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Summary

For model selection purposes in experimental contexts, researchers often use step-

wise regression or subset selection. With currently available software, this has to be

done manually and often involves numerous model estimations in situations involv-

ing restricted randomization, such as block experiments and split-plot experiments.

Moreover, these selection procedures ignore the stochastic errors inherited in the

variable selection stage. This leads to incorrect standard errors. In this paper,

we investigate the usefulness of penalized least squares estimation, which performs

model selection and model estimation simultaneously. Therefore, the method results

in correct standard errors. A key property of the penalized least squares estimation

approach is that it possesses the so-called oracle property, which means that it works

as well as if the correct sub-model were known. We study the performance of the

approach using various practical examples, and investigate its properties in a simu-

lation study.

Keywords: blocked experiments, hard thresholding penalty, L1-penalty function, least
absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation
(SCAD), split-plot design, variable selection.
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1 Introduction

Response surface models often involve a relatively large number of regressors. Usually,
not all the regressors have a signi�cant impact on the responses of interest. One of the
challenges for the researcher is therefore to select the best possible model. This is often
done using stepwise regression (stepwise addition or stepwise deletion, or a combination of
the two) or subset selection. For data from completely randomized experiments, such ap-
proaches are available in many commercial packages, and, as a result, they are frequently
used. The statistical properties of these model selection procedures are, however, not well
understood (for instance, because a sequence of tests is performed on the same data, so
that there is an issue of multiple testing, and because p values are conditional on what
variables have been included in or excluded from the model). Also, there is no obvious
way to determine appropriate standard errors for the purpose of statistical inference and
model prediction. This is due to the fact that these model selection procedures ignore the
stochastic nature of the various steps of the variable selection.

Another drawback is that model selection using stepwise regression can be computation-
ally cumbersome if there is a large number of regressors. This is because stepwise variable
selection requires the estimation of a large number of models. On top of that, many
experiments involve various responses, which increases the computational burden even
further.

In industrial experimentation, there is an additional complication: many experiments
involve one or more restrictions on the randomization. This leads to correlated observa-
tions and necessitates the use of generalized least squares (GLS) estimation, combined
with restricted maximum likelihood estimation (REML) of the variance components. In
that case, one can also carry out stepwise regression, but this has to be done manually as
commercial packages do not o�er this option in an automated form.

Consequently, there is a need for a method that simultaneously selects the regressors
to be included in the model and estimates the model coe�cients. This will not only
facilitate the work to be done by the researcher (especially in the presence of multiple
responses and in the case of a restricted randomization), but it will also make it possible
to obtain reliable standard errors for the estimated model parameters and to circumvent
the multiple testing issue.

We propose the use of penalized least squares for simultaneous model selection and es-
timation, which is a special case of penalized likelihood. Penalized least squares and
penalized likelihood have already been used in a variety of contexts, including hazards
and frailty models, high-dimensional knowledge discovery, analysis of supersaturated de-
signs and large-scale medical studies (see Fan and Li (2001; 2002; 2006), Li and Lin (2002),
Karagrigoriou et al. (2010), and Androulakis et al. (2010)). The main idea of penalized
least squares is that there is a penalty for any non-zero estimate of the model coe�cients
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when minimizing the sum of the squared residuals. As a result, the penalized least squares
estimation approach has an incentive to estimate certain model parameters to zero. So,
the penalized least squares approach has an incentive not to make the model unnecessarily
complicated by including a large number of regressors. We show how the penalized least
squares estimation approach can be adapted to cope with correlated observations from
experiments with random block e�ects and from split-plot experiments, and we name the
resulting approach penalized generalized least squares.

In the next section, we discuss the model, for which our approach will be used, for data
from blocked and split-plot experiments. In Section 3, we provide a description of the
traditional penalized least squares approach for uncorrelated observations, and present
the most commonly used penalty functions. We also introduce the penalized generalized
least squares approach. In Section 4, we demonstrate the usefulness of the penalized
generalized least squares approach using four real-life data sets from the literature. In
Section 5, we describe the results of an extensive simulation study which we carried out
to investigate the properties of the penalized generalized least squares approach in more
detail. Finally, we end the paper with a discussion.

2 Model

In this article, we study the linear model

Y = Xβ + ν,

where Y is an n × 1 vector of responses, X is an n × p model matrix, β is a p × 1
vector containing an intercept and d = p− 1 factor e�ects, and ν is the vector of random
errors. We denote the intercept by β0 and the factor e�ects by β1, . . . , βd. We focus on
experiments involving randomly selected blocks and on split-plot experiments, in which
the observations are obtained in groups. We denote the number of groups by b and the
number of observations in each group by k. In blocked experiments, the di�erent groups
of observations are typically called blocks, whereas in split-plot experiments they are
referred to as whole plots.

A key di�erence between blocked and split-plot experiments is that there are two sorts of
factors in split-plot experiments. Some factors are held constant for all the observations
within a group or whole plot, whereas others are reset independently for each individual
observation. The former factors are called whole-plot factors, whereas the latter are
referred to as sub-plot factors. The e�ects of the whole-plot factors are named whole-plot
e�ects, while the e�ects of the sub-plot factors are called sub-plot e�ects. Interaction
e�ects involving the two types of factors are called whole-plot-by-sub-plot interaction
e�ects. Often, the levels of the whole-plot factors are, in some sense, hard to change,
while the levels of the sub-plot factors are easy to change. When discussing split-plot
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designs in this article, we will denote the ith whole-plot factor by wi and the ith sub-
plot factor by si. In blocked experiments, all the factors are reset independently for each
observation, so that there is only one type of experimental factor. Therefore, we denote
the ith factor in a blocked experiment simply by xi. Conceptually, the factors in a blocked
experiment are similar to the sub-plot factors in a split-plot experiment.

For data from blocked and split-plot experiments, it is natural to assume that

ν = Zγ + ε,

where Z is an n × b matrix of zeros and ones whose (i, j)th element is one if the ith
observation was obtained in group j, γ is a b× 1 vector of random e�ects describing the
group-to-group variation in the responses, and ε is an n×1 vector containing the random
errors for each of the n measured responses. The elements of γ and ε are assumed to
be mutually independently normally distributed with zero mean and variances σ2

γ and σ
2
ε

respectively. The implied variance-covariance matrix for the response vector Y then is

V = σ2
εIn + σ2

γZZ
′ = σ2

ε(In + ηZZ′),

where η = σ2
γ/σ

2
ε . The larger this variance ratio, the stronger observations within the

same group are correlated.

The best linear unbiased estimator for the parameter vector β is the generalized least
squares estimator

β̂ = (X′V−1X)−1X′V−1Y . (1)

Using this expression requires the estimation of the variance components σ2
γ and σ2

ε .
Gilmour and Trinca (2000) and Letsinger et al. (1996) recommend REML estimation of
these variance components for data from blocked experiments and from split-plot exper-
iments, respectively. Strong arguments in favor of REML estimates are that they have
minimum variance in case the design is balanced and that, unlike other types of estimates,
they are calculable for any type of blocked and split-plot designs, such as blocked and
split-plot response surface designs (see, for instance, Searle et al. (1992)).

3 Penalized Least Squares

In this section, we introduce the penalized generalized least squares approach. First, we
discuss the approach as it was originally proposed for models with uncorrelated observa-
tions. Next, we introduce the penalized generalized least squares approach to cope with
correlated observations.
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3.1 Penalty functions

Penalized least squares estimation di�ers from classical least squares estimation because
the factor-e�ect estimates are obtained by minimizing an objective function that involves
a penalty function on top of the sum of squared residuals. The idea of the penalty function
is that it prevents over�tting: a penalty is incurred whenever a factor e�ect has a nonzero
estimate, i.e. whenever a term is included in the model. Therefore, factor e�ects only get
positive estimates if the resulting penalty is compensated by a substantial decrease in the
sum of squared residuals. As a result, the estimate of any unimportant factor e�ect is
zero. The penalized least squares estimates of the factor e�ects therefore automatically
select an appropriate model.

For a linear model with uncorrelated errors, the penalized least squares estimates are
obtained by minimizing

QPOLS(β) =
1

2
(Y −Xβ)′(Y −Xβ) + n

d∑
j=0

pλ(|βj|) (2)

with respect to β, instead of the sum of the squared residuals,

QOLS(β) = (Y −Xβ)′(Y −Xβ), (3)

which is minimized in ordinary least squares estimation. In expression (2), pλ(.) is a
penalty function and λ is an unknown strictly positive thresholding parameter, which is
often chosen using generalized cross-validation (Craven and Wahba (1979)).

In the literature, there are three commonly used penalty functions. The �rst of these is
the L1 penalty,

pλ(|β|) = λ|β|,
which results in the least absolute shrinkage and selection operator (LASSO; see Tibshi-
rani (1996)). The second is the hard thresholding penalty function,

pλ(|β|) = λ2 − (|β| − λ)2I(|β| < λ),

where I(|β| < λ) is an indicator function that takes the value one if |β| < λ and zero
otherwise (Antoniadis (1997)). The �nal penalty function is the smoothly clipped absolute
deviation (SCAD) penalty, proposed by Fan (1997),

pλ(β) =


λ|β|, if 0 ≤ |β| < λ,
(α2−1)λ2−(|β|−αλ)2

2(α−1) , if λ ≤ |β| < αλ,
(α+1)λ2

2
, if |β| ≥ αλ.

For the tuning parameter α, Fan (1997) and Fan and Li (2001) suggest using a value of
3.7, because this value gave a satisfactory performance in a variety of variable selection
problems.
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Fan and Li (2001) show that the hard threshold penalty function and the SCAD penalty
function have desirable theoretical properties, which make them ideal for variable selec-
tion, and that this is not the case for the L1 penalty function. More speci�cally, the hard
threshold and SCAD penalty functions possess the so-called oracle property, asymptoti-
cally. This means that with these penalty functions the penalized least squares estimator
works as well as if the correct submodel were known in advance. In technical terms, this
means that, when the true parameters have some zero components, they are estimated to
zero with probability tending to one, and, when the true parameters are not zero, they are
estimated as well as when the correct submodel is known. Furthermore, Fan and Li (2001)
point out that the penalized least squares estimator improves the accuracy for estimating
not only the zero parameters, but also for estimating the nonzero parameters, and that
it outperforms the maximum likelihood estimator or GLS estimator. A simulation study
indicated that the L1 penalty function has good performance when the noise to signal
ratio is large, but the bias created by this approach is noticeably large. The penalized
least squares approach with the SCAD penalty function gives the best performance in se-
lecting signi�cant variables without creating excessive biases. The simulation study also
demonstrated that the performance of SCAD is as good as that of the oracle estimator
when the sample size n increases. In their conclusion, Fan and Li (2001) indicated that
the penalized least squares approach can be applied to other statistical contexts without
any extra di�culties. In Section 3.2, we show how the penalized least squares approach
can be adapted to deal with correlated observations.

Fan and Li (2001) propose an iterative ridge regression estimation approach to obtain the
penalized least squares estimates. The procedure starts from an initial value β(0), which
can, for instance, be the parameter estimates for the full model or the estimates from the
model obtained after stepwise variable selection, as suggested by Li and Lin (2002). For

each element β
(0)
j of β(0) which is very close to zero, the corresponding estimate is set to

zero. All other (nonzero) coe�cients are jointly updated using

β(1) = {X′X+W(0)}−1X′Y , (4)

where β(1) is the vector collecting all nonzero coe�cients and, if we denote by d∗ the
number of nonzero model coe�cients,

W(0) = n



p′λ(|β
(0)
1 |)

|β(0)
1 |

0 . . . 0

0
p′λ(|β

(0)
2 |)

|β(0)
2 |

. . . 0

...
...

. . .
...

0 0 . . .
p′λ(|β

(0)
d∗ |)

|β(0)
d∗ |


.

Next, any elements of β(1) that are close to zero are set to zero and the non-zero coef-
�cients are jointly updated along with the matrix W(0). These steps are repeated until
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convergence takes place. Because the parameter estimation and the variable selection
are done simultaneously, the standard errors for the nonzero parameter estimates can be
obtained directly from the sandwich formula

ĉov(β̂) = σ2
ε(X

′X+ Ŵ)−1X′X{X′X+ Ŵ}−1,

where β̂ contains the �nal estimates of the nonzero model coe�cients and Ŵ is the
corresponding estimated W matrix.

The implementation of these methods requires the determination of the thresholding
parameter λ. This can be done using generalized cross-validation. This method departs
from the fact that

Ŷ = Xβ̂ = X{X′X+ Ŵ}−1X′Y ,
which means that

X{X′X+ Ŵ}−1X′

plays the role of the hat matrix. The quantity

e = tr[X{X′X+ Ŵ}−1X′]

therefore measures the number of e�ective parameters in the �tted penalized least squares
model. The generalized cross-validation statistic is then

GCV(λ) =
1

n

‖Y − Ŷ ‖2

(1− e/n)2
.

Note that this statistic depends on λ through Ŷ and through the number of e�ective
parameters, e. The thresholding parameter is chosen so that this statistic is minimized.

3.2 Correlated observations

In this section, we present two di�erent modi�cations of the penalized least squares ap-
proach. The �rst modi�cation treats all the factor e�ects alike, and works well for blocked
experiments. The second modi�cation is suitable for split-plot experiments, which have
two types of factors whose e�ects are estimated with di�erent precisions. For this reason,
we used di�erent penalties for whole-plot and sub-plot factor e�ects.

3.2.1 Blocked experiments

In the case of blocked experiments, the penalized least squares estimates can be found by
minimizing

QPGLS(β) =
1

2
(Y −Xβ)′V−1(Y −Xβ) + n

d∑
j=0

pλ(|βj|) (5)
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with respect to β, instead of the weighted sum of squared residuals

QGLS(β) = (Y −Xβ)′V−1(Y −Xβ),

which would produce the generalized least squares estimates. In this paper, we im-
plemented the L1 penalty function (LASSO, Tibshirani (1996)), the hard thresholding
penalty function (HARD, Antoniadis (1997)) and the smoothly clipped absolute devia-
tion (SCAD) penalty function with α = 3.7 (Fan and Li (2001)).

To obtain the penalized generalized least squares estimates, we modi�ed the estimation
procedure from the previous section to deal with correlated observations. We updated
the (nonzero) coe�cients jointly using

β(1) = {X′V−1X+W(0)}−1X′V−1Y . (6)

As in the uncorrelated case, these steps are repeated until convergence takes place. The
standard errors for the nonzero parameter estimates can then be obtained from the sand-
wich formula

ĉov(β̂) = {X′V−1X+ Ŵ}−1X′V−1X{X′V−1X+ Ŵ}−1,

where β̂ again contains the �nal estimates of the nonzero model coe�cients and Ŵ is the
corresponding estimated W matrix.

We also used a generalized cross-validation to estimate the thresholding parameter λ. We
computed the generalized cross-validation statistic as

GCV(λ) =
1

n

‖Y − Ŷ ‖2

(1− e/n)2
,

where
Ŷ = Xβ̂ = X(X′V−1X+ Ŵ)−1X′V−1Y

and
e = tr[X{X′V−1X+ Ŵ}−1X′V−1],

and used the value of λ that minimizes GCV(λ). At each step of the estimation procedure,
the variance components σ2

γ and σ
2
ε are re-estimated using REML.

3.2.2 Split-plot experiments

Equation (5) works well for blocked experiments but not for split-plot experiments. This
is because the method is not capable of keeping the type I error rates for the main e�ects,
the quadratic e�ects and the interaction e�ects of the whole-plot factors under control.
This can be remediated by using larger penalties for whole-plot factor e�ects. Therefore,
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for analyzing data from split-plot experiments, we use separate penalties for the whole-plot
and sub-plot e�ects. The penalized least squares estimates are found by minimizing

QPGLS(β) =
1

2
(Y −Xβ)′V−1(Y −Xβ) +

dw∑
j=0

pλw(|βj|) + n
d∑

j=dw+1

pλs(|βj|) (7)

with respect to β. In this expression, dw denotes the number of whole-plot e�ects,
β1, . . . , βdw represent these whole-plot e�ects and βdw+1, . . . , βd are the sub-plot e�ects.
The matrix W(0), required for computing the estimates, now equals

W(0) =

[
W

(0)
w 0

0 W
(0)
s

]
,

where

W(0)
w =



p′λw (|β(0)
1 |)

|β(0)
1 |

0 . . . 0

0
p′λw (|β(0)

2 |)

|β(0)
2 |

. . . 0

...
...

. . .
...

0 0 . . .
p′λw (|β(0)

d∗w
|)

|β(0)

d∗w
|


corresponds to the whole-plot e�ects, and

W(0)
s = n



p′λs (|β
(0)

d∗w+1
|)

|β(0)

d∗w+1
|

0 . . . 0

0
p′λs (|β

(0)

d∗w+2
|)

|β(0)

d∗w+2
|

. . . 0

...
...

. . .
...

0 0 . . .
p′λs (|β

(0)
d∗ |)

|β(0)
d∗ |


,

corresponds to the sub-plot e�ects. We denote by d∗ the total number of nonzero model
coe�cients and by d∗w the number of nonzero model coe�cients that correspond to whole-
plot e�ects.

As the penalized generalized least squares approach involves two di�erent penalties for
split-plot experiments, we had to estimate two thresholding parameters, λw and λs. We
did so using generalized cross-validation. The resulting value for λw was larger than than
for λs, which entails a larger penalty for the whole-plot e�ects. Again, at each step of the
estimation procedure, the variance components σ2

γ and σ
2
ε are re-estimated using REML.
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4 Practical examples

This section is a proof-of-concept section in which we demonstrate the usefulness of pe-
nalized generalized least squares in a variety of experimental scenarios. We start with the
simultaneous selection and estimation of models for a non-orthogonally blocked response
surface experiment involving various responses, using Equation (5). Next, we focus on two
di�erent split-plot experiments, for which we use Equation (7). The �rst split-plot exper-
iment we consider is a response surface experiment for which the ordinary least squares
(OLS) estimator and the generalized least squares (GLS) estimator are equivalent. The
split-plot experiment is a response surface experiment for which there is no equivalence
between OLS and GLS. All of the data sets, each of which is in the public domain, involve
quantitative experimental variables only and allow at least some of the quadratic e�ects
to be estimated.

4.1 The pastry dough experiment

The �rst data set we study involves a non-orthogonally blocked response surface design
and four di�erent responses. The construction method for the design is described in
Trinca and Gilmour (2000), while the di�erent responses that we study are described in
Gilmour and Ringrose (1999) and Gilmour and Trinca (2000). The experiment was aimed
at improving the quality of a pastry dough. It involved seven blocks or four runs, and three
experimental variables: �ow rate (x1), moisture content (x2) and screw speed (x3). The
four responses in the data set are a longitudinal expansion index (y1), a cross-sectional
expansion index (y2), and two measures of light transmission in two di�erent bands of the
spectrum (y3 and y4).

The estimates for the ten parameters of the full quadratic model for each of the four
responses are displayed in Table 1. For each response, the table contains the estimates
obtained using three versions of the penalized least squares method based on equation
(5) as well as the estimates obtained using (non-penalized) generalized least squares and
backward model selection. The key result is that each of the four methods results in the
same �nal model for every response. In terms of variable selection, the three variants
of the penalized least squares approach thus do equally well as manual backward model
selection. The point estimates obtained using the hard thresholding penalty function
are almost identical to those produced by (non-penalized) generalized least squares. The
point estimates for LASSO (based on the L1 penalty function) are those that di�er most
from the (non-penalized) generalized least squares estimates. The LASSO estimates are
biased toward zero, and their standard errors are smaller than those for the three other
methods.
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4.2 The wind tunnel experiment

The second data set also involves four di�erent responses (coe�cient of lift � front (y1),
coe�cient of lift � rear (y2), drag (y3) and lift over drag ratio (y4)) and comes from a
wind tunnel experiment carried out using a split-plot design. The design had nine whole
plots of �ve runs each. Four experimental variables were studied: front ride height, rear
ride height, yaw angle and grille coverage. The �rst two of these are whole-plot variables,
whereas the others are sub-plot variables. Therefore, we denote the four experimental
variables by w1, w2, s1 and s2, respectively. A special feature of the design was that
only one of the quadratic whole-plot e�ects and only one of the quadratic sub-plot e�ects
could be estimated. The data from the wind tunnel experiment are extensively described
in Simpson, Kowalski and Landman (2004).

The estimates for the 15 parameters of the full quadratic model obtained using the three
variants of the penalized least squares method and Equation (7) as well as using the
non-penalized approach for each of the four responses are displayed in Table 2. Again,
each of the four methods results in the same �nal model for every response. Moreover,
the point estimates as well as the standard errors are nearly identical for all methods.
It is striking that the di�erences between the methods are smaller for the data from the
wind tunnel experiment. This is due to the small variance in each of the responses and to
the experimental design used for the wind tunnel experiment, which is a crossed design
with �ve runs per whole plot and only two variables that were varied within the whole
plots, from which most of the model parameters can be estimated independently. This
was not the case for the pastry dough experiment, which had only four runs per block
and three variables that were varied within the blocks, so that most parameters could not
be estimated independently.

4.3 The freeze-dried co�ee experiment

The �nal data set that we study is from an experiment carried out to study the e�ect
of several process variables on the retention of volatile compounds in the freeze drying
of co�ee. The setup and analysis of the freeze-dried co�ee experiment were reported
in Gilmour et al. (2000) and Gilmour and Goos (2009). Five variables were studied at
three levels: the pressure in the drying chamber (w), the heating temperature (s1), the
initial solids content in the co�ee solution (s2), the thickness of the slab freeze dried as
a batch (s3), and the freezing rate (s4). The experiment was conducted using a split-
plot design with six whole plots, each containing �ve sub-plots. The pressure variable
was a whole-plot variable, while the other four variables were sub-plot variables. Four of
the responses measured were the amounts of the volatile compounds methylpirazine (y1),
benzaldehyde (y2), 4-ethylbenzaldehyde (y3) and 2-methoxy-4-methylphenol (y4) retained
after freeze-drying.
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The estimates for the 21 parameters of the full quadratic models for the four responses
are displayed in Table 3. For two of the four responses, y2 and y3, the three variants of
the penalized least squares approach and the (non-penalized) generalized least squares
approach result in the same set of selected variables. For these responses, using the L1

penalty function (LASSO) yields point estimates that are shrunk to zero to a substantial
extent and smaller standard errors too. The three other approach yield very similar point
estimates and standard errors. Compared to the results for the wind tunnel experiment,
the di�erences between the methods are larger in the freeze-dried co�ee example. Com-
paring Tables 1 and 3 shows that the di�erences between the methods in the freeze-dried
co�ee example are similar to those in the pastry dough experiment. The reason is that the
experimental design used in the freeze-dried co�ee experiment was not as orthogonal as
the design used in the wind tunnel experiment, because four variables were varied within
the blocks.

For the response y1, there is a substantial di�erence between the penalized least squares
approaches and the (non-penalized) generalized least squares. The penalized least squares
approaches all retain three terms in the model, whereas the non-penalized approach leads
to the selection of the null model. However, when using the non-penalized generalized least
squares approach, there are various parameter estimates that are very nearly signi�cant
at the 5% level. Two of these are the interaction e�ect between pressure (w) and initial
solids content (s2) and the quadratic e�ect of thickness (s3), which are present in the
model selected by the penalized least squares method. Hence, the di�erence between the
(non-penalized) least squares approach and the penalized least squares variants is not
dramatic. Similar observations can be made for the response y4. The penalized least
squares approach retains four terms in the model when the SCAD and HARD penalty
functions are used and three terms when the LASSO approach, involving the L1 penalty
function, is used. The non-penalized approach selects only two terms. However, the
terms that are not included in the non-penalized approach are nearly signi�cant at the
5% level. As a result, also for the response y4, the di�erence between the penalized and
non-penalized approach is not dramatic.

Of the three penalty functions, the L1 penalty function (LASSO) leads to the poorest
results in the sense that its estimates are shrunk toward zero to a substantial extent for
non-orthogonal designs. In these cases, the standard errors resulting from the L1 penalty
function are also smaller than for the other methods. Therefore, we do not include the
L1 penalty function (LASSO) in our simulation study.

5 Simulation Study

From the practical examples, it is clear that the penalized generalized least squares ap-
proach, when utilized with the SCAD or the hard thresholding penalty function, is at
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the very least a promising approach for automated model selection for data from blocked
experiments and split-plot experiments. In this section, we study the properties of the
penalized generalized least squares approach in detail by means of a simulation study.
The goals of the simulation study are (i) to investigate its performance under the null
model in which the experimental variables have zero main e�ects, interaction e�ects and
quadratic e�ects, and (ii) to investigate to what extent the penalized generalized least
squares is capable of detecting nonzero e�ects of the experimental variables. As a bench-
mark for the performance of the penalized generalized least squares approach, we utilize
the (non-penalized) generalized least squares analysis using REML estimates of the vari-
ance components σ2

γ and σ
2
ε , as recommended by Gilmour and Trinca (2000) and Letsinger

et al. (1996). In the discussion below, we label this approach REML-GLS.

5.1 Setup

In our simulation study, we adopt an approach similar to that of Goos et al. (2006), who
studied the type I and type II error rates of various split-plot response surface designs
with a traditional generalized least squares analysis using a signi�cance level of 5%, where
the variance components are estimated using REML. Like Goos et al. (2006), we use a
backward selection approach for the generalized least squares approach, where we �t the
full model and drop all the non-signi�cant terms in one step to arrive at the �nal model.

First, we study the performance of the penalized generalized least squares approaches
under the null model. This allows us to verify to what extent the approaches control
the type I error rate. Next, we study the type II error rate of the penalized generalized
least squares approaches. In our simulation study, we set σ2

γ + σ2
ε = 20, without loss of

generality, and used three variance ratios, η = 1/10, 1 and 10. Similar values for η have
been obtained from the analysis of data from many blocked and split-plot experiments
(see, for instance, Letsinger et al. (1996), Littell et al. (1996), Gilmour and Trinca (2000)
and Webb et al. (2004)). We compare our results to those of Goos et al. (2006), who
showed that the type I error rate for whole-plot factor e�ects and quadratic sub-plot
e�ects are hard to control if the number of whole plots of a split-plot response surface
design is small. According to their results, only the combined REML-GLS analysis with
degrees of freedom obtained from the method of Kenward and Roger (1997) seems capable
of controlling the type I error for most of the e�ects, with some exceptions for the whole-
plot e�ects and quadratic e�ects of the sub-plot factors. Other degrees of freedom methods
have substantially too large a type I error rate in most circumstances.

Some of the the type II error rates obtained by Goos et al. (2006) with the REML-GLS
approach and Kenward-Roger degrees of freedom are substantial. According to their
results, even whole-plot e�ects as large as the standard deviation of the responses remain
undetected in at least 60% of the cases. For the sub-plot e�ects, the type II error rates
are quite small, except when they are not orthogonal to the whole plots. Because the
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variables in a blocked experiment are treated identically as sub-plot variables in a split-
plot design, the type II error rates for all the e�ects in a blocked experiment should be
rather small.

5.2 Type I error rates

For each of the designs utilized in Section 4, we simulated 1000 data sets using a null
model with η = 1/10, 1 and 10 for σ2 = σ2

γ + σ2
ε = 20, and analyzed each data set with

the penalized generalized least squares approach. This allows us to study the type I error
rate that the method yields. We mainly report results obtained using the SCAD penalty
function because, in general, that penalty function leads to substantially smaller type I
error rates than the hard thresholding penalty function.

5.2.1 Pastry dough experiment

The type I error rates for the design for the pastry dough experiment obtained using the
SCAD and hard thresholding penalty functions are given in Table 4. For the main e�ects
and the two-factor interaction e�ects, the type I error rates for the SCAD penalty function
lie between 0.004 and 0.038, which is acceptable. The type I error rates for the quadratic
e�ects are noticeably larger and range from 0.036 to 0.170. The qualitatively di�erent
behavior of the quadratic e�ects is explained by the fact that the quadratic e�ects are
not nearly as orthogonal to the blocks as the main e�ects and the two-factor interaction
e�ects.

A clear pattern in the type I error rates when using the SCAD penalty function is that they
decrease with η for each of the e�ects. This is because large values of η correspond with
small values of σ2

ε , so that the standard errors for each of the factor e�ects are substantially
smaller if η is large. As a matter of fact, in a blocked experiment, it is mainly the residual
error variance σ2

ε that determines the absolute magnitude of the parameter estimates'
standard errors. For the hard thresholding penalty function the type I error rates are
unacceptably large.

For the main e�ects and the two-factor interaction e�ects, the type I error rates for the
non-penalized generalized least squares lie between 0.041 and 0.066, which is in line with
the signi�cance level chosen. The type I error rates for the quadratic e�ects range from
0.048 to 0.079. They are noticeably smaller than those of the SCAD method, for the cases
with eta equal to 0.1 and 1, and much smaller than those for the HARD penalty function.
The type I error rates for the quadratic e�ects are close to 5% when the non-penalized
generalized least squares approach is used, independently of the variance ratio η.
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Table 4: Type I error rates for the pastry dough experiment
Method η x1 x2 x3 x1x2 x1x3 x2x3 x21 x22 x23

SCAD
0.1 0.018 0.017 0.011 0.031 0.032 0.038 0.148 0.170 0.139
1 0.011 0.008 0.019 0.026 0.034 0.018 0.085 0.088 0.083
10 0.009 0.009 0.010 0.008 0.004 0.016 0.036 0.043 0.041

HARD
0.1 0.161 0.172 0.164 0.199 0.173 0.202 0.284 0.300 0.275
1 0.090 0.071 0.082 0.145 0.147 0.138 0.274 0.301 0.286
10 0.040 0.045 0.046 0.073 0.075 0.089 0.303 0.316 0.320

GLS
0.1 0.046 0.053 0.046 0.051 0.059 0.066 0.065 0.079 0.057
1 0.046 0.051 0.048 0.053 0.062 0.041 0.055 0.048 0.051
10 0.057 0.054 0.061 0.036 0.045 0.056 0.050 0.066 0.064

5.2.2 Wind tunnel experiment

The type I error rates for the wind tunnel experiment obtained using the SCAD penalty
function are given in Table 5. Because of the poor performance of the hard thresholding
penalty function, we do not report any results for this method.

The penalized generalized least squares approach with the SCAD penalty function keeps
the type I error rate under control very well for the main e�ects, the quadratic e�ect
and the interaction e�ect of the two whole-plot factors w1 and w2 for all η values. The
type I error rates lie between 0.0% and 2.9% for these e�ects. For the main e�ects of the
sub-plot factors and the interaction e�ects involving the sub-plot factors, the type I error
rates for the SCAD method lie between 0.1% and 1.5%. So, the type I error rate is also
under control for these e�ects. This is also the case for the quadratic e�ect of the sub-plot
variable s1, except for the case where η is 0.1.

The type I error rates for the non-penalized generalized least squares lie between 4.1%
and 6.4% for the whole-plot e�ects, whereas those for the e�ects that involve sub-plot
factors range from 3.1% to 6.5%. Hence, here too, the type I error rate is close to the 5%
signi�cance level chosen.

5.2.3 Freeze-dried co�ee experiment

The �nal results on type I error rates are those reported in Table 6 for the freeze-dried
co�ee experiment. The design for the freeze-dried co�ee experiment involved fewer whole
plots than the wind tunnel experiment. The only visible impact of this is a slightly
higher type I error rate for all quadratic sub-plot e�ects for the penalized method. For
the whole-plot e�ects, the penalized generalized least squares approach with the SCAD
penalty function yields a smaller type I error rate than the traditional method without
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the penalty. This is also the case for the main e�ects and interaction e�ects of the sub-
plot variables. For the interaction e�ects between whole-plot and sub-plot factors, the
opposite is true.

5.3 Type II error rates

For each design used in Section 4, we also simulated 1000 data sets using a non-null model
with η = 1/10, 1 and 10 for σ2 = σ2

γ + σ2
ε = 20. When simulating data, we ensured that

the largest e�ects were of the same order of magnitude as σ. This is the typical e�ect size
that an experimenter certainly wants to detect. We analyzed the simulated data using
the penalized generalized least squares approach with the SCAD penalty function and
recorded the type II error rates.

5.3.1 Pastry dough experiment

The type II error rates obtained using the SCAD penalty function or using the traditional
generalized least squares approach for the design for the pastry dough experiment are
given in Table 7. These results are based on the model

E(Y ) = 50 + 4x1 + 2x2 + x3 − 4x1x2 − 2x1x3 − x2x3 + 4x21 + 2x22 + x23,

so that there is a large, a medium-sized and a small main e�ect, interaction e�ect and
quadratic e�ect to detect.

The type II error rates for the penalized method are very low for η equal to 1 or 10 for
the largest main e�ect and for the largest interaction e�ect, i.e. for the main e�ect and
the interaction e�ect that are as large as the standard deviation of the responses, σ. For
the quadratic e�ect of the same size, the type II error rate is negligible for η = 10 but
as large as 32.9% for η = 0.1. The medium-sized main e�ect and interaction e�ects have
smaller type II error rates when we use generalized least squares without penalization.
The results also show that e�ects of one quarter the size of σ are hard to detect and
have large type II error rates, and that the power for detecting medium-size and small
quadratic e�ects is limited for any value of η for the penalized generalized least squares
as well as the non-penalized generalized least squared. For the quadratic e�ects, however,
the performance of the penalized approach is better than that of the non-penalized one.
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Table 7: Type II error rates for the pastry dough experiment, along with the model
coe�cients used in the simulations

x1 x2 x3 x1x2 x1x3 x2x3 x21 x22 x23
Method η 4 2 1 −4 −2 −1 4 2 1

SCAD
0.1 0.092 0.685 0.914 0.119 0.686 0.892 0.329 0.611 0.706
1 0.014 0.533 0.895 0.039 0.587 0.878 0.244 0.609 0.743
10 0.000 0.129 0.761 0.000 0.193 0.765 0.003 0.335 0.749

GLS
0.1 0.032 0.507 0.821 0.080 0.595 0.838 0.693 0.870 0.921
1 0.002 0.300 0.773 0.012 0.446 0.809 0.511 0.845 0.921
10 0.000 0.000 0.165 0.000 0.000 0.331 0.003 0.365 0.778

5.3.2 Wind tunnel experiment

The type II error rates for the wind tunnel experiment obtained using the SCAD penalty
function and the non-penalized approach are displayed in Table 8. We generated data
using the model

E(Y ) = 50 + 4w1 + 2w2 + 4s1 + 2s2 + 4w1w2 + w1s1 + 4w1s2 + 2w2s1

+ 6w2s2 − 2s1s2 + 4w2
1 − 4s21,

Note that this model only involves two quadratic terms because the design actually run
did not allow for the estimation of all the quadratic e�ects. It contains large, medium-
sized and small e�ects. Large main e�ects and interaction e�ects of the sub-plot factors
s1 and s2 are detected almost with certainty for each of the three η values in our study,
by the penalized as well as the non-penalized approach. For medium-sized sub-plot main
e�ects and interaction e�ects, the type II error rate is almost zero when η = 10 and the
penalized approach is used, but the type II error rate is substantially larger for low values
of η. In some cases, the type II error rates are much better for the penalized approach
than for the non-penalized one, but in others, it is the other way around. The type II error
rate for the main e�ects, the interaction e�ects and the quadratic e�ect of the whole-plot
factors for the penalized method are large compared to that for the non-penalized method.

5.3.3 Freeze-dried co�ee experiment

The results on type II error rates for the freeze-dried co�ee experiment are reported in
Table 9. These results were obtained using the model

E(Y ) = 50 + 4w + 4s1 − 3s2 + 2s3 − s4 − 4ws1 + 3ws2 − ws3 + ws4 + 4s1s2

+ 3s1s3 + 2s1s4 − s2s3 + 4w2 + 4s21 − 3s22 + 2s32 − s42
for generating the data. The results for the freeze-dried co�ee experiment are completely in
line with those for the wind tunnel experiment. The type II error rate for the main and the
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quadratic e�ect of the whole-plot variable w is worse if we apply penalized least squares.
This is true as well for the main e�ects of the sub-plot factors and the interaction e�ects
involving sub-plot factors only. On the contrary, the type II error rates for interaction
e�ects involving a whole-plot factor and a sub-plot factor are smaller for the penalized
method than for the non-penalized method when η is small, but larger when η is large.
The type II errors for the quadratic sub-plot e�ects exhibit a similar pattern.

6 Discussion

In this article, we have shown how to adapt the penalized least squares approach so that
it can cope with correlated observations. We have done so by focusing on industrial
experiments run in blocks and run in a split-plot format. We have named the newly
developed approach penalized generalized least squares. One version of the new approach
utilizes equally sized penalties for all factor e�ects and is suitable for experiments run in
blocks. A second version of the approach uses larger penalties for the whole-plot factor
e�ects than for the sub-plot factor e�ects.

We have studied three di�erent sorts of penalty functions for use in the two versions
of the penalized generalized least squares approach. Our analysis of data from various
real-life experiments showed that the SCAD penalty function and the hard thresholding
penalty function performed similarly and were superior to the L1 penalty function (which
is known as LASSO). In a subsequent simulation study, it turned out that the SCAD
penalty function controlled the type I error substantially better than the hard thresholding
penalty function. Hence, we recommend utilizing the SCAD penalty function in the
penalized generalized least squares approach. This recommendation is in line with existing
literature that deals with uncorrelated observations.

Both our analysis of the real-life data sets and the simulation study demonstrate that the
penalized generalized least squares approach does not only do a good job when it comes
to identifying non-zero e�ects, but it also estimates the e�ects as well as the conventional
generalized least squares approach. What also became clear from our simulation study
is that the penalized generalized least squares approach allows the type I error to be
controlled well. For the whole-plot e�ects in split-plot models, this goes at the expense
of the type II errors. For other factor e�ects, except for quadratic e�ects in blocked
experiments and quadratic sub-plot e�ects in split-plot experiments when η is as small as
0.1, the type I error rates we obtained for the penalized generalized least squares approach
are small. For the type II error rate, the results are mixed, with the penalized generalized
least squares approach being better than the non-penalized approach in some cases and
worse in other cases.
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In our view, the penalized generalized least squares approach is a useful technique for
analyzing data from blocked and split-plot experiments. The method is intended to over-
come the criticisms that are raised against stepwise regression. The method circumvents
the multiple testing issue and the di�culties in interpreting p values that are conditional
upon what terms have been dropped from and added to the model in the stepwise re-
gression process. Another advantage of the approach is that model selection and model
estimation are done in a single step. This implies that the standard errors resulting from
the penalized generalized least squares approach are justi�ed theoretically, whereas this
is not the case for standard errors resulting from stepwise regression.

The fact that model estimation and selection are done in one step also has a practical
advantage over stepwise regression with correlated observations: no manual interventions
are required from the researcher when using the penalized generalized least squares ap-
proach. As a matter of fact, with current software packages suitable for analyzing data
from blocked and split-plot response surface experiments, the researcher has to perform
several successive regression analyses manually. This is especially cumbersome for exper-
iments that have multiple responses. As the examples in Section 4 show, the occurrence
of multiple responses is the norm, rather than the exception. Obviously, an automated
model selection and estimation tool is an important aid in the search for appropriate mod-
els for each of the responses. Our MATLAB implementation of the penalized generalized
least squares approach is available from the �rst author.

We strongly believe that the penalized generalized least squares approach can bene�t
from further research. For example, it would be interesting to develop an approach that
preserves model hierarchy. Also, the usefulness of other choices for the thresholding pa-
rameters based on the Akaike Information Criterion (AIC, Akaike 1974) and the Bayesian
Information Criterion (BIC, Schwarz 1978) could be investigated. Similar work was al-
ready done in the literature on penalized least squares for uncorrelated responses (see,
e.g., Wang et al. 2007 and Zhang et al. 2010. Another useful topic of research would be
to study alternative estimation procedures (see, e.g., Zou and Li 2008, who use the LARS
algorithm (Efron et al. 2004) to obtain penalized least squares estimates).
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