 10.

If r = d − 6, (2.4) reduces to d = g + 3, so s = −3 and m = d−6±d
6

,
giving the second and third cases of the statement.

Suppose r = d− 8. Then (2.4) says

d2 − 12(g − 1) = (d− 8)2 + 12,

which reduces to 4d = 3g+ 16 or equivalently to g = 4s+ 16. If n = 1,
the formula m = r−d

6
gives m = −4

3
, a contradiction. We are left with

the case n = −1 and

m =
r + d

6
=

2d− 8

6
= s+ 4.

The condition s ≥ −1 follows from (2.1).
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Finally, if r = d − 10, (2.4) reduces to 5d = 3g + 25 or equivalently
to g = 5

2
(s+ 5). So m = d−10±d

6
. Again n = 1 gives a contradiction, so

n = −1 and

m =
2d− 10

6
=
s+ 5

2
.

The condition s ≥ 1 follows from (2.1). �

Corollary 2.3. Suppose (2.1) holds with s ≥ −1. Then the linear
system |C −H| is without fixed components.

Proof. Observe first that |C −H| is effective and has h0(C −H) ≥ 3,
since (C−H)2 = 2s+4 ≥ 2. Assume |C−H| admits fixed components.
Choose one of them and denote it by F . Note that F is a (−2)-curve.
So we may write

C −H ∼M + F.

Then

2 < M ·H = (C −H) ·H − F ·H = d− 6− F ·H.
So

F ·H ≤ d− 9.

By Proposition 2.2, the only possibility is

s ≥ 1, g =
5

2
(s+ 5), F ∼ s+ 5

2
H − C.

In this case,

M · C =

(
2C − s+ 7

2
H

)
.C = 4g − 4− s+ 7

2
d

= 10s+ 46− s+ 7

4
(3s+ 25)

= −1

4
(3s2 + 6s− 9) ≤ 0.

This contradicts Proposition 2.1. �

Corollary 2.4. Suppose (2.1) holds with s ≥ −1. Let D be an effective
divisor on S with h0(S,D) ≥ 2 and h0(S,C −D) ≥ 2. Then the linear
systems |D| and |C −D| have no fixed components.

Proof. Since the statement is symmetric in D and C−D, it is sufficient
to prove the corollary for C −D.

Suppose F is a (−2)-curve in the base locus of |C − D|. We may
write

C −D ∼M + F.

Since h0(S,M) = h0(S,C −D) ≥ 2, we have

3 ≤M ·H = (C −D) ·H − F ·H = d−D ·H − F ·H.
Since h0(S,D) ≥ 2, we have D ·H ≥ 3. So

1 ≤ F ·H ≤ d− 6.
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By Proposition 2.2, the case F ·H = d− 6 cannot occur since we are
assuming s ≥ −1 and we are left with the possibilities

(2.5) g = 4s+ 16, F ·H = d− 8, F ∼ (s+ 4)H − C
and

(2.6) g =
5

2
(s+ 5), F ·H = d− 10, F ∼ s+ 5

2
H − C.

Moreover, since |D| and |C −D − F | are both effective, so is |C − F |.
It follows from Proposition 2.1 that (C − F ) · C > 0.

For (2.5), we have

(C − F ) · C =
(
2C − (s+ 4)H

)
· C = 4g − 4− (s+ 4)d

= 16s+ 60− (s+ 4)(3s+ 16)

= −(3s2 + 12s+ 4).

This contradicts the fact that (C − F ) · C > 0 except when s = −1.

For (2.6), we argue similarly. We have

(C − F ) · C =

(
2C − s+ 5

2
H

)
· C = 2(5s+ 25)− 4− s+ 5

4
(3s+ 25)

= −1

4
(3s2 − 59).

Since s is odd and s ≥ 1, this is a contradiction except for s = 1 and
s = 3.

This leaves us with the three possibilities

(2.7) (g, s) = (12,−1), (15, 1), (20, 3).

In these cases, it is not sufficient to consider (C − F ) · C. However, in
all three cases, we can show that the two conditions

(2.8) h0(D) ≥ 2, h0(C −D − F ) ≥ 2

lead to a contradiction. Note that (2.8) implies that D · H ≥ 3 and
(C −D − F ) ·H ≥ 3 and hence

(2.9) F ·H + 3 ≤ (C −D) ·H ≤ C ·H − 3.

Similarly, using Proposition 2.1, we obtain

(2.10) F · C + 1 ≤ (C −D) · C ≤ C · C − 1.

Suppose first that (g, s) = (12,−1), so that (2.1) and (2.5) give

C ·H = 13, F ·H = 5, F ∼ 3H − C, F · C = 17.

Writing C −D ∼ mH + nC, (2.9) and (2.10) give

(2.11) 8 ≤ 6m+ 13n ≤ 10

and

(2.12) 18 ≤ 13m+ 22n ≤ 21.
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Now 13× (2.11)− 6× (2.12) gives

−22 ≤ 37n ≤ 22,

so n = 0. But now (2.11) gives an immediate contradiction.

Next suppose that (g, s) = (15, 1). Then (2.1) and (2.6) give

C ·H = 14, F ·H = 4, F ∼ 3H − C, F · C = 14.

So (2.10) gives

(2.13) 15 ≤ 14m+ 28n ≤ 27.

Since 14m+ 28n is divisible by 14, this is an immediate contradiction.

The final case (g, s) = (20, 3) is a little more complicated (but also
more interesting). Here (2.1) and (2.6) give

C ·H = 17, F ·H = 7, F ∼ 4H − C, F · C = 30.

So (2.9) and (2.10) give

(2.14) 10 ≤ 6m+ 17n ≤ 14

and

(2.15) 31 ≤ 17m+ 38n ≤ 37.

Now 17× (2.14)− 6× (2.15) gives

−52 ≤ 61n ≤ 52,

i.e. n = 0. Now (2.14) gives m = 2, which also satisfies (2.15). Hence
we must have C − D ∼ 2H. But then |C − D| does not have a fixed
component. This is a contradiction. �

We now consider curves D on S with D2 = 0.

Proposition 2.5. Suppose that (2.1) holds with s ≥ −1 and let D be
an effective divisor with D2 = 0 and without fixed components. Then
D ∼ rE for some integer r, where E is irreducible with E2 = 0 and
D = E1 + . . .+ Er with Ei ∼ E. Moreover one of the following holds:

• s ≥ 0, g = 4s+ 13, E ∼ (s+ 3)H − C or E ∼ 3C − 4H;
• s ≥ 4 and even, g = 5s

2
+ 11, E ∼ s+4

2
H − C or E ∼ 3C − 5H.

Proof. By a result in [11] (see [3, Proposition 2.1] for a statement),
D = E1 + . . . Er ∼ rE as in the statement. We need only check that
E has one of the stated forms. For this, let E ∼ mH + nC, so that

(2.16) E2 = 6m2 + 2dmn+ (2g − 2)n2.

For an integer solution of the equation E2 = 0, we require the discrim-
inant d2 − 6(2g − 2) of (2.16) to be a perfect square. So suppose

d2 − 6(2g − 2) = g2 − (2s+ 12)g + s2 + 12 = t2

for some t ≥ 0, i.e.

(2.17) (g − s− 6)2 − t2 = 12s+ 24.
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Write g − s − 6 = t + 2b. Since s ≥ −1, (2.1) implies that b > 0 and
t ≥ max{s+ 7− 2b, 0}. The equation (2.17) gives

(2.18) b(t+ 2b) = 3s+ 6 + b2,

so that

(2.19) b2 ≥ b(s+ 7)− 3s− 6

On the other hand, since bt ≥ 0, b2 = 3s+ 6− bt ≤ 3s+ 6. Combining
this with (2.19), we get

(2.20) b(s+ 7) ≤ 6s+ 12.

If b ≥ 6, (2.20) gives an immediate contradiction. For 3 ≤ b ≤ 5, we
can calculate t directly from (2.18) and show that t+ 2b < s+ 7. This
leaves us with b = 1 and b = 2.

When b = 1, (2.18) gives t = 3s+ 5 and g = t+ 2b+ s+ 6 = 4s+ 13.
The equation E2 = 0 (see (2.16)) now gives

m

n
=
−d± t

6
= −4

3
or − (s+ 3).

When b = 2, we get similarly t = 3s+2
2

, g = 5s
2

+ 11 and

m

n
= −5

3
or − s+ 4

2
.

The restrictions on s come from (2.1). To see in each case that there
is an effective divisor E in the given divisor class, one checks that
E ·H > 0. Since E is primitive, it must also be irreducible. �

Corollary 2.6. Suppose that (2.1) holds with s ≥ −1 and that D and
C −D are effective divisors without fixed components. Then

(i) D2 6= 0, (C −D)2 6= 0;

(ii) h0(C,D|C) = h0(S,D) = D2

2
+ 2.

Proof. (i) Suppose that (C − D)2 = 0. By the proposition, we have
C −D = rE with E as in the statement. Moreover r ≥ 1 since C −D
is effective and E ·C ≥ 0 (in fact E ·C > 0 in view of Proposition 2.1).
Since also E2 = 0, we have

D2 = C2 − 2rE · C = C · (C − 2rE) ≤ C · (C − 2E).

Using the values of E from the proposition, we see that D2 < 0, contra-
dicting the assumption that D has no fixed components. Interchanging
D and C−D in this argument, we obtain a similar contradiction when
D2 = 0.

(ii) By (i), (C − D)2 > 0, so the results of [11] ([3, Proposition
2.1]) apply to show that the general member of |C −D| is smooth and
irreducible and

h1(S,D − C) = h1(S,C −D) = 0.
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Moreover, D−C is not effective, so h0(S,D−C) = 0. The first equality
in (ii) now follows from the cohomology sequence

0→ H0(S,D − C)→ H0(S,D)→ H0(C,D|C)→ H1(S,D − C).

For the second equality, we note that (i) implies that h1(S,D) = 0 and
h2(S,D) = h0(S,−D) = 0, so

h0(S,D) = χ(D) =
D2

2
+ 2.

�

3. Proof of theorems

In this section we prove our main theorems. We start with a lemma.

Lemma 3.1. Suppose that (2.1) holds with s ≥ −1. Then H|C is a
generated line bundle on C with h0(C,H|C) = 5 and

S2H0(C,H|C)→ H0(C,H2|C)

is not injective.

Proof. Consider the exact sequence

0→ OS(H − C)→ OS(H)→ OC(H|C)→ 0.

H − C is not effective, since (H − C) ·H = 6− d < 0. So we have

0→ H0(S,H)→ H0(C,H|C)→ H1(S,H − C)→ 0.

Now
(C −H)2 = 2g − 2− 2d+ 6 = 2s+ 4 ≥ 2,

from which it follows that |C − H| is effective. Since |C − H| has no
fixed component by Corollary 2.3, it follows that its general element
is smooth and irreducible (see [11] or [3, Proposition 2.1]). Hence
h1(S,H − C) = 0 and therefore h0(C,H|C) = h0(S,H) = 5. The last
assertion follows from the fact that S is contained in a quadric. �

Corollary 3.2. Suppose that (2.1) holds with s ≥ −1 and Cliff(C) =[
g−1
2

]
. Then there exists a stable vector bundle of rank 2 and degree

g − s on C with h0(E) = 4.

Proof. Note that g − s < 2(Cliff(C) + 2). The result now follows from
the lemma and [8, Lemma 3.3]. �

Theorem 3.3. Suppose that g, s, d are integers such that

(3.1) s ≥ −1, g ≥ 2s+ 14 and d = g − s.
Then there exists a curve C of genus g having Cliff(C) =

[
g−1
2

]
and a

stable vector bundle E of rank 2 and degree d on C with γ(E) = g−s
2
−2.

Hence

Cliff2(C) ≤ g − s
2
− 2 < Cliff(C).
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Proof. Let S and C be as at the beginning of section 2. In view of
Corollary 3.2, it is sufficient to prove that Cliff(C) =

[
g−1
2

]
. Since C

is ample by Proposition 2.1, it follows from [1, Proposition 3.3] that
Cliff(C) is computed by a pencil. If Cliff(C) <

[
g−1
2

]
, it then follows

from [2] (see also [3, Proposition 3.1]) that there is an effective divisor
D on S such that D|C computes Cliff(C) and satisfying

(3.2) h0(S,D) ≥ 2, h0(S,C −D) ≥ 2 and deg(D|C) ≤ g − 1.

By Corollaries 2.4 and 2.6, we have

Cliff(C) = Cliff(D|C) = D · C −D2 − 2.

To obtain a contradiction, it is therefore sufficient to prove that

D · C −D2 − 2 ≥
[
g − 1

2

]
.

Writing D ∼ mH+nC with m,n ∈ Z, we have D·C−D2−2 = f(m,n),
where

f(m,n) := −6m2 + (1− 2n)dm+ (n− n2)(2g − 2)− 2.

We therefore require to prove that

(3.3) f(m,n) ≥
[
g − 1

2

]
.

By Corollaries 2.4 and 2.6, we have D2 > 0. Also, by (3.2), D ·H ≥ 3
and (C − D) · H ≥ 3, hence D · H ≤ d − 3. These inequalities and
deg(D|C) ≤ g − 1 translate to

(3.4) 3m2 +mnd+ n2(g − 1) > 0,

(3.5) 3 ≤ 6m+ nd ≤ d− 3,

(3.6) md+ (2n− 1)(g − 1) ≤ 0.

We shall prove that (3.4) – (3.6) imply (3.3).

Denote by

a :=
1

6
(d+

√
d2 − 12(g − 1)) and b :=

1

6
(d−

√
d2 − 12(g − 1))

the solutions of the equation 6x2 − 2dx + 2g − 2 = 0. Note that d2 >
12(g−1). So a and b are positive real numbers; moreover, substituting
g = d+ s, we see that, since s ≥ −1 and d ≥ s+ 14,

(d− 12)2 < d2 − 12(g − 1) < (d− 6)2.

Hence

(3.7) 1 < b < 2.

Moreover, if n 6= 0, (3.4) holds if and only if

(3.8)
m

n
< −a or

m

n
> −b.
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If n < 0 and m
n
> −b, then (3.5) implies that 3 < n(d − 6b) < 0,

because n < 0 and d − 6b =
√
d2 − 12(g − 1) > 0, which gives a

contradiction. Similarly, if n > 0 and m
n
< −a, we obtain 3 < n(d −

6a) < 0, again a contradiction. In view of (3.8), it remains to consider
the three possibilities

• n < 0, m > −an;
• n > 0, m > −bn;
• n = 0.

In each case, we use (3.6) to prove (3.3).

If n < 0 and m > −an, we get from (3.6)

−an < m ≤ (g − 1)(1− 2n)

d
<

(1− 2n)d

12
,

since d2 > 12(g − 1). For a fixed n, f(m,n) is strictly increasing as a

function of m for m ≤ (1−2n)d
12

and therefore

f(m,n) > f(−an, n)

=
d2 − 12(g − 1) + d

√
d2 − 12(g − 1)

6
· (−n)− 2

≥
d2 − 12(g − 1) + d

√
d2 − 12(g − 1)

6
− 2.

The inequality (3.3) therefore holds if

d2 − 15g + 3 + d
√
d2 − 12(g − 1) ≥ 0.

Since d2 > 12g, it is therefore sufficient to prove that

d2 − 15g + 3d+ 3 ≥ 0,

or equivalently g(g − 2s− 12) + s2 − 3s+ 3 ≥ 0. This is certainly true
under our hypotheses.

If n > 0 and m > −bn, (3.6) and (3.7) give

(3.9) − (2n− 1) ≤ m ≤ −(g − 1)(2n− 1)

d
.

For a fixed n ≥ 1, f(m,n) is strictly decreasing for m ≥ − (2n−1)d
12

and
hence throughout the range (3.9) (whenever this range is non-empty).
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So

f(m,n)− g − 1

2
≥ f

(
−(g − 1)(2n− 1)

d
, n

)
− g − 1

2

=
g − 1

2
(2n− 1)2

(
1− 12(g − 1)

d2

)
− 2

≥ g − 1

2
(2n− 1)2

(
1− g − 1

g

)
− 2

=
g − 1

2g
(2n− 1)2 − 2 ≥ 0 for n ≥ 2.

If n = 1, then (3.9) gives m = −1 and

(3.10) f(−1, 1) = d− 8 ≥
[
g − 1

2

]
for g ≥ 2s+ 14.

Finally, suppose n = 0. Then

f(m, 0) = −6m2 + dm− 2.

As a function of m this takes its maximum value at d
12

. By (3.4) and
(3.6),

1 ≤ m ≤ g − 1

d
≤ d

12
.

So f(m, 0) takes its minimal value in the allowable range at m = 1.
Hence

(3.11) f(m, 0) ≥ f(1, 0) = d− 8 ≥
[
g − 1

2

]
for g ≥ 2s+ 14.

�

Remark 3.4. The case s = −1, g even, is [4, Theorem 3.7]. The case
s = −2, g odd (not included in our theorem) is [4, Theorem 1.4].

Remark 3.5. The result of Theorem 3.3 is best possible in the sense
that it fails for g = 2s+ 13. In this case

γ(E) =
g − s

2
− 2 <

1

2

[
g − 1

2

]
+ 2,

which contradicts [7, Proposition 3.8] if Cliff(C) =
[
g−1
2

]
. The points

of failure in the proof are when (m,n) = (1, 0) and (m,n) = (−1, 1)
(see (3.10) and (3.11)), i.e. for D ∼ H and D ∼ C −H. In fact H|C
contributes to Cliff(C), so, when g = 2s+ 13,

Cliff(C) ≤ d− 8 <

[
g − 1

2

]
.

When g = 2s+14 or g = 2s+15, we have d = Cliff(C)+8, so that H|C
computes the Clifford index. Thus Cliff(C) is realised by an embedding
of C in P4, although the Clifford dimension of C is 1, i.e. Cliff(C) is
computed by a pencil (a fact used in the proof of Theorem 3.3).
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Corollary 3.6. For g ≥ 12, there exists a curve C of maximal Clifford
index

[
g−1
2

]
such that

Cliff2(C) =
1

2

[
g − 1

2

]
+ 2.

Proof. Taking s =
[
g−14

2

]
in the theorem, we obtain

Cliff2(C) ≤ g − s
2
− 2 =

1

2

[
g − 1

2

]
+ 2 =

1

2
Cliff(C) + 2.

For the opposite inequality, see [7, Proposition 3.8]. �

Remark 3.7. The result also holds for g = 11 [4, Theorem 1.4]. For
g ≤ 10, we have Cliff(C) ≤ 4 for all C and Cliff2(C) = Cliff(C) by [7,
Proposition 3.8].

Finally, we can express Corollary 3.6 in terms of Cliff(C) rather
than g. Although this is technically a corollary of Theorem 3.3, it is of
sufficient interest for us to state it as a theorem.

Theorem 3.8. Let γ be an integer, γ ≥ 5. Then there exists a curve
C with Cliff(C) = γ such that

Cliff2(C) =
γ

2
+ 2.

Moreover C can be taken to have genus either 2γ + 1 or 2γ + 2.

Proof. For γ ≥ 6, this is a restatement of Corollary 3.6. For γ = 5, we
need also Remark 3.7. �

4. Open Questions

The following question (Mercat’s conjecture for rank 2 and general
C – see [10] and [9, Proposition 2.7]) remains open.

Question 4.1. Is it true that Cliff2(C) = Cliff(C) for the general curve
C of any genus?

Farkas and Ortega conjectured in [4] that the answer to this question
is yes and proved this for g ≤ 19 (for a proof when g ≤ 16, see [4, The-
orem 1.7]). If the answer is yes, we can ask a more precise question, the
answer to which is known only for g ≤ 10 (or equivalently Cliff(C) ≤ 4
(see [7, Proposition 3.8])).

Question 4.2. Is it true that Cliff2(C) = Cliff(C) whenever C is a
Petri curve?

It may be noted that none of the curves constructed in this paper or
in [4, 5, 8, 9] is general (they all lie on K3 surfaces with Picard number
2). Some of the curves are definitely not Petri (in particular those of
Corollary 3.6 and Theorem 3.8); however it remains possible that some
are Petri.
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Note also that, for any γ, there exist curves with

Cliff2(C) = Cliff(C) = γ

(for example, smooth plane curves of degree γ+ 4 – see [7, Proposition
8.1]).

Question 4.3. Suppose γ
2

+ 2 < γ′ < γ. Does there exist a curve C
with Cliff(C) = γ and Cliff2(C) = γ′?
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