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Abstract. We prove local “Lp-improving” estimates for a class of multilin-
ear Radon-like transforms satisfying a strong transversality hypothesis. As a

consequence, we obtain sharp multilinear convolution estimates for measures
supported on fully transversal submanifolds of euclidean space of arbitrary
dimension. We also prove global estimates for the same class of Radon-like

transforms under a natural homogeneity assumption.

1. Introduction

The main purpose of this paper is to obtain local and global estimates for a class
of multilinear Radon-like transforms satisfying a transversality hypothesis.

A popular description of a Radon-like transform is a mapping R of the form

Rf(x) =

∫
Rd

f(y)δ(F (y, x))ψ(y, x) dy,

where f : Rd → C is a suitable test function, x ∈ Rn and F : Rd × Rn → Rk a
suitably smooth function which typically satisfies some nondegeneracy condition on
the support of the cutoff function ψ. Here d, k, n ∈ N and δ denotes the Dirac delta
distribution on Rk. If ∇F does not vanish then δ ◦ F is easily seen to be a well-
defined distribution. Notice that Rf(x) may be interpreted as a surface integral
(or “average”) of f over the submanifold

Mx := {y ∈ Rd : F (y, x) = 0},
which generically has dimension d−k. It is natural to seek so-called “Lp-improving”
properties of such transforms; that is, given F find the exponents p and q for which
R extends to a bounded mapping from Lp(Rd) into Lq(Rn). There is a considerable
literature on such problems which we do not discuss here, although the interested
reader should consult the paper of Tao and Wright [13].

A natural description of a multilinear Radon-like transform is a mapping R of the
form

(1) Rf(x) =

∫
Rd1×···×Rdm

f1(y1) · · · fm(ym)δ(F (y, x))ψ(y, x) dy,

where f = (fj)
m
j=1, fj : Rdj → C is a suitable test function, x ∈ Rn and F :

Rn × Rd1 × · · · × Rdm → Rk is a suitably smooth function which typically satisfies
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some nondegeneracy conditions on the support of the cutoff function ψ. Again it is
natural to seek Lp1(Rd1)× · · · × Lpm(Rdm) → Lq(Rn) estimates for R. By duality
these qualities may be expressed as bounds on multilinear forms such as

(2)

∫
Rd1×···×Rdm+1

m+1∏
j=1

fj(yj)δ(F (y))ψ(y) dy ≤ C
m+1∏
j=1

∥fj∥Lpj (Rdj ).

Estimates of the form (2) arise frequently in problems in a variety of fields including
geometric and harmonic analysis, and dispersive PDE. Often these are manifested
as certain multilinear singular convolution inequalities, which we now describe. In
the work of Tao, Vargas and Vega [12] it was shown that whenever S1 and S2

are transversal compact submanifolds of Rd, where d ≥ 2, which are smooth with
nonvanishing gaussian curvature, we have the estimate

(3) ∥f1dσ1 ∗ f2dσ2∥L2(R2) ≤ C∥f1∥
L

4d
3d−2 (dσ1)

∥f2∥
L

4d
3d−2 (dσ2)

.

Here, dσj is the measure supported on Sj given by∫
Rd

f(x) dσj(x) =

∫
Uj

f(Σj(x
′)) dx′,

where Σj : Uj → Rd parametrises Sj for some compact subset Uj of Rd−1. See [8]
for the case d = 3 on which [12] built. The estimate in (3) was obtained in [12]
from a Ld/d−1(Rd) → Ld(Rd) estimate on the Radon-like transform in (1) with
m = 1 and where F satisfies a rotational curvature condition on the support of the
cutoff. By Plancherel’s theorem, (3) immediately implies a bilinear adjoint Fourier
restriction estimate for transversal compact subsets of surfaces given by the graph
of an elliptic phase (such as a paraboloid).

At higher levels of multilinearity, in particular when the level coincides with the
ambient dimension, transversality is key and additional curvature hypotheses do
not increase the Lp improving nature of the singular convolution operation. It is
known that if S1, . . . , Sd are transversal C1,β codimension-one submanifolds of Rd

at the origin, 1 ≤ q ≤ ∞ and p′j ≤ (d− 1)q′, then

(4) ∥f1dσ1 ∗ · · · ∗ fddσd∥Lq(Rd) ≤ C
d∏

j=1

∥fj∥Lpj (dσj)

if each fj ∈ Lpj (dσj) has support sufficiently close to the origin. This follows from
[7] when d = 3, and [5] for d ≥ 4. In [4] the case d = 3, q = ∞ was considered
under certain scaleable assumptions at each point of the hypersurfaces.

A major goal of this paper is to provide a certain generalisation of (4) to transversal
submanifolds of general codimension. This will be a consequence of Theorem 1.2
below concerning local multilinear Radon-like transform estimates. To be precise,
let Uj be a compact subset of Rdj and let Σj : Uj → Rd parametrise a C1,β and
dj-dimensional submanifold Sj of Rd, where d ≥ 2 and 1 ≤ j ≤ m. As above, define
the associated measure dσj on Rd by∫

Rd

f(x) dσj(x) =

∫
Uj

f(Σj(y)) dy.
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We say that S1, . . . , Sm are fully transversal at the origin if

(5)

m⊕
j=1

ker(dΣj(0))
∗ = Rd.

Theorem 1.1. Suppose that the submanifolds S1, . . . , Sm are fully transversal at
the origin. If 1 ≤ q ≤ ∞ and p′j ≤ (m − 1)q′, then there exists a constant C such
that

(6) ∥f1dσ1 ∗ · · · ∗ fmdσm∥Lq(Rd) ≤ C
m∏
j=1

∥fj∥Lpj (dσj)

for all fj ∈ Lpj (dσj) supported in a sufficiently small neighbourhood of the origin.

The case m = 3 was considered by Bejenaru–Herr [2] (albeit under certain scaleable
assumptions over the entire patches Uj in the spirit of [4]) in proving certain well-
posedness results for the three-dimensional Zakharov system. Also, when dj = d−1
for each 1 ≤ j ≤ m, Theorem 1.1 was proved in [5].

In Theorem 1.1, the most interesting case is where p′j = (m− 1)q′ for each j since,
of course, the remaining cases follow from Hölder’s inequality. We shall discuss the
optimality of the estimates given by Theorem 1.1 later in Section 3, including a
justification that given, 1 ≤ q ≤ ∞, the exponent p satisfying p′ = (m−1)q′ cannot
be improved.

Under the hypotheses of Theorem 1.1, taking q = 2 and via Plancherel’s theorem,
we obtain the estimate∥∥∥∥ m∏

j=1

f̂jdσj

∥∥∥∥
L2(Rd)

≤ C

m∏
j=1

∥fj∥L(2m−2)′ (dσj)

for all fj ∈ L(2m−2)′(dσj) supported in a sufficiently small neighbourhood of the
origin. This estimate is, of course, a certain multilinear adjoint Fourier restriction
estimate for fully transversal submanifolds of Rd, and extends previous results of
this nature in [7] and [5].

Notice that for the transversality assumption (5) to hold it is necessary that

(7)

m∑
j=1

dj = (m− 1)d.

It is also natural to assume that m ≥ 2 and 1 ≤ dj ≤ d− 1 for each 1 ≤ j ≤ m. We
shall now state our local result on Radon-like transforms, for which we shall assume
the above restrictions on d,m and each dj . In order to state the theorem, we need
to introduce a little notation which shall be adopted throughout the paper.

Let
Kj = {d1 + · · ·+ dj−1 + 1, . . . , d1 + · · ·+ dj−1 + dj}

for 1 ≤ j ≤ m, so that (Kj)
m
j=1 partition {1 . . . , (m − 1)d}. Note that the cardi-

nality of each Kj is dj . In addition, it is natural to introduce some language from
exterior algebra to express the nondegeneracy assumption on the mapping F in
the distribution δ ◦ F . We use the standard notation Λn(Rd) for the nth exterior
algebra of Rd. Also, we use ⋆ : Λn(Rd) → Λd−n(Rd) for the Hodge star operator.
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For a linear map F : Rd1 × · · · × Rdm → Rd, let Yj(F ) ∈ Λdj (Rd) be given by

(8) Yj(F ) =
∧

k∈Kj

F (ek) ∈ Λdj (Rd),

where ek denotes the kth standard basis vector in R(m−1)d ∼= Rd1 × · · · × Rdm .

We shall write ek for the kth standard basis vector throughout; the dimension shall
be clear from the context. Also, with an index such as k ∈ Kj , as in (8), we shall
always mean that the operation is being performed as k increases over Kj .

Theorem 1.2. Let
∑m

j=1 dj = (m − 1)d. If F : Rd1 × · · · × Rdm → Rd is C1,β in

a neighbourhood of some point y∗ ∈ Rd1 × · · · × Rdm for some β > 0 and

(9) ⋆
m∧
j=1

⋆Yj(dF (y∗)) ̸= 0,

then there exists a neighbourhood V of y∗ and a constant C such that

(10)

∫
V

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
m∏
j=1

∥fj∥L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

It is important to point out the nondegeneracy hypothesis (9) need only be imposed
on some neighbourhood of the zero set of F . Some further remarks concerning
Theorem 1.2 are now in order.

Firstly, suppose we have a mapping G : (Rd−1)d−1 → R which is C1,β in a neigh-
bourhood of a point u∗ ∈ (Rd−1)d−1 and satisfies the nondegeneracy assumption

det(∇u1G(u∗) · · · ∇ud−1
G(u∗)) ̸= 0.

Then there exists a neighbourhood V of u∗ and a constant C such that
(11)∫

V

f1(u1) · · · fd−1(ud−1)fd(u1 + · · ·+ ud−1)δ(G(u)) du ≤ C
d∏

j=1

∥fj∥L(d−1)′ (Rd−1)

for all nonnegative fj ∈ L(d−1)′(Rd−1). This was proved in [7] for d = 3 and [5] for
d ≥ 4, and the multilinear singular convolution estimate in (4) for hypersurfaces
is a consequence of (11). Observe that (11) follows from Theorem 1.2 by taking
m = d, dj = d− 1 for each j, and F : (Rd−1)d → Rd given by

F (y1, . . . , yd) = (yd − yd−1 − · · · − y1, G(y1, . . . , yd−1)).

An especially elegant case of Theorem 1.2 occurs when m = d = 3 and dj = 2 for
each j. In this case, the nondegeneracy assumption (9) is simply that

(12) det(Y1(dF (y∗)) Y2(dF (y∗)) Y3(dF (y∗))) ̸= 0,

where

Yj(dF (y∗)) = ∇(yj)1F (y∗)×∇(yj)2F (y∗).
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Then Theorem 1.2 tells us that there exists a neighbourhood V of y∗ in (R2)3 and
a constant C such that∫

V

f1(y1)f2(y2)f3(y3)δ(F (y)) dy ≤ C∥f1∥L2(R2)∥f2∥L2(R2)∥f3∥L2(R2)

for all nonnegative f1, f2, f3 ∈ L2(R2).

One interpretation of inequality (10) is that it is a distributional Lp variant of the
multilinear weighted L2 estimates of Tao [11]. At the end of this section we provide
another more explicit perspective from a dispersive PDE point of view.

Next, we present our global extension of Theorem 1.2 under the additional hypoth-
esis that F is homogeneous of degree one. Our original motivation for considering
this setting stemmed from the appearance of certain globally-defined multilinear
Radon-like transforms in diffraction tomography, and we shall elaborate on this
shortly. The hypothesis that F be homogeneous of degree one is of course a natural
assumption since it encompasses the case of linear F . Observe that mappings F
which are homogeneous of degree one are not, in general, smooth at the origin. As a
consequence, the neighbourhood V obtained from Theorem 1.2 will not contain the
origin and thus a trivial globalisation argument based on a direct isotropic scaling
argument will not run.

Theorem 1.3. Suppose
∑m

j=1 dj = (m − 1)d. If F : Rd1 × · · · × Rdm → Rd is

homogeneous of degree one, with regularity C1,β for some β > 0, and

(13) ⋆

m∧
j=1

⋆Yj(dF (ω)) ̸= 0

for each ω in the unit sphere, then there exists a constant C such that∫
Rd1×···×Rdm

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
m∏
j=1

∥fj∥L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

There is a superficially stronger version of Theorem 1.3 where the hypothesis (13) is
made on the support of a cutoff function ψ defined on the unit sphere in Rd1+···+dm ,
and the resulting inequality is replaced by∫

Rd1×···×Rdm

m∏
j=1

fj(yj)δ(F (y))ψ(y/|y|) dy ≤ C

m∏
j=1

∥fj∥L(m−1)′ (Rdj ).

This fact, which is immediately apparent from the forthcoming proof, allows The-
orem 1.3 to be applied in situations where the form in (13) has vanishing points.

Again, we emphasise that (13) only need hold for each unit vector ω which belongs
to some neighbourhood of the zero set of F . We can see the importance of this in
the example F : (R2)3 → R3 given by

F (y1, y2, y3) = (y3 − y1 − y2, |y1| − |y2|)
since although the modulus function ceases to be smooth at the origin, F is smooth
at unit vectors ω belonging to a small neighbourhood of the zero set of F .
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Similar explicit examples of globally-defined multilinear Radon-like transforms arise
in diffraction tomography, and it was these specific operators that inspired Theorem
1.3. A simple example arises in the theory of obstacle scattering, and in particular in
the recovery of singularities (in the scale of classical Sobolev spaces) of a potential
q by its so-called Born approximation qB . As may be seen (for example in [9]),
smoothing estimates for the mapping q 7→ q − qB may be reduced to bounds on
multilinear forms comprising the associated Born series. In particular, an important
trilinear term takes the form

(14) Λ(q̂, q̂, q̂) :=

∫
(R2)3

q̂(y1)

|y1|a
q̂(y2)

|y2|b
q̂(y3)

|y3|c
δ(F (y)) dy,

where F : (R2)3 → R3 is given by

F (y1, y2, y3) =
(
y3 − y1 − y2,

∣∣∣y1 − y2
2

∣∣∣− ∣∣∣y2
2

∣∣∣)
and a, b, c are real numbers. Here, as usual, q̂ denotes the Fourier transform of q.
As may be seen in [9], a direct and very case-specific analysis yields Sobolev norm
bounds on Λ(q̂, q̂, q̂). Although the very general Theorem 1.3 succeeds in shedding
some light on the underlying geometry, it (as stated at least) does not appear to
be sufficiently quantitative to readily recover these results.

Our proof of Theorem 1.2 rests on the nonlinear Brascamp–Lieb inequalities proved
in [5], and proceeds via a parametrisation of the support of the distribution δ ◦ F .
Using this approach, one is led estimates of the form

(15)

∫
U

m∏
j=1

fj(Bj(x)) dx ≤ C

m∏
j=1

∥fj∥Lpj (Rdj ),

where U is a neighbourhood of Rd, and Bj : U → Rdj are local submersions.
See Section 2 for a precise statement of the inequalities from [5] that we need in
this paper. We also note that Lp-improving estimates of the type (15) have been
obtained by Tao and Wright [13] for m = 2, and Stovall [10] for m ≥ 3; in these
works, curvature plays a more prominent role than transversality, and are restricted
to the case where the fibres of the underlying mappings Bj are one-dimensional.

We provide a direct proof of Theorem 1.3 in Section 4. We note that one may
also obtain Theorem 1.3 as a consequence of the global nonlinear Brascamp–Lieb
inequalities in the companion paper [1]. In the setting of estimates of the form (15),
our globalisation argument is especially natural.

To conclude this section, we mention an interpretation of some of our results from
a dispersive PDE point of view. For n ∈ N, consider solutions uj : R× Rn → R to
the dispersive PDE

(16) ∂tuj(t, x) = ihj(D)uj(t, x)

for 1 ≤ j ≤ n + 1. Here, D is the frequency operator i−1∇ and the hj : Rn → R
are the dispersion relations. If the initial data are sufficiently nice (say Schwartz
functions) we may write the solutions as

uj(t, x) =

∫
Rn

ûj(0)(ξ)e
2πi(thj(ξ)+x·ξ) dξ,
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and consequently∫
R×Rn

n+1∏
j=1

uj(t, x) dtdx =

∫
(Rn)n+1

n+1∏
j=1

ûj(0)(ξj)δ(F (ξ)) dξ

where F : (Rn)n+1 → Rn+1 is given by

F (ξ) = (ξ1 + · · ·+ ξn+1, h1(ξ1) + · · ·hn+1(ξn+1)).

In this case, the nondegeneracy condition (9) is equivalent to the transversality of
the hypersurfaces in Rn+1 which are the graphs of the hj . If this holds then from
either Theorem 1.2 or Theorem 1.3 we obtain “interaction” estimates of the type

(17)

∣∣∣∣ ∫
V⊆R×Rn

n+1∏
j=1

uj(t, x) dtdx

∣∣∣∣ ≤ C

n+1∏
j=1

∥ûj(0)∥Ln′ (Rn).

In the case of n+ 1 solutions of the classical Schrödinger equation, where hj(ξ) =
−|ξ|2 for each j, we have the appropriate transversality by insisting that the initial
data have disjoint compact supports. When n = 2, (17) is a certain weak form
of the sharp multilinear extension estimates associated to compact subsets of the
paraboloid, where the endpoint Lebesgue space on the left-hand side is L1.

When each hj(ξ) = |ξ| (strictly speaking, giving rise to a pseudo-differential oper-
ator associated to the wave equation), by Theorem 1.3 we may take V = R×Rn if
we have initial data supported in disjoint conical regions.

Finally, we mention the case where hj(ξ) = −vj · ξ for some fixed vj ∈ Rn in which
case (16) is of course a transport equation. Since hj is linear and when v1, . . . , vn+1

are non-colinear we obtain global estimates in (17). However, we know that the
stronger estimate∣∣∣∣ ∫

R×Rn

n+1∏
j=1

uj(t, x) dtdx

∣∣∣∣ ≤ C
n+1∏
j=1

∥uj(0)∥Ln(Rn)

is true in this case, so that (17) follows by an application of the Hausdorff–Young
inequality on the right-hand side. This follows because we know that the analogous
improvement to Theorem 1.2 is true when F is linear (some further remarks on
this can be found in Section 3). Furthermore, for such hj , since nonnegativity is
preserved by the solution map, and the solution is given by uj(t, x) = uj(0)(x−vjt),
we may pass modulus signs through the integral on the left-hand side of (17), and
the resulting estimate may be viewed as a re-interpretation of the Loomis–Whitney
inequality.

Organisation of the paper. In Section 2 we prove a certain quantitative version of
Theorem 1.2. In Section 3 we deduce the multilinear singular convolution estimates
in Theorem 1.1. Finally, Theorem 1.3 is proved in Section 4.

Acknowledgement. We would like to thank Juan Antonio Barceló and Alberto Ruiz
for drawing our attention to the form (14), and to Juan Antonio Barceló for his
significant contribution during the early stages of this work. We are also grateful
for the support of the Isaac Newton Institute for Mathematical Sciences where part
of this work was carried out.
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2. The local case

We begin a quantitative version of Theorem 1.2 which extends earlier versions in
[7] and [5], and from which we deduce Theorem 1.1 in Section 3.

Theorem 2.1. Let β, ε, κ > 0 be given and suppose
∑m

j=1 dj = (m − 1)d. If

F : Rd1 × · · · × Rdm → Rd is such that ∥F∥C1,β ≤ κ in a neighbourhood of some
point y∗ ∈ Rd1 × · · · × Rdm and∣∣∣∣ ⋆ m∧

j=1

⋆Yj(dF (y∗))

∣∣∣∣ ≥ ε

then there exists a neighbourhood V of y∗, depending only on β, ε, κ and d, and a
constant C depending only on d, such that∫

V

m∏
j=1

fj(yj)δ(F (y)) dy ≤ Cε−
1

m−1

m∏
j=1

∥fj∥L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

It will be clear from the proof of Theorem 2.1 that the rate of blow-up ε−1/m−1 is
sharp.

Before entering the proof of Theorem 2.1 we offer an outline in the case explicitly
presented in the Introduction, where m = d = 3 and each dj = 2. For additional
simplicity, set y∗ = 0. The first step is to reduce to a “canonical” mapping F via
linear changes of variables. Specifically, there exist invertible matrices M,N such
that if

F̃ := N ◦ F ◦M−1

then

(18) dF̃ (0) =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .

To see this, let n1, n2, n3 ∈ S2 be given by

n1 =
Y3(dF (0))

|Y3(dF (0))|
, n2 =

Y2(dF (0))

|Y2(dF (0))|
, n3 =

Y1(dF (0))

|Y1(dF (0))|
and let N be the matrix whose ith row is equal to ni. Furthermore, let N1, N2, N3

be the matrices given by

N1 =

(
n1
n2

)
, N2 =

(
n1
n3

)
, N3 =

(
n2
n3

)
and let F1, F2, F3 be the matrices given by

Fj =
(
∇(yj)1F (0) ∇(yj)2F (0)

)
for j = 1, 2, 3. Finally, we let M be the block diagonal matrix given by

M =

 E1N1F1 0 0
0 E2N2F2 0
0 0 E3N3F3
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where E1 and E3 are simply the identity matrices, and E2 is the elementary matrix
which reflects in the line spanned by (1, 1). It is an easy check to verify that the
above construction yields (18). Observe that using the scalar quadruple product
formula, one obtains

|det(NjFj)| = |Yj(dF (0))||det(N)|
for each j = 1, 2, 3, which allows one to obtain the desired quantitative control.

Note that if F were the linear map given by (18) then, by parametrising the zero set
of F , one is led to linear mappings Bj : R3 → R2 whose kernels are one-dimensional
and form the coordinate axes. An appropriate form of the implicit function theo-
rem allows one to handle small nonlinear perturbations of this situation, and the
required multilinear Radon transform estimate follows in this simple situation from
the nonlinear Loomis–Whitney inequality in [7]. At this stage, in the general case,
we rely on the following nonlinear Brascamp–Lieb inequalities.

Theorem 2.2. [5] Suppose that for each 1 ≤ j ≤ m the mappings Bj : Rd → Rdj

are C1,β submersions in a neighbourhood of a point x0 ∈ Rd. Suppose further that

(19)
m⊕
j=1

ker dBj(x0) = Rd.

Then there exists a neighbourhood U of x0 and a constant C such that

(20)

∫
U

m∏
j=1

fj ◦Bj ≤ C

m∏
j=1

∥fj∥Lm−1(Rdj )

for all nonnegative fj ∈ Lm−1(Rdj ), 1 ≤ j ≤ m.

However, for most cases, the kernels of the derivatives of the mappings Bj at the
point in question do not form a direct sum decomposition. So, as a cautionary
note, in general, a further “tensoring” argument is needed at this stage in order
to apply Theorem 2.2. For this to proceed, we combine the Bj appropriately in
“block” form, to give rise to mappings which do satisfy the direct sum hypotheses
of Theorem 2.2 (see [5] for the origin of this idea).

Proof of Theorem 2.1. We have
∑m

j=1 dj = (m − 1)d in which case we frequently

identify (y1, . . . , ym) ∈ Rd1 × · · · × Rdm with (u1, . . . , u(m−1)d) ∈ R(m−1)d.

We first prove that the following special case implies Theorem 2.1.

Proposition 2.3. Let β, κ > 0 be given and suppose
∑m

j=1 dj = (m − 1)d. If

F : Rd1 × · · · × Rdm → Rd is such that ∥F∥C1,β ≤ κ in a neighbourhood of some
point y∗ ∈ Rd1 × · · · × Rdm and dF (y∗) : Rd1 × · · · × Rdm → Rd is given by

(21) (dF (y∗)u)i =

m−2∑
j=0

ui+jd

for 1 ≤ i ≤ d, then there exists a neighbourhood V of y∗, depending only on β, κ
and d, and a constant C depending only on d, such that∫

V

m∏
j=1

fj(uj)δ(F (u)) du ≤ C

m∏
j=1

∥fj∥L(m−1)′ (Rdj )
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for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

We remark that if F satisfies (21) then dF (y∗) is the augmented matrix comprising
m− 1 copies of the identity matrix Id, and moreover | ⋆

∧m
j=1 ⋆Yj(dF (y∗))| = 1.

The proof that Proposition 2.3 implies Theorem 2.1 is based on the change of
variables outlined above. To set this up in general, for 1 ≤ j ≤ m, we let

K∗
j = {d− (d∗1 + · · · d∗j−1 + d∗j ) + 1, . . . , d− (d∗1 + · · · d∗j−1)},

where d∗j := d− dj . Clearly, K∗
j has d∗j elements.

Now let {nk : k ∈ K∗
j} be any orthonormal basis for the orthogonal complement of

the space spanned by {dF (y∗)(ek) : k ∈ Kj}, and let N be the d× d matrix whose
ith row is equal to ni for each 1 ≤ i ≤ d.

Denote by Nj the dj × d matrix obtained by deleting from N the rows nk for each
k ∈ K∗

j , and by Fj the d × dj matrix obtained by deleting the kth column from
dF (y∗) for k /∈ Kj .

From Lemma A.1, for each 1 ≤ j ≤ m, we have

(22) ⋆Yj(dF (y∗)) = ∥Yj(dF (y∗))∥Λdj (Rd)

∧
k∈K∗

j

nk.

We shall use (22) to demonstrate various identities involving the determinants of
the matrices describing the changes of variables, from which we obtain inequalities
which allow us to establish the claimed dependences in the sizes of the neighbour-
hood and constants arising in Theorem 2.1.

It follows from (22) that∣∣∣∣ ⋆ m∧
j=1

⋆Yj(dF (y∗))

∣∣∣∣ = ∣∣∣∣ ⋆ m∧
j=1

∧
k∈K∗

j

nk

∣∣∣∣ m∏
j=1

∥Yj(dF (y∗))∥Λdj (Rd)

and therefore

(23)

∣∣∣∣ ⋆ m∧
j=1

⋆Yj(dF (y∗))

∣∣∣∣ = |det(N)|
m∏
j=1

∥Yj(dF (y∗))∥Λdj (Rd).

Furthermore,

|det(NjFj)| =
∣∣∣∣⟨ ∧

k/∈K∗
j

nk,
∧

ℓ∈Kj

dF (y∗)(eℓ)

⟩
Λdj (Rd)

∣∣∣∣
=

∣∣∣∣⟨ ∧
k/∈K∗

j

ak, Yj(dF (y∗))

⟩
Λdj (Rd)

∣∣∣∣
= ∥Yj(dF (y∗))∥Λdj (Rd)

∣∣∣∣⟨ ∧
k/∈K∗

j

nk, ⋆
∧

ℓ∈K∗
j

nℓ

⟩
Λdj (Rd)

∣∣∣∣
= ∥Yj(dF (y∗))∥Λdj (Rd)|det(N)|.
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Consequently,

(24)
m∏
j=1

|det(NjFj)| = |det(N)|m−1

∣∣∣∣ ⋆ m∧
j=1

⋆Yj(dF (y∗))

∣∣∣∣.
Now define M to be the block diagonal

∑m
j=1 dj ×

∑m
j=1 dj matrix with dj × dj

invertible matrices Mj on the diagonal. Here Mj is given by

Mj = E−1
j AjFj

where Ej : Rdj → Rdj is given by

Ej(x1, . . . , xdj ) = (xd′
1+···+d′

j−1+1, . . . , xdj , x1, . . . , xd′
1+···+d′

j−1
)

for 2 ≤ j ≤ m− 1, E1 = Id1 and Em = Idm . Since
∑m

ℓ=1 d
′
ℓ = d and each d′ℓ ≥ 1 it

follows that
j−1∑
ℓ=1

dℓ < (j − 1)d <

j∑
ℓ=1

dℓ

for each 2 ≤ j ≤ m − 1; in particular, it follows that each Ej is well-defined. By

construction, we have that if F̃ : Rd1 × · · · × Rdm → Rd is the map given by

F̃ := N ◦ F ◦M−1

then dF̃ (ỹ∗) : Rd1 × · · · × Rdm → Rd is the map given by

(dF̃ (ỹ∗)u)i =

m−2∑
j=0

ui+jd

for 1 ≤ i ≤ d, where ỹ∗ :=My∗.

By changes of variables,∫
V

m∏
j=1

fj(yj)δ(F (y)) dy =
|det(N)|
|det(M)|

∫
M(V )

m∏
j=1

(fj ◦M−1
j )(yj)δ(F̃ (y)) dy,

where the neighbourhood V of y∗ shall be chosen momentarily. It follows from (23)
that |det(N)| is bounded below by a constant depending only on ε, κ and d. Since
|det(M)| =

∏m
j=1 |det(Mj)| and |det(Mj)| = |det(NjFj)| it follows from (24) that

(25) |det(M)| = |det(N)|m−1

∣∣∣∣ ⋆ m∧
j=1

⋆Yj(dF (y∗))

∣∣∣∣
and |det(M)| is also bounded below by a constant depending only on ε, κ and d.

Therefore, the operator norm of M−1 and, consequently, the C1,β norm of F̃ are
bounded above by a constant depending only on β, ε, κ and d. By Proposition 2.3
there exists a neighbourhood V , depending only on β, ε, κ and d, and a constant
C, depending only on d, such that∫

M(V )

m∏
j=1

(fj ◦M−1
j )(yj)δ(F̃ (y)) dy ≤ C

m∏
j=1

∥fj ◦M−1
j ∥L(m−1)′ (Rdj ).
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Therefore,

∫
V

m∏
j=1

fj(uj)δ(F (y)) dy ≤ C
|det(N)|
|det(M)|

( m∏
j=1

|det(Mj)|
) 1

(m−1)′
m∏
j=1

∥fj∥L(m−1)′ (Rdj )

≤ Cε−
1

m−1

m∏
j=1

∥fj∥L(m−1)′ (Rdj ).

The second inequality follows from (25). This concludes our proof that Theorem
2.1 is implied by Proposition 2.3.

Proof of Proposition 2.3. Without loss of generality we suppose that y∗ = 0 and
F (0) = 0. Since

dF (0)|span{er:(m−2)d+1≤r≤(m−1)d} = Id

we obtain from Theorem B.1 that there exists a neighbourhood W of the origin in
R(m−2)d and a mapping η :W → Rd such that for each

x = (u1, . . . , um−2, (um−1)1, . . . , (um−1)dm−1−d′
m
) ∈W

we have F (x, η(x)) = 0 and η(0) = 0. The neighbourhood W depends only on β, κ
and d, and the mapping η satisfies ∥η∥C1,β ≤ κ̃ for some constant κ̃ which depends
only on β, κ and d.

Let Bj :W ⊂ R(m−2)d → Rdj be the map given by

Bj(x) =
(
x1+

∑j−1
ℓ=1 dℓ

, x2+
∑j−1

ℓ=1 dℓ
, . . . , x∑j

ℓ=1 dℓ

)
for 1 ≤ j ≤ m− 2,

Bm−1(x) =
(
x1+

∑m−2
ℓ=1 dℓ

, . . . , x(m−2)d,−η1(x), . . . ,−ηd′
m
(x)

)
and

Bm(x) =
(
− ηd′

m+1(x), . . . ,−ηd(x)
)
.

Let S(j) denotes the (m − 2)-tuple obtained by deleting j − 2 (mod m) and j −
1 (mod m) from the m-tuple (1, . . . ,m). Then define B⊕

j : W ⊂ R(m−2)d → Rd⊕
j ,

where

d⊕j =
m−2∑
ℓ=1

d
S

(j)
ℓ

,

by

B⊕
j (x) = (B

S
(j)
1

(x), . . . , B
S

(j)
m−2

(x)).
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Lemma 2.4. Suppose 3 ≤ j ≤ m− 1. Then

ker dB⊕
1 (0) = span

{
er : r = 1 +

m−2∑
ℓ=1

dℓ, . . . , (m− 2)d

}
,

ker dB⊕
2 (0) = span{er : r = d′m + 1, . . . , d1},

ker dB⊕
j (0) = span

{
er − er+d : r = 1 +

j−3∑
ℓ=1

dℓ, . . . ,

( j−1∑
ℓ=1

dℓ

)
− d

}
,

ker dB⊕
m(0) = span

{
er − er+d : r = 1 +

m−3∑
ℓ=1

dℓ, . . . , (m− 3)d

}
+ span{es : s = (m− 3)d+ 1, . . . , d′m + (m− 3)d}.

Proof. Of course, for 1 ≤ j ≤ m − 2, Bj is linear and therefore dBj(0) = Bj . By
the chain rule,

dη(0) = −dF (0)|span{er :1≤r≤(m−2)d}

because dF (0)|span{er:(m−2)d+1≤r≤(m−1)d} = Id. Hence,

dBm−1(0)x =

(
x1+

∑m−2
ℓ=1 dℓ

, . . . , x(m−2)d,−
m−3∑
ℓ=0

x1+ℓd, . . . ,−
m−3∑
ℓ=0

xd′
m+ℓd

)
and

dBm(0)x =

(
−

m−3∑
ℓ=0

xd′
m+1+ℓd, . . . ,−

m−3∑
ℓ=0

xd+ℓd

)
.

The claimed expression for the kernel of each dB⊕
j (0) now follows from the fact

that

ker dB⊕
j (0) =

m−2∩
ℓ=1

ker dB
S

(j)
ℓ

(0)

and straightforward considerations. �
Corollary 2.5. We have

m⊕
j=1

ker dB⊕
j (0) = R(m−2)d.

Proof. For 3 ≤ j ≤ m− 1, define

B1 :=

{
er : r = 1 +

m−2∑
ℓ=1

dℓ, . . . , (m− 2)d

}
B2 := {er : r = d′m + 1, . . . , d1}

Bj :=

{
er − er+d : r = 1 +

j−3∑
ℓ=1

dℓ, . . . ,

( j−1∑
ℓ=1

dℓ

)
− d

}

Bm :=

{
er − er+d : r = 1 +

m−3∑
ℓ=1

dℓ, . . . , (m− 3)d

}
∪ {es : s = (m− 3)d+ 1, . . . , d′m + (m− 3)d},
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and define

B =

m∪
j=1

Bj .

Since
∑m

j=1 |Bj | = (m− 2)d it suffices to check that span(B) = R(m−2)d. In order

to show this, we prove that er ∈ span(B) for each r ∈ {1, . . . , (m − 2)d}. To help
clarify the notation in the rest of the proof, note that

{1, . . . , (m− 2)d} =

m−1∪
j=2

{
1 +

j−2∑
ℓ=1

dℓ, . . . ,

j−1∑
ℓ=1

dℓ

}
∪
{
1 +

m−2∑
ℓ=1

dℓ, . . . , (m− 2)d

}
and in our considerations we split{

1 +

j−2∑
ℓ=1

dℓ, . . . ,

j−1∑
ℓ=1

dℓ

}
=

{
1 +

j−2∑
ℓ=1

dℓ, . . . , d
′
m + (j − 2)d

}
∪

{
d′m + 1 + (j − 2)d, . . . ,

j−1∑
ℓ=1

dℓ

}
.

Case 1: r ∈ {1 +
∑m−3

ℓ=1 dℓ, . . . , d
′
m + (m− 3)d}.

Clearly we have er ∈ Bm ⊆ span(B) for r ∈ {(m − 3)d + 1, . . . , d′m + (m −
3)d}. For the remaining r ∈ {1 +

∑m−3
ℓ=1 dℓ, . . . , (m − 3)d} we have r + d ∈

{1 +
∑m−2

ℓ=1 dℓ, . . . , (m− 2)d} so

er = (er − er+d) + er+d ∈ Bm +B1 ⊆ span(B).

Case 2: r ∈ {1 +
∑j−2

ℓ=1 dℓ, . . . , d
′
m + (j − 2)d}, 2 ≤ j ≤ m− 2.

Write

er =

m−j−1∑
ℓ=1

(er+(ℓ−1)d − er+ℓd) + er+(m−j−1)d.

We have

r + (ℓ− 1)d ≥ 1 + (ℓ− 1)d+

j−2∑
k=1

dk ≥ 1 +

j+ℓ−3∑
k=1

dk

and

r + (ℓ− 1)d ≤ d′m + (j + ℓ− 3)d ≤
( j+ℓ−1∑

k=1

dk

)
− d.

For each 1 ≤ ℓ ≤ m− j − 1 we have 2 ≤ j ≤ ℓ+ j − 1 ≤ m− 2 so

er+(ℓ−1)d − er+ℓd ∈ Bj+ℓ.

Similarly, we have r + (m − j − 1)d ∈ {1 +
∑m−3

ℓ=1 dℓ, . . . , d
′
m + (m − 3)d} and

therefore er+(m−j−1)d ∈ span(B) by Case 1. Hence er ∈ span(B) for r ∈ {1 +∑j−2
ℓ=1 dℓ, . . . , d

′
m + (j − 2)d}, where 2 ≤ j ≤ m− 2.

Case 3: r ∈ {d′m + 1, . . . , d1}.
Immediately we have er ∈ B2 ⊆ span(B) for such r.
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Case 4: r ∈ {d′m + 1 + (j − 2)d, . . . ,
∑j−1

ℓ=1 dℓ}, 3 ≤ j ≤ m− 1.
Write

er =

j−2∑
ℓ=1

(er−(ℓ−1)d − er−ℓd) + er−(j−2)d.

Since

r − ℓd ∈
{
1 +

j−ℓ−2∑
k=1

dk, . . . ,

( j−ℓ∑
k=1

dk

)
− d

}
and r−(j−2)d ∈ {d′m+1, . . . , d1}, we get er−(ℓ−1)d−er−ℓd ∈ Bj−ℓ−1 and, by Case

3, er−(j−2)d ∈ B2. Hence, er ∈ span(B) for r ∈ {d′m + 1 + (j − 2)d, . . . ,
∑j−1

ℓ=1 dℓ}
and each 2 ≤ j ≤ m− 1.

Case 5: r ∈ {1 +
∑m−2

ℓ=1 , . . . , (m− 2)d}.
Immediately we have er ∈ B1 for such r.

This completes our proof of Corollary 2.5. �

Given Corollary 2.5 we can apply Theorem 1.3 of [5], a certain quantitative version
of Theorem 2.2, to obtain a neighbourhood U of the origin in R(m−2)d, depending
on β, κ and d, and a constant C, depending on d, such that∫

U

m∏
j=1

gj(B
⊕
j (x)) dx ≤ C

m∏
j=1

∥gj∥
Lm−1(Rd

⊕
j )

for all gj ∈ Lm−1(Rd⊕
j ). Given nonnegative fj ∈ L(m−1)′(Rdj ) we let

f⊗j =
m−2⊗
ℓ=1

f
1/(m−2)

S
(j)
ℓ

so that ∫
U

m∏
j=1

f⊗j (B⊕
j (x)) dx =

∫
U

m∏
j=1

fj(Bj(x)) dx

and
m∏
j=1

∥f⊗j ∥
Lm−1(Rd

⊕
j )

=
m∏
j=1

∥fj∥L(m−1)′ (Rdj ),

and therefore ∫
U

m∏
j=1

fj(Bj(x)) dx ≤ C
m∏
j=1

∥fj∥L(m−1)′ (Rdj ).

Finally, since F (x, η(x)) = 0 for x ∈W ⊂ R(m−2)d,

dF (0)|span{er :(m−2)d+1≤r≤(m−1)d} = Id,

and ∥F∥C1,β ≤ κ, we obtain a neighbourhood V ⊂ R(m−1)d, depending on β, κ and
d, such that ∫

V

m∏
j=1

fj(uj)δ(F (u)) du ≤ 2

∫
U

m∏
j=1

fj(Bj(x)) dx.

This completes the proof of Proposition 2.3. �
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Proposition 2.3 implies Theorem 2.1 and thus our proof of Theorem 2.1 is complete.
�

3. Multilinear singular convolution

In this section, we prove Theorem 1.1 and demonstrate that the exponents are
sharp.

Proof of Theorem 1.1. Recall that it suffices to handle the case where p′j = (m−1)q′

for each 1 ≤ j ≤ m. Furthermore, since the operator

(f1, . . . , fm) 7→ f1dσ1 ∗ · · · ∗ fmdσm

is trivially bounded as a mapping L1(dσ1)× · · · × L1(dσm) → L1(Rd), using mul-
tilinear interpolation, it suffices to handle the case (p, q) = ((m− 1)′,∞).

If x ∈ Rd then

f1dσ1 ∗ · · · ∗ fmdσm(x) =

∫
Rd1×···×Rdm

m∏
j=1

fj(Σj(yj))δ(Σ1(y1) + · · ·+Σm(ym)− x) dy

=

∫
Rd1×···×Rdm

m∏
j=1

gj(yj)δ(F (y)) dy,

where, of course, gj = fj ◦ Σj and

F (y) = Σ1(y1) + · · ·+Σm(ym)− x.

As a matrix, dF (0) is the augmented matrix comprised of dΣ1(0), . . . ,dΣm(0), and
therefore

Yj(dF (0)) =

dj∧
k=1

dΣj(0)(ek).

If we take any orthonormal basis {nk : k ∈ K∗
j} for the orthogonal complement of

the image of dΣj(0), or equivalently for ker(dΣj(0))
∗, then

⋆Yj(dF (0)) = ∥Yj(dF (0))∥Λdj (Rd)

∧
k∈K∗

j

nk

by Lemma A.1. Consequently,

⋆
m∧
j=1

⋆Yj(dF (0)) =
m∏
j=1

∥Yj(dF (0))∥Λdj (Rd) det(n1 · · ·nd)

and by (5) this quantity is nonzero. Since F ∈ C1,β uniformly in x belonging to a
sufficiently small neighbourhood of the origin, by Theorem 2.1, it follows that there
is some constant C such that

∥f1dσ1 ∗ · · · ∗ fmdσm∥L∞(Rd) ≤ C

m∏
j=1

∥fj∥L(m−1)′ (dσj)

if the support of each fj ∈ L(m−1)′(dσj) is sufficiently close to the origin. This
completes the proof when (p, q) = ((m−1)′,∞) and hence Theorem 1.1 entirely. �



MULTILINEAR RADON-LIKE TRANSFORMS 17

To see that the exponents are sharp, suppose for a contradiction that when 1 ≤
q ≤ ∞ and for some p′ > (m− 1)q′ there exists a constant C such that

(26) ∥f1dσ1 ∗ · · · ∗ fmdσm∥Lq(Rd) ≤ C

m∏
j=1

∥fj∥Lp(dσj)

for all fj ∈ Lp(dσj). It follows in particular that

(27) ∥f1dσ1 ∗ · · · ∗ fmdσm∥L2(Rd) ≤ C
m∏
j=1

∥fj∥Lr(dσj)

for all fj ∈ Lr(dσj), where r < (2m − 2)′. To see this, interpolate (26) with the

L1(dσ1) × · · · × L1(dσm) → L1(Rd) estimate if q > 2, or with the L(m−1)′(dσ1) ×
· · ·×L(m−1)′(dσm) → L∞(Rd) estimate if q < 2. To see that (27) is false, it suffices
to consider the case where the mappings Σj : Rdj → Rd are linear and thus

m⊕
j=1

kerΣ∗
j = Rd.

Setting gj = fj ◦ Σj , by Plancherel’s theorem and the linearity of the Σj we have

∥f1dσ1 ∗ · · · ∗ fmdσm∥2L2(Rd) =

∫
Rd

m∏
j=1

|ĝj |2(Σ∗
jx) dx

and therefore (27) is equivalent to

(28)

∫
Rd

m∏
j=1

|ĝj |2(Σ∗
jx) dx ≤ C

m∏
j=1

∥gj∥2Lr(Rdj )

for all gj ∈ Lr(Rdj ). However, an elementary scaling argument shows that a nec-
essary condition for (28) to hold is r ≥ (2m− 2)′, giving the desired contradiction.

We remark that the same scaling argument tells us that the exponent m − 1 in
Theorem 2.2 is optimal; this should not be too much of a surprise since the es-
timate (27) with linear mappings Σj and r = (2m − 2)′ follows from the linear
case of Theorem 2.2 combined with an application of the classical Hausdorff–Young
inequality. Explicitly,

∥f1dσ1 ∗ · · · ∗ fmdσm∥L2(Rd) =

(∫
Rd

m∏
j=1

|ĝj |2(Σ∗
jx) dx

) 1
2

≤ C
m∏
j=1

∥ |ĝj |2 ∥
1
2

Lm−1(Rdj )

≤ C ′
m∏
j=1

∥gj∥L(2m−2)′ (Rdj ) = C ′
m∏
j=1

∥fj∥L(2m−2)′ (dσj)
.

Thus, it is clear that for m ≥ 3, Theorem 1.1 has a stronger form with the inputs
(fj)

m
j=1 lying in certain Fourier–Lebesgue spaces, at least when the submanifolds

are subspaces. This stems from an analogous improvement to Theorem 1.2, and
it is reasonable to expect such an improvement in the nonlinear case. This line of
investigation will be taken up in a subsequent paper.
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4. The global case

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. We let κ dominate the C1,β norm of F , and note that there
exists ε > 0 such that

(29)

∣∣∣∣ ⋆ m∧
j=1

⋆Yj(dF (ω))

∣∣∣∣ ≥ ε

for all ω in the unit sphere. Using the local result in Theorem 2.1, we obtain
0 < δ < 1 depending on at most β, κ and d, and a constant C depending on at
most ε and d satisfying

(30)

∫
U

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
m∏
j=1

∥fj∥L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m, where U = B(ω, δ). By (30),
scaling and the homogeneity of F ,∫

Γ(ω,δ)

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
∑
k∈Z

m∏
j=1

∥fj∥L(m−1)′ (λkUj)
.

Here, Uj is the subset of Rdj given by

Uj = πj(U ∩ F−1(0)),

where λ = 1 + cδ, for some appropriately chosen absolute constant c > 0, and
πj : Rd1 × · · · × Rdm → Rdj is the coordinate projection given by

πj(y1, . . . , ym) = yj .

Lemma 4.1. For each ω in the unit sphere, there exists j1(ω), j2(ω) which are
distinct and such that, for r = 1, 2, the sets {λkUjr(ω) : k ∈ Z} have bounded
(independent of ω) overlap.

We remark that if one drops from Uj the intersection with the zero set of F , the
claimed bounded overlap property clearly ceases to hold.

Proof. We shall prove that there exists η > 0 such that for each ω in the unit sphere
intersected with the zero set of F we have |πj(ω)| ≥ η for at least two 1 ≤ j ≤ m.

Suppose ω is on the unit sphere with F (ω) = 0, and suppose |πj(ω)| ≥ η only when
j = j1. Using the homogeneity of F , we have ω ∈ ker dF (ω) and so

m∑
j=1

πj(F
(ℓ)) · πj(ω) = 0

for each 1 ≤ ℓ ≤ d, where F (ℓ) is the ℓth row of dF (ω). Therefore

(31) |πj1(F (ℓ)) · πj1(ω)| ≤ Cκ,mη
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for each 1 ≤ ℓ ≤ d. By (29) it follows that∥∥∥∥ ∧
k∈Kj1

dF (ω)(ek)

∥∥∥∥
Λ

dj1 (Rd)

≥ Cκ,mε

which means that at least one of the components (with respect to the induced basis
of Λdj1 (Rd)) of

∧
k∈Kj1

dF (ω)(ek) is bounded below in magnitude by Cκ,mε. This

component is the determinant of a certain dj1 × dj1 matrix, and as a consequence,
we may write

πj1(ω) =
d∑

ℓ=1

αℓπj1(F
(ℓ))

for some α1, . . . , αd ∈ R satisfying |αℓ| ≤ Cκ,mε
−1. Thus, by (31),

|πj1(ω) · πj1(ω)| ≤ Cε,κ,d,mη

which means that |ω| =
∑m

j=1 |πj(ω)| ≤
1
2 for sufficiently small η, depending on

ε, κ, d,m. From this contradiction we obtain the desired conclusion. �

Now∫
Γ(ω,δ)

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
∏

j ̸=j1(ω),
j2(ω)

∥fj∥L(m−1)′ (Rdj )

∑
k∈Z

∏
j=j1(ω),
j2(ω)

∥fj∥L(m−1)′ (λkUj)

and by Cauchy–Schwarz, the embedding ℓ(m−1)′(Z) ⊂ ℓ2(Z), and Lemma 4.1, it
follows that ∫

Γ(ω,δ)

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C

m∏
j=1

∥fj∥L(m−1)′ (Rdj ).

By compactness, the fully global estimate over Rd1 × · · · × Rdm follows. �

There is obviously some “slack” in the above argument where the embedding
ℓ(m−1)′(Z) ⊂ ℓ2(Z) was used. This slackness was not present in the analogous
argument in [1].

Appendix A. Some exterior algebra

Lemma A.1. If {v1, . . . , vr} ⊂ Rd is a linearly independent set and {n1, . . . , nr′}
is any orthonormal basis for the orthogonal complement of the space spanned by
{v1, . . . , vr}, where r + r′ = d, then

⋆
r∧

k=1

vk =

∥∥∥∥ r∧
k=1

vk

∥∥∥∥
Λr(Rd)

r′∧
k=1

nk.
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Proof. One notes that {v1, . . . , vr, n1, . . . , nr′} is a basis for Rd and so we have the

induced basis B for Λr′(Rd). By definition of Hodge star we want to show that

(32)

∥∥∥∥ r∧
k=1

vk

∥∥∥∥
Λr(Rd)

⟨ r′∧
k=1

nk, u

⟩
Λr′ (Rd)

σ = u ∧
r∧

k=1

vk

for each u ∈ Λn′
(Rd), where σ is the unit basis element for Λd(Rd). It suffices to

check (32) for u ∈ B and we divide this task into the cases where u =
∧r′

k=1 nk and

u ̸=
∧r′

k=1 nk. In the latter case is it easy to see that both sides of (32) are equal
to zero.

If u =
∧r′

k=1 nk then∥∥∥∥ r∧
k=1

vk

∥∥∥∥
Λr(Rd)

⟨ n′∧
k=1

nk,
r′∧
ℓ=1

nℓ

⟩
Λr′ (Rd)

=

∥∥∥∥ r∧
k=1

vk

∥∥∥∥
Λr(Rd)

det(nk · nℓ)1≤k,ℓ≤r′

=

∥∥∥∥ r∧
k=1

vk

∥∥∥∥
Λr(Rd)

because {n1, . . . , nr′} is orthonormal. Now

u ∧
r∧

k=1

vk = det(n1 · · ·nr′ v1 · · · vr)σ

and, using orthogonality considerations,

det(n1 · · ·nr′ v1 · · · vr)2 = det(n1 · · ·nr′ v1 · · · vr)T (n1 · · ·nr′ v1 · · · vr)

= det(vk · vℓ)1≤k,ℓ≤r =

∥∥∥∥ r∧
k=1

vk

∥∥∥∥2
Λr(Rd)

.

Hence (32) holds in this case too, and this completes the proof of the lemma. �

Appendix B. A quantitative version of the implicit function theorem

We provide a quantitative version of the implicit function theorem for C1,β func-
tions.

Theorem B.1. Suppose d, n ∈ N and β, κ > 0 are given. Let R1, R2 > 0 be given
by

R1 = min

{
1, R2,

1

4dκ
R2

}
and R2 =

(
1

16dκ

) 1
β

.

If F : Rn × Rd → Rd is such that ∥F∥C1,β ≤ κ, F (0, 0) = 0 and

dF (0, 0)|span{er :n+1≤r≤n+d} = Id,

then there exists a function η : B(0, R1) ⊂ Rn → B(0, R2) ⊂ Rd such that

F (x, η(x)) = 0 for each x belonging to B(0, R1),

and a constant κ̃, depending on at most β, κ, and n, such that ∥η∥C1,β ≤ κ̃.

For d = 1, a proof can be found in [5]. The argument in that case extends easily
to arbitrary d and we omit the details.
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