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Abstract

Given 2 ≤ k ≤ n, the minimal (n− 1)-dimensional Gaussian mea-
sure of the union of the boundaries of k disjoint sets of equal Gaussian
measure in Rn whose union is Rn is of order

√
log k. A similar results

holds also for partitions of the sphere Sn−1 into k sets of equal Haar
measure.

1 Introduction

Consider the canonical Gaussian measure on Rn, γn. Given k ∈ N and k
disjoint measurable subsets of Rn each of γn measure 1/k we can compute
the (n − 1)-dimensional Gaussian measure of the union of the boundaries
of these k sets. Below (see Definition 1) we shall make clear what exactly
we mean by the (n− 1)-dimensional Gaussian measure but in particular our
normalization will be such that the (n−1)-dimensional Gaussian measure of
a hyperplane at distance t from the origin will be e−t2/2 (and not 1√

2π
e−t2/2

which is also a natural choice). The question we are interested in is what
is the minimal value that this quantity can take when ranging over all such
partitions of Rn. As is well known, the Gaussian isoperimetric inequality
([Bo, ST] implies that, for k = 2, the answer is 1 and is attained when the
two sets are half spaces. The answer is also known for k = 3 and n ≥ 2 and
is given by 3 2π/3-sectors in R2 (product with Rn−2) ([CCH]). The value
in question is then 3/2. If the k sets are nice enough (for example if, with
respect to the (n− 1)-dimensional Gaussian measure, almost every point in
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the union of the boundaries of the k sets belongs to the boundary of only two
of the sets) then the quantity in question is bounded from below by c

√
logk

for some absolute c > 0. This was pointed out to us by Elchanan Mossel.
Indeed, by the Gaussian isoperimetric inequality, the boundary of each of the
sets has measure at least e−t2/2 where t is such that 1√

2π

∫∞
t

e−s2/2ds = 1/k.
If k is large enough t satisfies

e−t2/2

√
2π2t

<
1

k
<

e−t2/2

√
2πt

which implies
√
log k ≤ t ≤

√
2 log k and so the boundary of each of the k

sets has (n − 1)-dimensional Gaussian measure at least e−t2/2 ≥
√
2πt/k ≥√

2π log k/k. Under the assumption that the sets are nice we then get a lower
bound of order

√
2π log k to the quantity we are after1.

Of course the minimality of the boundary of each of the k sets cannot
occur simultaneously for even 3 of the k sets (as the minimal configuration is
a set bounded by an affine hyperplane) so it may come as a surprise that one
can actually achieve a partition with that order of the size of the boundary.
To show this is the main purpose of this note. It is natural to conjecture that,
for k− 1 ≤ n the minimal configuration is that given by the Voronoi cells of
the k vertices of a simplex centered at the origin of Rn. So it would be nice to
compute or at least estimate well what one gets in this situation. This seems
an unpleasant computation to do. However, in Corollary 1 below we compute
such an estimate for a similar configuration - for even k with k/2 ≤ n, we look
at the k cells obtained as the Voronoi cells of ±ei, i = 1, . . . , k/2 and show
that the order of the (n− 1)-dimensional Gaussian measure of the boundary
is of order

√
log k and we deduce the main result of this note:

Main Result Given even k with k ≤ 2n, the minimal (n − 1)-dimensional
Gaussian measure of the union of the boundaries of k disjoint sets of equal
Gaussian measure in Rn whose union is Rn is of order

√
log k.

In Corollary 2 we deduce analogue estimates for the Haar measure on the
sphere Sn−1.

This note benefitted from discussions with Elchanan Mossel and Robi
Krauthgamer. I first began to think of the subject after Elchanan and I

1One may think that the right quantity should be
√
2π log k/2 since (almost) every

boundary point is counted twice but our Definition 1 is such that almost every boundary
point is counted with multiplicity of the number of sets in the partition it is on the
boundary of. In any case, absolute constants do not play a significant role here.
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spent some time trying (alas in vain) to use symmetrization techniques to
gain information on the (say, Gaussian) “k-bubble” conjecture and some
variant of it (see Conjecture 1.4 in [IM]). Robi asked me specifically the
question that is solved here, with some possible applications to designing
some algorithm in mind (but apparently the solution turned out to be no
good for that purpose). I thank Elchanan and Robi also for several remarks
on a draft of this note. I had also a third motivation to deal with this
question. It is related to the computation of the dependence on ε in (the
probabilistic version of) Dvoretzky’s theorem. It is too long to explain here,
especially since it does not seem to lead to any specific result.

2 Approximate isoperimetry for k sets

We begin with the formal definition of the (n − 1)-dimensional Gaussian
measure of the boundary of a partition of Rn into k sets.

Definition 1 Let A1, A2, . . . , Ak be a partition of Rn into k measurable sets.
Put A = {A1, A2, . . . , Ak} and denote

∂εA = ∪k
i=1((∪j ̸=iAj)ε \ ∪j ̸=iAj)

(where Bε denotes the ε-neighborhood of the set B). We shall call ∂εA the ε-
boundary of A. The (n− 1)-dimensional Gaussian measure of the boundary
of A will be defined and denoted by

γn−1(∂A) = lim inf
ε→0

γn(∂εA)− γn(A)√
2/πε

.

The reason we are using the above definition of ∂εA rather than what might
look more natural, ∪k

i=1((Ai)ε \ Ai), is that in the former the sets in the
union are disjoint, making the computation of the measure of the union
easier. Note that we do not define the boundary of the partition, only the
measure of the boundary. However, in simple cases when the boundary and
its (n−1)-dimensional Gaussian measure are well understood, this definition
coincides with the classical one (modulo normalization by absolute constant).
In particular notice that if the partition is into two sets which are separated by
a hyperplane at distance t from the origin the definition says that the (n−1)-
dimensional Gaussian measure of the boundary is e−t2/2 and in particular
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when t = 0 the measure is 1 which coincides with what we understand as
the classical γn−1 measure of a hyperplane through 0. This is why the factor√

2/π is present in the definition above.
The main technical tool here is Proposition 1 below for its proof we need

the following simple inequality.

Lemma 1 For all ε > 0 if C is large enough (depending on ε) then for all
k ∈ N

1√
2π

∫ √
2 logCk

√
2 log k

C
−1

( 1√
2π

∫ s

−s

e−t2/2dt
)k−1

e−s2/2ds ≥ 1

(2 + ε)k

Proof: Let g1, g2, . . . , gk be independent identically distributed N(0, 1) vari-
ables. Then by symmetry,

1√
2π

∫ ∞

0

( 1√
2π

∫ s

−s

e−t2/2dt
)k−1

e−s2/2ds = P (g1 ≥ |g2|, . . . , |gk|) =
1

2k
. (1)

Also,

1√
2π

∫ √
2 log k

C
−1

0

( 1√
2π

∫ s

−s

e−t2/2dt
)k−1

e−s2/2ds

=
1

2k

( 2√
2π

∫ s

0

e−t2/2
)k]√2 log k

C
−1

s=0
(2)

≤ 1

2k
(1− 2√

2π
e− log k

C )k ≤ 1

2k
e
− 2C√

2π ,

and, for C large enough,

1√
2π

∫ ∞

√
2 logCk

( 1√
2π

∫ s

−s

e−t2/2dt
)k−1

e−s2/2ds

=
1

2k

( 2√
2π

∫ s

0

e−t2/2
)k]∞

s=
√
2 logCk

(3)

≤ 1

2k

(
1−

(
1− 2√

2π

∫ ∞

√
2 logCk

e−s2/2
)k)

≤ 1

2k
(1− e−1/C).

The Lemma now follows from (1),(2) and (3).

The next proposition is the main technical tool of this note. The state-
ment involves the (appropriately normalized) (k − 1)-dimensional Gaussian
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measure of a certain subset of Rk. The set is the common boundary of the
Voronoi cells corresponding to e1 and e2 in the partition of Rk obtained by
the Voronoi cells of ±ei, i = 1, . . . , k/2. This set is a subset of a hyperplane
(through the origin of Rk) and for such a set the measure in question co-
incides with the canonical Gaussian measure associated with this subspace
(appropriately normalized).

Proposition 1 For each ε > 0 there is a C such that for all k ≥ 2, the
(k − 1)-dimensional Gaussian measure of the set {(t1, t2, . . . , tk); t1 = t2 ≥
|t3|, . . . , |tk|} is bounded between

√
π log k

C
−1

(1+ε)2k(k−1)
and (1+ε)

√
π logCk

2k(k−1)
.

Proof: The measure in question is

1√
2π

∫ ∞

0

( 1√
2π

∫ s

−s

e−t2/2dt
)k−2

e−s2ds.

Integration by parts (with parts
(

2√
2π

∫ s

0
e−t2/2dt

)k−2

e−s2/2 and e−s2/2) gives

that this it is equal to

1

2(k − 1)

∫ ∞

0

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds. (4)

Now,

∫ ∞

√
2 logCk

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds (5)

= −
∫ ∞

s

( 2√
2π

∫ u

0

e−t2/2dt
)k−1

e−u2/2dus
]∞
s=

√
2 logCk

+

∫ ∞

√
2 logCk

∫ ∞

s

( 2√
2π

∫ u

0

e−t2/2dt
)k−1

e−u2/2duds

≤
√
2π

2k
(1− e−1/C)

√
2 logCk +

∫ ∞

√
2 logCk

√
2π

2k
(1− e−ke−s2/2

)ds,

(6)

where the estimate for the first term in (6) follows from (3) and of the second
term follows from a similar computation to (3). Now (6) is at most

√
2π

2Ck

√
2 logCk +

∫ ∞

√
2 logCk

√
2π

2
e−s2/2ds ≤

√
2π(

√
2 logCk + 1)

2Ck
(7)
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and we conclude that∫ ∞

√
2 logCk

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds ≤
√
2π(

√
2 logCk + 1)

2Ck
. (8)

On the other hand∫ √
2 logCk

0

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds (9)

≤
√

2 logCk

∫ ∞

0

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

e−s2/2ds =

√
2π

√
2 logCk

2k
.

Now, (4),(8) and (9) gives the required upper bound. The lower bound
(which also follows from the Gaussian isoperimetric inequality) is easier. By
Lemma 1

1

2(k − 1)

∫ ∞

0

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds (10)

≥ 1

2(k − 1)

∫ √
2 logCk

√
2 log k

C
−1

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

se−s2/2ds (11)

≥

√
2 log k

C
− 1

2(k − 1)

∫ √
2 logCk

√
2 log k

C
−1

( 2√
2π

∫ s

0

e−t2/2dt
)k−1

e−s2/2ds (12)

≥

√
π log k

C
− 1

(1 + ε)2k(k − 1)
. (13)

The next Corollary is the main result here, in the most general setting
we need the definition of the (n − 1)-dimensional Gaussian measure of the
boundary of a partition of Rn into k sets given in Definition 1 above. Note
that this is the first time we use the full details of the definition; Until now
we dealt only with subsets of hyperplanes for which simpler definitions could
suffice.

Corollary 1 For some universal constants 0 < c < C < ∞ and all k =
2, 3, . . . ,
(1) If A = {A1, A2, . . . , Ak} is a partition of Rn into k measurable sets each
of γn measure 1/k. Then γn−1(∂A) ≥ c

√
log k.

(2) If k ≤ n, there is a partition A = {A1, A2, . . . , A2k} of Rn into 2k
measurable sets each of γn measure 1/2k such that γn−1(∂A) ≤ C

√
log k.
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(1) follows very similarly to the argument in the introduction, except
that there is no need for the boundary to be nice anymore: By the Gaussian
isoperimetric inequality, for each ε > 0 and each i = 1, . . . , k,

γn((∪j ̸=iAj)ε \ ∪j ̸=iAj) ≥
1√
2π

∫ t+ε

t

e−s2/2ds,

where t is such that 1√
2π

∫∞
t

e−s2/2ds = 1/k. If ε is small enough, the argu-

ment in the introduction gives that the integral in question is of order ε
√
log k
k

.
Since the k sets (∪j ̸=iAj)ε \∪j ̸=iAj are disjoint, we deduce (1). (2) follows di-
rectly from Proposition 1 since the boundary of the partition into the Voronoi
cells corresponding to {±ei}ki=1 is contained in the union of k(k − 1) hyper-
plans through zero and thus γn−1(∂A) coincide with the classical γn−1(∂A)
which is what is estimated in Proposition 1.

A similar result to Corollary 1 holds on the n-dimensional sphere, Sn−1

with its normalized Haar measure σn. One defines the ε-boundary of a par-
tition A of the sphere in a similar way to the first part of Definition 1 (using,
say, the geodesic distance to define the ε-neighborhood of a set). Then one
defines the (n− 1)-dimensional Haar measure of the boundary of A by

σn−1(∂A) = lim inf
ε→0

σn(∂εA)− σn(A)√
2n/πε

.

The choice of the normalization constant
√

2n/π was made so that if the
partition is into two sets separated by a hyperplane then the measure of
the boundary (which “is” Sn−2) will be 1. The proof of the upper bound
((2) of Corollary 2) can be obtained from that of Corollary 1 by a standard
reduction, using the fact that if (g1, . . . , gn) is a standard Gaussian vector
then the distribution of (

∑
g2i )

−1(g1, . . . , gn) is σn. Note that we deal only
with subsets of centered hyperplanes here so there is no problem with the
reduction. The lower bound (1) can also be achieved using this reduction
although one needs to be a bit more careful. Alternatively, a similar argu-
ment to that of the Gaussian case (given in the introduction), replacing the
Gaussian isoperimetric inequality with the spherical isoperimetric inequality
can be used.

Corollary 2 For some universal constants 0 < c < C < ∞ and all k =
2, 3, . . . ,
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(1) If A = {A1, A2, . . . , Ak} is a partition of Sn−1 into k measurable sets each
of σn measure 1/k. Then σn−1(∂A) ≥ c

√
log k.

(2) If k ≤ n, there is a partition A = {A1, A2, . . . , A2k} of Sn−1 into 2k
measurable sets each of σn measure 1/2k such that σn−1(∂A) ≤ C

√
log k.

Remark 1 It may be interesting to investigate what happens when k >> n.
In particular, if k = 2n then the partition of Rn into its k = 2n quadrants
satisfy that the γn−1 measure of its boundary (consisting of the coordinates
hyperplanes) is n = log k. Is that the best (order) that can be achieved?
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