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Abstract

We study a type of calculus for proving inequalities betwsebgraph densities which is based
on Jensen’s inequality for the logarithmic function. As andastration of the method we verify
the conjecture of Erdds-Simonovits and Sidorenko for rewilies of graphs. In particular we give
a short analytic proof for a result by Conlon, Fox and Sudakdsing this, we prove the forcing

conjecture for bipartite graphs in which one vertex is catgpto the other side.

1 Introduction

Inequalities between subgraph densities is subject oheite study. Many problems in extremal
graph theory can be formulated in this language. Subgraphitiks can be conveniently defined
through graph homomorphisms. A graph homomorphism betfigiéagraphs? = (V(H), E(H))
andG = (V(G), E(G))isamapy : V(H) — V(G) such that the image of every edgefihis an
edge inG. The subgraph density H, G) is the probability that a random map: V(H) — V(G)

is a graph homomorphism.

In the frame of the graph limit theori/][&} can be replaced by an analytic object which is a
two variable symmetric measurable function. Many stateémiengraph theory can be equivalently
stated in this analytic language as follows. (8t ;1) be a probability space arid : Q?> — R be a
bounded measurable function such tHatz, y) = W (y, x) for every pairz, y € Q. If the range of
W is in the interval0, 1] then it is called araphon Let

tHW)=E( ] Wi a)) (1)
(wi,wg)€E(H)
whereV (H) = {x;}_, are independently chosen frofh It is easy to see that 2 = V(G)

with the uniform distribution andVs : V(G) x V(G) — {0, 1} is the adjacency matrix d¥ then
t(H,G) =t(H,Wg).
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The Cauchy-Schwartz inequality is a fundamental tool ialadghing inequalities between sub-
graph densities. It was shown inl [6] that every true inedquddetween subgraph densities is a
consequence of a possibly infinite number of Cauchy-Schwaeiqualities. As a negative result
Hatami and Norin[4] proved the undecidability of the geherablem.

Motivated by earlier work on entropy calculation$ [5] ingtirea, we develop a method using
Jensen’s inequality for logarithmic functions. In partamuwe use the concavity of — Inz and
the convexity ofz — zIn z. Similarly to the Cauchy-Schwartz calculus, the logariihoalculus
is capable of proving inequalities through a line of symbohlculations without verbal arguments.
This can make it suitable for computer based algorithmgadesi to find new inequalities.

We demonstrate the power of the logarithmic calculus apgram a fundamental problem
known as Sidorenko’s conjecture (also conjectured by &mtitd Simonovits[10]). In the com-

binatorial language the conjecture says that following.

Conjecture 1 Let H be a bipartite graph andr be an arbitrary graph. Then(H, G) > t(Ps, G)¢

whereP; is the single edge andis the number of edges .

Phrased originally by Sidorenko in the analytic languadef@ conjecture says thati, W) >
t(Py, W)€ holds for every bounded non-negative measurable funétiorExpressions of the form
t(H,W) appear as Mayer integrals in statistical mechanics, Fegrintagrals in quantum field
theory and multicenter integrals in quantum chemistry. ddngecture is also related to many topics
such as Markov chain§I[1], matrix theory and quasi-rand@snd&lote that in the analytic form
if W is constant thern(H,W) = t(P,,W)c. The forcing conjecture rephrased in this analytic
language says that i is not a tree then this is the only case when equality holds$e Mt this is
a refinement of Sidorenko’s conjecture.

Sidorenko’s conjecture has been verified for various fawibf graphs, including even cycles,
trees[[2], and hypercubés| [3]. Most recently the conjecha® been proven by Sudakov, Conlon
and Fox [8] for bipartite graphs with one vertex completette other side. The proof uses the
tensor power trick and a certain probabilistic method catlependent random choice. As a quick
demonstration of the logorithmic calculus we give an analgtoof of this result. Essentially the
same proof also implies the forcing conjecture for the saraplts. Note that the forcing conjecture
for bipartite graphs in which two vertices are complete te tither side was proved by Conlon,
Sudakov and Fox8].

The logarithmic calculus also yields stronger intermedliagqualities that are preserved under
‘gluing operations’ and thus provide an iterative method gooving Sidorenko’s conjecture for
many new graphs. A theorem of this type is the following. Wk aaraph a reflection tree (for
precise definition see chapfar 3) if it can be obtained fromea by gluing reflected versions of

subtrees on it. They include the bipartite graphs consitibyeConlon, Fox and Sudakov. Let us



call a bipartite grapti/ a Sidorenko graplfif ¢t(H, W) > t(P,, W)€ for every graphoiV'.
Theorem 1 Reflection trees are Sidorenko.
Another theorem that we prove is the following.

Theorem 2 (Edge gluing) Let H,, H» be Sidorenko graphs angd € E(Hy),ex € E(H2) be
arbitrary edges. Then the grapH obtained fromH; and H, by identifyinge; ande; is also a
Sidorenko graph.

Note that in the above theorem the edgeandes; can be identified in two different ways.

2 Basics of Logarithmic Calculus

Lemma 2.1 (Jensen’s inequality)Let (2, ) be a probability space, letbe a convex (resp. con-

cave) function on an intervdDd C Randg : Q2 — D be a measurable function. Then

E(c(g)) = c(E(g)) (convex) , E(c(g)) < c(E(g)) (concave) )

Moreover ifE(f) = 1 for some non-negative functighon 2 then also

E(fc(9)) = c(E(fg)) (convex) , E(fe(g)) < c(E(fg)) (concave) ®3)

If ¢ is a strictly convex (concave) function then equalityini¢3)nly possible ify is constant on the

support off.

Proof. Jensen’s inequality is a classical result whose proof isdbas the intuitively clear fact that
if a probability measure is concentrated on a convex (regpcave) curve then the center of mass
is above (resp. below) the curve. The inequalily (3) is aadicensequence dfl(2) if we considgr

as the density function of a new measpieon €.

We introduce some notation. Lgtxz, o, ..., z,) be a function or0, 1]”. For a subsef C
{1, x2,...,2,} of the variables the we introduce th#f-variable function
Es(g) :/g H dx;.
Iieg

Notice thatE(g) = E(Es(g)). To simplify notation we will identify vertices of graphsthivariables
representing them in the formu(d (1). As the first illuswatdf the logarithmic calculus we start by

the Blakley-Roy inequality.

Proposition 2.1 (Blakley-Roy) Let W : [0,1]> — R* be a bounded symmetric measurable func-
tion andd = E(W). Thent(P,, W) > d".



Proof. Letd(x) = E,(W(x,y)) and

n n

£ = (IIwwen)a (TTdw).

i=1 1=2

We have thaE(f) = 1.

Int(P,, W)= lnIE(fdﬁ d(z;)) > Ind + E(flnﬁd(gci)) =1Ind+ iE(fln d(x;)) =
i=2 i=2 i=2

=Ind+ iE(Ewi(f Ind(x;))) = Ind + Zn: d~'E(d(x;)Ind(z;)) > nlnd.

i=2 i=2
The first inequality follows from[{3) with(z) = In z and the second inequality follows froil (2)

with ¢(z) = zIn z.

Theorem 3 (Conlon-Fox-Sudakov)Let H be the (bipartite) graph on the vertex §et y1, y2, - - - ; Ym, V1, U2, . .

such thatr is connected t@y, v, . . ., v @andy; is connected to the verticeés C {v1,va, ..., vk}
where|S;| = a,. Lete = k+ ) ;" | a, be the total number of edgesih. Thenifi¥ : [0,1]* — R*
is @ measurable function antl= E(W). Thent(H, W) > d°.

Proof. Let

k
¢=E,(W(z,2)) and f=d'¢"*[[W(z,v),

i=1

k
se=Es, ([ W) and fr=s; " F[[Wia,0) (t=1,2,...,m).

vj €St =1

Notice thatE(f) = E(f;) = 1. Using [3) withc(z) = In z and [2) withc(z) = 2 In z we have

W t(H, W) = nE(f¢*d] [ s) > E(f (" d ] [ s.)) =
=1 =1

= (k= DE(E,(fIng)) + E(fInd) + Y E(fIns;) =
i=1
= (k—1)d 'E(qlng) +Ind + iE(flnsi) > klnd+ iE(flnsi).
i=1 i=1
Leth, = s;q*~%. Then byE, (fih:) = q, E(fih:) = d and [3) [2) withc(z) = z1In 2,

E(fIns;) = d "E(fihe Inhy) + (a; — 1)d "E(E.(fihi Ing)) =

=d! (E(ftht Inhy) + (at — 1)E(q lnq)) > a;lnd.

Remark: In the proof of theorerfl3 it is convenient to assume fhais strictly positive. Then

using the continuity of(H, W) underL! convergence we obtain the Sidorenko inequality for every
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non-negativd?. However it is a useful observation that with some extraioautll the steps of
the proof work for non-negative functions. The reason fig th that if we replace all the weight
function f and f; occurring in the proof by modified versiorf$ and f; in which values that are
not defined are replaced Iythen the same calculations remain true. This is a simplelpasase

checking.

Theorem 4 (Forcing for C-F-S graphs) The forcing conjecture holds for bipartite graphs in which

one vertex is complete to the other side (and are not trees).

Proof. We use the notation from the proof of theorlglm 3 . In this proefallow 1V to take the value
0. Let f/ and f/ be as in the remark following the proof of Theoren 3. Assunagttt/, V) = d°.
Then in the proof of theorefd 3 all the inequalities becomeaditigs. We immediately obtain that
E(¢qIngq) = dInd and thus; has to be constamaton [0, 1]. If H is not a tree then there is a number
1 < j < ksuchthat; > 2. We obtain thali(f;h; In h;) = dIn d and thush; has to be constaat
on the support of ;. This implies that; is constant/** on the support of; which is equal to the
support of]_[f:1 W (z,v;). This implies that if the value of; is not0 then it is equal tai**. On
the other hand (since spiders are Sidorenko) we fave) > d** and thuss; is constant®:. This

implies thatt(K> ,,, W) = E(s?) = d**. Using thatK> ,, is forcing the proof is complete.

3 Smoothness and Gluing

In general, we consider the logarithmic calculus as a syimkaly of proving inequalities between
subgraph densities using conditional expectations ansedeninequality foe In z andln z. In this
chapter we give a demonstration by proving Sidorenko’sexinye for a family of bipartite graphs.
However this is not the limitation of the method inside Siltto’s conjecture and there are many
applications outside Sidorenko’s conjecture. Furthetieatons will be discussed in a subsequent
paper.

The proof of theorerl3 relies on the interesting phenomemaircertain bipartite graphs satisfy
stronger inequalities than Sidorenko’s. Note that the fofrthese new types of inequalities hints

at useful reinterpretation as geometric averages (ddtkiter). More specifically we showed that

if H is the graph on the vertex sét, vq, ..., vk, y}, wherex is connected tan, ..., v, andy is
connected to a subsgtof {vy,va, ..., v} then it satisfies the inequality
E(dilq"%HW(:c,vi)lns) > |S|lnd (4)
1=1

wheres = Eg (]‘[U]ES W (y, vj)) andd andq are as in the proof of the theorem. This inequality

(@) allows one to glue together such gragtiswith various choices of along the star spanned



on {x,vy,va,...,v;} and the resulting graph will still be Sidorenko. Througtsthperation we
can build the type of graphs considered by Sudakov, ConldnFax. This indicates thall(4) type
inequalities can be used to produce new Sidorenko graphkimgg Our goal is to generalize this
situation. For ease of expression, we first introduce isttisubgraph densities.

LetG,, denote the set of graphs in whigldifferent vertices are labeled by the numbgrs2, . .., n}.
If H, and H, are inG,, then their producti; H, is defined as the graph obtained form them by
identifying vertices with the same label and then reducindtiple edges. The notion of subgraph

density can be naturally extended for graphg§,in

Definition 3.1 (Restricted subgraph density)Let H € G, be agraph onthe vertex sety, xa,...,Zm }
such that the labeled vertices afe= {x1, 22, ..., x, }. Then the restricted subgraph densityrHf

in W : [0,1]?> — R is then-variable function defined as

ts(HW)=Es( [ Wi z). (5)
(zi,z;)€E(H)
Lemma 3.1 LetT be a tree on the vertex sétq, o, ..., 2z, } andlet
fr=d ' [[d@)" I W) (6)
i=1 (wi,x;)EB(T)

Then for an arbitraryl <i < n we have thakE,, (fr) = d(x;)/d and consequentli(fr) = 1.

Proof. If n = 1thenthe statementis trivial. By induction assume thatldféorn—1. Assume that
n > landz; # z;isaleafinT. LetS = {z1,...,z,} \ {z;}. ThenE,,(fr) = Es, Es(fr)) =
E,,(fr) whereT” is obtained fronT" by deletingz; and thus the induction step finishes the proof.

We are now ready to define the notion of smoothness.

Definition 3.2 (Smoothness)Let H € G,, be a bipartite graph on the vertex sgty, zo, ...,z }
such that the spanned subgraph8nr= {z1,z,...,2,} is atreeT. We say thaf/ is smooth (or
T is smooth inH) if

IE(fT 1ntS(H*,W)) > |E(H")|Ind

whereH* is the graph obtained froni/ by deleting the edges ifi.

Note that ifn = 0 thenT is empty. In this case the smoothnessibiis equivalent with the
Sidorenko property. The next two lemmas together show thabshness in general, is a strength-

ening of the Sidorenko property.

Lemma 3.2 (Unlabeling) Let H € G,, be a smooth bipartite graph with tréE spanned on the
labeled verticesS and letT” be a non-empty sub-tree spanned$nC S. Then the graphH,

obtained fromH by unlabeling the vertices i \ S’ is also smooth.



Proof. Itis enough to prove that unlabeling one leaffinpreserves smoothness. Every other case

can be obtained by iterating this step. Assume ihais a leaf connected t&,,_;. We have that
E(fT, 1nts,(H;,W)) :E(fT, 1nE%(W(:vn,xn_l)tS(H*,W))) -

- E(fT, 1nEZn(W(xn,xn,l)d(xn,l)*1d(xn,1)t5(ﬂ*,W))) >
E(fT/ In d(:vn_l)) + E(fT 1nts(H*, W)) Z E(fT/ 1nd(l‘n_1)) + |E(H*)| Ind.

In the above calculation we use the concavity of In(z) with weight functionW (z,,, v, —1)d(z,—1) .

Using lemma&3]1 we get

E(fr Ind(xp_1)) = E(Ee, . (fr Ind(z,_1))) = d "E(d(zn_1)Ind(z,_1)) > Ind.

Lemma 3.3 Assume thatr,z2) € E(H) andH € Gs is smooth. Thelf is a Sidorenko graph.

Proof. We have that
InE(t(H,W)) = Ind + nE(W (z1, z2)d” ' t(H*, W)) >

>Ind +E(W(zy,22)d * Int(H*, W)) > Ind + |E(H*)|Ind = |E(H)|Ind.

Lemmd3.2 and lemnia 3.3 together imply the following impotrtzorollary.
Corollary 3.1 LetH € G,, be a smooth graph. Theii is Sidorenko.
The next lemma shows how to produce now Sidorenko graphsdidmnes using smoothness.

Lemma 3.4 (Gluing on smooth trees)Let H,, H» € G,, be two smooth graphs such that the trees
spanned on the labeled vertices are identical Wit both graphs. Theitl = H, Hs € G, is also

smooth.

Proof.
E(frInts(H*,W)) = E(frInts(Hy, W)ts(Hs,W)) = E(fr Ints(H{, W))+E(frInts(H;, W))

> (|E(Hy)| —n+1)Ind + (|[E(Hs)| —n+ 1) Ind = (|E(H, H2)| —n+ 1) Ind.

Lemma 3.5 (Extension of smooth part)LetH € G,,, (n > 1) be a smooth graph and 18t € G,
be a tree such thatl and 7’ induce the same tre€ on the labeled points. Then the graph

obtained fromHT" by putting labels on all the vertices ifi’ is again smooth.



Proof. Itis enough to prove the statement for the case whereV (7”) \ V(T') is a single vertex
which is a leaf inl”. The general case is an iteration of this step. Without logeperality assume
thaty is connected ta:,. LetS = {z1,22,...,2,}, 5" = SU{y} ands = ts/(H5, W). In this
case

E(frIns) = E(Es(fr Ins)) = E(fr Ins) =E(fr In tg(H",W)) >

> |H*|Ind = |H}|Ind.

Definition 3.3 (Reflection) Reflection of a subgrapH, induced onk C V(H) in H along an
independent set¥ C K is the operation which produces the graphi/> where the vertices i

are labeled in both{ and H, in the same way.

Lemma 3.6 LetT € G, be a tree such that the labeled poirfisare independent. Letl be the
graph obtained fronT? by labeling all points in one copy @. ThenH is smooth.

Proof. The statement is obviously equivalent with the followingeoriLetT" be a tree on\/ =

{x1,22,...,2m } andletS = {1, 29,...,2,} C M. Then
E(frInts(T,W)) > |E(T)|Ind.
Lets = ts(T, W) andq =[], d(z;)"~'. Then
E(frins) = d 'E(ty(T,W)s™* (s ) In(sq™ ")) +d "E(ta (T, W)s 'sqg ' Ing).

>1Ind+ i d (r; = V)E(Ey, (tar (T, W)s tsq  nd(z;))) =

=Ind+ id_l(m — DE(d(z;) Ind(z;)) > Ind + i(rl —1)Ilnd = (m —1)Ind.
i=1 1=1

To illustrate lemm&3]6 on an example,1&be the path of lengt such that the two endpoints
are labeled. Theff? is the cycleCs,, of length2m. The lemma implies that a path of lengthis
smooth inside”s,,,. Then lemma&3]2 shows that any path of length at mogt also smooth inside
Cy,, and thus in particular edges are smooth. It follows from Leai87 that if we glue together
even cycles along an edge then the resulting graph is Sikoréffe will see later that this is true
with arbitrary Sidorenko graphs.

Now we introduce a class of graphs and we call threflection trees They include trees, even
cycles, and bipartite graphs in which one vertex is comptetbe other side. We prove that reflec-

tion trees are Sidorenko.

Definition 3.4 (Reflection tree) A reflection tree is a graph obtained from a tréeby applying the

reflection operation to a collection of sub-treeslin
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Two examples for reflection trees are even cycles and bipaytaphs in which one vertex is
complete to the other side. Even cycles are obtained by tiefiea path and the other example
is obtained from a star reflecting sub-stars. Now we are réagyove that reflection trees are

Sidorenko.

Proof of Theoreriill. Lemma3.6 and lemnia_3.5 together show that in any graph @atdiom a
treeT by reflecting a subtree the tréeis smooth. Then lemnia 3.4 finishes the proof.

4 Smoothness of edges

To avoid complications, our original definition for smoo#tss used functiond” that are strictly
positive. However smoothness can be equivalently definguiiely graph theoretic terms. Us-
ing the notation from the previous chapter Bt € G, be a bipartite graph on the vertex set
{x1,x2,..., 2, } such that the spanned subgraph®n= {z1,2s,...,z,} is a treeT. LetG

be a finite graph (replacing’). Homomorphisms fronH (resp.7’) to G can be looked at as as-
signments of values froi (G) to the variablegx1, xo, ..., 2, } (resp{z1, z2,...,z,}). Letur
denote the probability distribution dri(G)™ defined by the density functiofy. The places where
fris not defined are set to Intuitively, the distribution.7 is a random copy of” built up in G by
first choosing a random edgeand then growing" by adding leaves to the existing configuration
one by one in a random way. This can also be considered a bngnemdom walk with structure

T started from a random edge. The inequality defining smoathhecomes
E(ints(H*,G)) > |E(H")|Ind. )

where the expected value is taken with respect to the disiib .. It can be seen from standard
methods in graph limit theory that the two definitions areiegjent. From[(¥) we can immediately
see that for every (homomorphic) copyBfin G the restricted homomorphism density( H*, )

can’'t be0. This gives an interesting topological obstruction to sthaess.

Definition 4.1 (Retract) Let H be a graph andS C V(H) be a subset of its vertices. We say that
S (Or the graphH, spanned orb) is a retract ofH if there is a graph homomorphism: H — H,
such thatp restricted toH- is the identity map.

It is easy to see thafl, is a retract if and only if any graph homomorphigim: Hy — G into
an arbitrary grapttz extends to a graph homomorphigm: H — G. The next lemma follows

immediately from[(¥).

Lemma 4.1 If a tree T spanned on the vertex s6tC V(H) in a graphH is smooth thefT" is a

retract of H.



The following natural conjecture arises.
Conjecture 2 If H is a Sidorenko graph and a trééis a retract of H thenT" is smooth inf{.
We prove the following special case of the above conjecture.

Theorem 5 If H is a Sidorenko graph then every edge is smootH in

Proof. Let G be a finite graph with edge densify We denote by, the k-th tensor power of.
Assume that is a fixed edge if{ and thatd hasa + 1 edges. Letd* be the graph obtained from
H by removing the edge and labeling the two endpoints Ky, 2}. Let E;, denote the set of edges
fin Gy, forwhicht s (H*, Gy) > d** /2.

Let Qi be the probability space of a randomly chosen edg@'jirand let X, be the random
variablet s (H*, Gi) on Q. It is clear from the definition of7;, that the distribution of{}, is the
product ofk independent copies of;. Lete > 0 be an arbitrary number. By the law of large

numbers, ifk is big enough then
P(|(In X%)/k —E(In X;)| > ¢) <.

Now we estimate the probabilif(Fr) = |Ex|/|E(Gk)| in the probability spac€,. Let
G, denote the graph obtained fro@, by deleting the edge sdf;. The edge density of}, is
equal tod*(1 — P(E})) and so using the fact thadf is Sidorenko it follows that(H, G}) >
d@tVk(1 — P(Ey))@tY). On the other hand;(H*,G}) < d**/2 for every edgef in G, and
thust(H,G}) < d*(1 — P(E))d* /2. We obtain thatl/2 > (1 — P(Ej))* and thusP(E}) >
1-272>0.

Notice that the lower bound fd@(E)) does not depend dn It follows thatife < 1 — 27* and
k is sufficiently big then the evetf;, intersect the everifln X)/k — E(ln X;)| < ¢ and thus

E(ln X1) > In(d*/2)/k — €

holds for all such choices efandk. ConsequentiE(In X;) > aInd. This inequality is equivalent

with the smoothness ef

Proof of theoreri2The statement is a direct consequence of thefem 5 and IEdina 3
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