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Abstract. We prove global versions of certain known nonlinear Brascamp–

Lieb inequalities under a natural homogeneity assumption. We also establish
a conditional theorem allowing one to generally pass from local to global non-
linear Brascamp–Lieb estimates under such a homogeneity assumption.

1. Introduction

The classical Brascamp–Lieb inequalities simultaneously generalise a number of
fundamental inequalities in euclidean analysis such as the multilinear Hölder, Young
convolution and Loomis–Whitney inequalities. To formulate these, suppose m ≥ 2
and d1, . . . , dm are positive integers, Bj : Rd → Rdj is a linear surjection and
pj ∈ [0, 1] for each 1 ≤ j ≤ m. The associated Brascamp–Lieb inequality takes the
form

(1)

∫
Rd

m∏
j=1

(fj ◦Bj)
pj ≤ C

m∏
j=1

(∫
Rdj

fj

)pj

for all nonegative fj ∈ L1(Rdj ). At this level of generality, there is of course no
reason to expect that the constant C be finite, and in particular, an elementary
scaling argument reveals that the condition

∑
pjdj = d is necessary for finiteness.

In order to present our results it will be convenient to adopt some notation from
[3], and write

(2) BL(B,p; f) =

∫
Rd

∏m
j=1(fj ◦Bj)

pj∏m
j=1(

∫
Rdj fj)pj

,

where B = (Bj), p = (pj) and f = (fj). (It is of course implicit that (2) is
only defined for inputs f satisfying

∫
fj ∈ (0,∞) for each 1 ≤ j ≤ m.) Using this

functional notation the smallest constant C ∈ (0,∞] for which (1) holds is of course

BL(B,p) := sup
f

BL(B,p; f).

Lieb [6] proved that this supremum is exhausted by centred gaussian inputs. Further
issues, including the finiteness of the Brascamp–Lieb constant BL(B,p) and the
shape of extremal inputs f when they exist, have been addressed by a number of
authors; see for example [1], [5] and [3], and further references contained there for
a fuller account.
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A rather expansive nonlinear generalisation of the Brascamp–Lieb inequality would
be to take each Bj to be a smooth submersion in a neighbourhood of a point x0 ∈ Rd

and p ∈ [0, 1]m for which
BL(dB(x0),p) < ∞,

and seek a neighbourhood U of this point and a finite constant C such that

(3)

∫
U

m∏
j=1

(fj ◦Bj)
pj ≤ C

m∏
j=1

(∫
Rdj

fj

)pj

for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m. Here dB(x0) = (dBj(x0)), where
dBj(x0) : Rd → Rdj denotes the derivative of Bj at the point x0. Such a gener-
alisation has been shown to hold under the additional structural hypothesis that
the kernels of the derivative maps dBj(x0) form a direct sum decomposition of Rd;
see [2] and earlier work in [4] upon which the former built, both being inspired by
applications to problems in euclidean geometric and harmonic analysis. We refer
the reader to these papers for further details.

In this note, we consider global nonlinear Brascamp–Lieb inequalities under the
additional assumption that the submersions Bj are homogeneous of degree one.
This is a natural level of homogeneity to consider since of course it encompasses
the case of linear mappings. The difficulty in passing from local statements such
as (3) to global ones where the neighbourhood U is replaced by Rd comes from the
fact that in general functions which are homogeneous of degree 1 do not possess
derivatives at the origin. Thus typically the neighbourhood U in (3) will not contain
the origin, excluding the possibility of generating global estimates via an elementary
scaling and limiting argument. In this paper we present a method for passing
from local to global statements through the identification of a certain orthogonality
present in even the most general of settings.

In the first of our two main theorems, we prove a global analogue of the aforemen-
tioned local result from [2]. Secondly, we obtain a conditional theorem which states
that given a local nonlinear Brascamp–Lieb inequality and assuming the necessary
scaling condition on the exponents pj , one can always generate a global extension
if the Bj are homogeneous of degree one.

Acknowledgement. We would like to thank Juan Antonio Barceló for a number of
helpful discussions at the early stages of this work. We are also grateful for the
support of the Isaac Newton Institute for Mathematical Sciences where part of this
work was carried out.

2. The unconditional theorem

In this section we shall prove the following.

Theorem 1. Suppose that for each 1 ≤ j ≤ m the mappings Bj : Rd → Rdj are
homogeneous of degree one and C1,β submersions on Sd−1 for some β > 0. Suppose
further that

(4)

m⊕
j=1

ker dBj(ω) = Rd
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for each ω ∈ Sd−1. Then there exists a constant C such that∫
Rd

m∏
j=1

(fj ◦Bj)
1

m−1 ≤ C

m∏
j=1

(∫
Rdj

fj

) 1
m−1

for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m.

It will be clear that our proof of Theorem 1 permits a more quantitative statement,
since we do a certain amount of book-keeping.

We begin by recalling the quantitative local nonlinear Brascamp–Lieb inequalities
from [2]. If 1 ≤ d1, . . . , dm ≤ d − 1 satisfy

∑m
j=1 dj = (m − 1)d, or equivalently∑m

j=1 d
∗
j = d where d∗j := d− dj , then we set

Kj = {d1 + · · ·+ dj−1 + 1, . . . , d1 + · · ·+ dj−1 + dj}

and

K∗
j = {d− (d∗1 + · · ·+ d∗j−1 + d∗j ) + 1, . . . , d− (d∗1 + · · ·+ d∗j−1)}

for 1 ≤ j ≤ m. Thus, each Kj has dj elements and together form a partition of
{1, . . . , (m− 1)d}, and each K∗

j has d∗j elements and together partition {1, . . . , d}.

As in [2], for linear mappings Bj : Rd → Rdj , let Xj(Bj) ∈ Λdj (Rd), the djth
exterior algebra of Rd, be given by

Xj(Bj) =

dj∧
k=1

B∗
j (ek),

where ek is the kth standard basis vector of Rdj . Here, B∗
j : Rdj → Rd denotes the

adjoint of Bj . Also, we shall use ⋆ : Λn(Rd) → Λn−d(Rd) to denote the Hodge star
operator.

Theorem 2. [2] Let β, ε, κ > 0. Suppose that for each 1 ≤ j ≤ m the submersions
Bj : Rd → Rdj satisfy ∥Bj∥C1,β ≤ κ in a neighbourhood of a point x0 ∈ Rd. Suppose
further that

(5)

∣∣∣∣ ⋆ m∧
j=1

⋆Xj(dBj(x0))

∣∣∣∣ ≥ ε.

Then there exists a neighbourhood U of x0, depending on at most β, ε, κ and d, and
a constant C, depending on at most d, such that∫

U

m∏
j=1

(fj ◦Bj)
1

m−1 ≤ Cε−
1

m−1

m∏
j=1

(∫
Rdj

fj

) 1
m−1

for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m.

Note that if
⊕m

j=1 ker dBj(x0) = Rd then | ⋆
∧m

j=1 ⋆Xj(dBj(x0))| ̸= 0 and therefore

(5) is a quantification of this form of transversality.
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Proof of Theorem 1. Let Bj : Rd → Rdj satisfy the hypotheses of Theorem 1. By
the smoothness hypothesis and (4), the function

ω 7→ ⋆
m∧
j=1

⋆Xj(dBj(ω))

is continuous and nonvanishing on Sd−1. Hence there exists ε > 0 such that

(6)

∣∣∣∣ ⋆ m∧
j=1

⋆Xj(dBj(ω))

∣∣∣∣ ≥ ε

for all ω ∈ Sd−1. If we let κ > 0 dominate the C1,β norm of each Bj , for each
ω ∈ Sd−1 we may apply Theorem 2 to obtain a neighbourhood B(ω, δ), where
0 < δ < 1 depends on at most β, ε, κ and d, and a constant C depending on ε and
d such that ∫

B(ω,δ)

m∏
j=1

(fj ◦Bj)
1

m−1 ≤ C
m∏
j=1

(∫
Rdj

fj

) 1
m−1

for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m. For notational convenience, let
U = B(ω, δ).

By isotropic scaling, using the homogeneity of the Bj , we obtain

(7)

∫
λU

m∏
j=1

(fj ◦Bj)
1

m−1 ≤ C
m∏
j=1

(∫
Rdj

fj

) 1
m−1

uniformly in λ > 0. If Γ(ω, δ) denotes the cone in Rd with axis ω ∈ Sd−1 and
aperture δ > 0, then by elementary considerations,

Γ(ω, δ) ⊆
∪
k∈Z

(1 + cδ)kU

for a suitable absolute constant c > 0 1. With λ = 1 + cδ, by the homogeneity of
the Bj and (7), it follows that∫

Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
1

m−1 ≤
∑
k∈Z

∫
λkU

m∏
j=1

(fj ◦Bj)
1

m−1

=
∑
k∈Z

∫
λkU

m∏
j=1

(
(fjχBj(λkU)

)
◦Bj)

1
m−1

≤ C
∑
k∈Z

m∏
j=1

(∫
Bj(λkU)

fj

) 1
m−1

= C
∑
k∈Z

m∏
j=1

(∫
λkBj(U)

fj

) 1
m−1

.

Lemma 3. The sets {λkBj(U) : k ∈ Z} have bounded overlap, with bound depend-
ing on at most ε, κ and d, for at least m− 1 indices j ∈ {1, . . . ,m}.

1If we assume, as we may, that δ < 1/3, then we may take c = 2.
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Assuming this lemma is true, let us see how Theorem 1 follows. If ω ∈ Sd−1

then by Lemma 3 we know that there exists j(ω) ∈ {1, . . . ,m} such that the sets
{λkBj(U) : k ∈ Z} for j ̸= j(ω) have bounded overlap, depending on at most ε, κ
and d. Hence, by the (m− 1)-linear discrete Hölder inequality,∫

Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
1

m−1 ≤ C
∑
k∈Z

m∏
j=1

(∫
λkBj(U)

fj

) 1
m−1

≤ C

(∫
Rdj(ω)

fj(ω)

) 1
m−1 ∑

k∈Z

∏
j ̸=j(ω)

(∫
λkBj(U)

fj

) 1
m−1

≤ C

(∫
Rdj(ω)

fj(ω)

) 1
m−1 ∏

j ̸=j(ω)

(∑
k∈Z

∫
λkBj(U)

fj

) 1
m−1

≤ C ′
m∏
j=1

(∫
Rdj

fj

) 1
m−1

,

where C is the same constant from (2), and C ′ is a constant depending on at
most ε, κ and d. Theorem 1 follows by piecing together enough cones Γ(ω, δ) to fill
Rd. �

Proof of Lemma 3. It suffices to prove that the distance from Bj(U) to the origin
in Rdj is bounded below by a positive constant, depending on at most ε, κ and d,
for at least m− 1 indices j ∈ {1, . . . ,m}. By the smoothness of the Bj , this follows
if we can show that there exists such a constant η > 0 so that for each ω ∈ Sd−1 we
have |Bj(ω)| ≥ η for at least m− 1 indices j ∈ {1, . . . ,m}. For this, we may need
to shrink δ, as we may, to a level which depends on at most ε, κ and d.

Suppose ω ∈ Sd−1. Let {a1, . . . , ad} be a basis for Rd where {ak : k ∈ K∗
j} is

an orthonormal basis for ker dBj(ω), and let {a⊥k : k ∈ Kj} be an orthonormal
basis for the orthogonal complement of ker dBj(ω). Then we may write ω = ωj +∑

k∈Kj
λka

⊥
k where ωj is the projection of ω onto ker dBj(ω), and λk ∈ R for

k ∈ Kj . Now, using the homogeneity of the Bj ,

(8)
∑
k∈Kj

λkdBj(ω)a
⊥
k = dBj(ω)ω = Bj(ω).

If Mj is the matrix whose columns are dBj(ω)a
⊥
k for k ∈ Kj then

|det(Mj)| =
∣∣∣∣⟨Xj(dBj(ω)),

∧
k∈Kj

a⊥k

⟩
Λdj (Rd)

∣∣∣∣
= ∥Xj(dBj(ω))∥Λdj (Rd)

∣∣∣∣⟨ ⋆
∧

k∈K∗
j

ak,
∧

k∈Kj

a⊥k

⟩
Λdj (Rd)

∣∣∣∣
and therefore

|det(Mj)| = ∥Xj(dBj(ω))∥Λdj (Rd).
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If A is the matrix whose columns are aj for 1 ≤ j ≤ d then

(9)

∣∣∣∣ ⋆ m∧
j=1

Xj(dBj(ω))

∣∣∣∣ = |det(A)|
m∏
j=1

∥Xj(dBj(ω))∥Λdj (Rd),

and therefore each ∥Xj(dBj(ω))∥Λdj (Rd) is bounded above and below by a constant

depending on at most ε, κ and d. It follows from this and (8) that if |Bj(ω)| < η
for a particular index j, then |λk| ≤ Cε,κ,dη for each k ∈ Kj and therefore

(10) |ω − ωj | ≤ Cε,κ,dη.

If we also have |Bj′(ω)| < η for some j′ ̸= j then by the same argument we also
have

(11) |ω − ωj′ | ≤ Cε,κ,dη,

and together (10) and (11) imply that |det(A)| ≤ Cε,κ,dη, as long as η is sufficiently
small depending on ε, κ and d. However, because of (9), this leads to a contradic-
tion, again, by choosing η to be sufficiently small depending on ε, κ and d. Hence,
for such a choice of η > 0, for each ω ∈ Sd−1 we have |Bj(ω)| ≥ η occurring for at
least m− 1 indices j ∈ {1, . . . ,m}. This completes our claim, and consequently the
proof of the lemma. �

3. The conditional theorem

Based on the argument in the previous section, we may obtain an abstract condi-
tional theorem which allows one to promote a local inequality to a global inequality
in the following sense.

Theorem 4. Suppose
∑m

j=1 pjdj = d and that for each 1 ≤ j ≤ m the mappings

Bj : Rd → Rdj are homogeneous of degree one and C1,β submersions on a neigh-
bourhood of some point ω ∈ Rd for some β > 0. Suppose further that for some
δ > 0 and constant C, the inequality

(12)

∫
B(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C

m∏
j=1

(∫
Rdj

fj

)pj

holds for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m. Then there is a constant C ′

such that ∫
Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C ′

m∏
j=1

(∫
Rdj

fj

)pj

holds for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m.

The following lemma is key to the proof of Theorem 4, for which the homogeneity
of the Bj is not required.

Lemma 5. Suppose
∑m

j=1 pjdj = d and that for each 1 ≤ j ≤ m the mappings

Bj : Rd → Rdj are C1,β submersions on a neighbourhood of some point ω ∈ Rd for
some β > 0. Suppose further that for some δ > 0 and constant C, the inequality

(13)

∫
B(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C

m∏
j=1

(∫
Rdj

fj

)pj
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holds for all nonnegative fj ∈ L1(Rdj ), 1 ≤ j ≤ m. Then BL(dB(ω),p) < ∞.

Proof. By translation invariance, we may assume that ω = 0 and Bj(ω) = 0 for
each 1 ≤ j ≤ m. Suppose κ dominates the C1,β norm of each Bj on B(0, δ). Then
it follows that

(14) |Bj(x)− dBj(0)x| ≤ Cdκ|x|1+β

for all x ∈ B(0, δ).

Recall from [2] the class L1
M (Rdj ) of nonnegative functions f ∈ L1(Rdj ) satisfying

f(y1) ≤ 2f(y2) whenever y1 and y2 are in the support of f and |y1 − y2| ≤ M−1.
Such f are effectively constant at the scale M−1. By density and scaling arguments,
it suffices to prove that there is a neighbourhood U of the origin in Rd, depending
on β, κ and d, and a constant C ′, depending on m and C, such that whenever
fj ∈ L1

M (Rdj ), ∫
U

m∏
j=1

(fj ◦ dBj(0))
pj ≤ C ′

m∏
j=1

(∫
Rdj

fj

)pj

uniformly in M larger than some threshold depending on δ and κ.

To this end, fix

(15) M >
1

(Cdκ)
β

1+β δβ

and fj ∈ L1
M (Rdj ). Now let gj : Rdj → [0,∞) be the rescaled functions given by

gj(y) = fj(M
1/βy). Using (14) it follows that whenever x ∈ B(0, δM ) we have

gj(dBj(0)x) ≤ 2gj(Bj(x)),

where

δM =
1

(Cdκ)
1

1+β M
1
β

.

By (15) and (13) it follows that∫
B(0,δM )

m∏
j=1

(gj ◦ dBj(0))
pj ≤ 2mC

m∏
j=1

(∫
Rdj

gj

)pj

,

and using the scaling hypothesis,
∑m

j=1 pjdj = d, we obtain∫
B(0,M1/βδM )

m∏
j=1

(fj ◦ dBj(0))
pj ≤ 2mC

m∏
j=1

(∫
Rdj

fj

)pj

,

which is the desired conclusion. �

Proof of Theorem 4. As in the proof of Theorem 1, from the local inequality (12)
and by scaling, making use of the homogeneity of the Bj ,∫

Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C

∑
k∈Z

m∏
j=1

(∫
λkBj(U)

fj

)pj

,

where U = B(ω, δ) and λ = 1 + cδ for some suitably chosen constant c > 0.
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By Lemma 5, BL(dB(ω),p) < ∞ and so, by the necessary conditions for finiteness
of the Brascamp–Lieb constant in [3], we have

1 ≤
m∑
j=1

pj dim(dBj(ω)V ),

where V is the one-dimensional subspace of Rd spanned by ω. By the homogeneity
of the Bj we have dBj(ω)ω = Bj(ω) and therefore∑

j:Bj(ω)̸=0

pj ≥ 1.

Hence, by discrete Hölder’s inequality,∫
Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C

∏
j:Bj(ω)=0

(∫
Rdj

fj

)pj ∑
k∈Z

∏
j:Bj(ω) ̸=0

(∫
λkBj(U)

fj

)pj

≤ C
∏

j:Bj(ω)=0

(∫
Rdj

fj

)pj ∏
j:Bj(ω)̸=0

(∑
k∈Z

∫
λkBj(U)

fj

)pj

.

If Bj(ω) ̸= 0 then the distance from Bj(U) to the origin in Rdj is strictly positive.
This follows from the smoothness of the Bj and, if necessary, shrinking δ below
some threshold (which may depend on ω). Consequently, for 1 ≤ j ≤ m such that
Bj(ω) ̸= 0, the sets {λkBj(U) : k ∈ Z} have bounded overlap (with overlapping
multiplicity which may depend on ω). Hence∫

Γ(ω,δ)

m∏
j=1

(fj ◦Bj)
pj ≤ C ′

m∏
j=1

(∫
Rdj

fj

)pj

as claimed. �
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