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Abstract

The methods of very robust regression resist up to 50% of outliers. The algorithms
for very robust regression rely on selecting numerous subsamples of the data. We de-
scribe new algorithms for LMS and LTS estimators that have increased efficiency due
to improved combinatorial sampling. These and other publicly available algorithms
are compared for outlier detection. An algorithm using the forward search has the best
properties for both size and power of the outlier tests.

Keywords: combinatorial search; concentration step; forward search(FS); least me-
dian of squares (LMS); least trimmed squares (LTS); logistic plots of power; masking;
outlier detection

1 Introduction

Multiple regression is one of the main tools of applied statistics. It has however long
been appreciated that ordinary least squares as a method of fitting regression models is
exceptionally susceptible to the presence of outliers. Instead, very robust methods, that
asymptotically resist 50% of outliers, are to be preferred.

Several algorithms have been proposed for very robust regression. All algorithms es-
timate the parameters by least squares applied to subsets ofobservations; they differ in
the number and sizes of the subsets and how those subsets are found. We introduce new
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versions of standard algorithms with improved combinatorial searches for these subsets.
The purposes of our paper are to describe these improvementsand to compare publicly
available versions of seven algorithms.

Very robust regression was introduced by Rousseeuw (1984) who developed sugges-
tions of Hampel (1975) that led to the Least Median of Squares(LMS) and Least Trimmed
Squares (LTS) algorithms. The algorithms for finding these estimates compare properties
of the fits to many subsets ofp observations,p being the number of parameters in the linear
model. Of course, in these cases, the least squares fit is an exact fit to the observations.
In the reweighted versions of these algorithms described in§2.2 allk observations that are
identified as outliers are rejected and least squares estimation is used on the remainingn−k
observations. Parameter estimation thus involves two subsets of the data.

More recently developed methods fit to subsets of several sizes. In the Forward Search
(FS: Atkinson and Riani 2000 with a recent discussion in Atkinson, Riani, and Cerioli
2010) subsets of increasing sizem are used, starting fromm0 = p and increasing until all
observations not in the subset are identified as outliers. Least squares is used for parameter
estimation for each subset. In this way the subset size flexibly responds to the properties of
the data. The FS for regression is described by Riani and Atkinson (2007).

In order to speed up the LTS algorithm for very large data sets, Rousseeuw and Van Driessen
(2006) introduced a “concentration” step into the LTS algorithm in which subsets of both
sizep and of sizeh = (n+p+1)/2 are used. Our numerical experience, outlined in the ap-
pendix, is that this can result in a slower algorithm when using the same number of subsets
as the algorithm without concentration. However, if we reduce the number of subsets, to
allow for the effect of the concentration step, we lose accuracy in parameter estimation (see
§3). We provide a different, faster, version of LTS that also uses concentration steps whilst
overcoming these problems. We consider only reweighted versions of these algorithms.

To compare these seven methods of robust regression we look at their ability to detect
outliers. The motivation comes from the study by Riani, Atkinson, and Cerioli (2009), who
reported excellent size and power for the FS for multivariate data. We likewise find that the
FS dominates the other six regression methods.

Our paper is structured as follows. The algorithms for very robust regression are de-
scribed in§2: the six for comparison in§2.2 and the FS in§2.3. Comparison of the size of
the tests is in§3, with power comparisons in§4. Brief conclusions are in§5. Details of the
improved combinatorial searches over subsets are in the appendix.

2 Algorithms for Very Robust Regression

We compare and contrast the properties of seven methods for very robust regression. The
algorithms that we use are the Forward Search Regression routine (FSR), the LMS and LTS
routines and their reweighted versions contained in the MATLAB toolbox called FSDA
(Forward Search Data Analysis) athttp://www.riani.it/MATLAB, two versions
of Fast LTS, the first based on the implementation contained in the LIBRA toolbox at
http://wis.kuleuven.be/stat/robust (Verboven and Hubert 2005, Verboven
and Hubert 2010) as originally proposed by Rousseeuw and VanDriessen (2006) and the
second based on our implementation in FSDA.
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2.1 Least Squares for Subsets of Observations

In the regression modely = Xβ + ǫ, y is then × 1 vector of responses,X is ann × p
full-rank matrix of known constants, withith row xT

i , andβ is a vector ofp unknown
parameters. The normal theory assumptions are that the errors ǫi are i.i.d.N(0, σ2).

Let S(m) be a subset ofm observations for which the matrix of regressors isX(m).
Least squares on this subset of observations yields parameter estimateŝβ(m) ands2(m),
the mean square estimate ofσ2 onm − p degrees of freedom. Residuals can be calculated
for all observations including those not inS(m). Then resulting least squares residuals are

ei(m) = yi − xT
i β̂(m), i = 1, 2, . . . , n. (1)

The algorithms use different functions of theei(m) to declare observations as outlying.
The forward search algorithm is designed to have sizeα of declaring an outlier free sample
to contain at least one outlier. Therefore, when evaluatingthe properties of the other algo-
rithms, we use Bonferroni corrections for simultaneity, with levelα∗ = α/n, so taking the
1 − α∗ cutoff value of the reference distribution. In our calculationsα = 0.01.

2.2 Some Very Robust Procedures

• LMS - Least Median of Squares

The LMS estimator minimizes thehth ordered squared residuale2
[h](β) with respect toβ,

whereh = ⌊(n + p + 1)/2⌋ and⌊.⌋ denotes integer part. Algorithms for LMS find an
approximation to the estimator, selecting the best fit, thatis the one giving the smallest
hth ordered squared residual out of alln residuals, to randomly chosen subsets ofp ob-
servations. Since there arep parameters andp observations in the subset, the fit to the
observations in the subset is exact. In the PROGRESS algorithm of Rousseeuw and Leroy
(1987,§4.4) sampling of observations is at random. Samples containing duplicate rows are
rejected, although the same subset may be selected more thanonce.

In our versions of LMS and LTS we instead sample without replacement from the lex-
icographic list of all possible subsets. IfnCp < 5 × 107 we store a list of all subsets
in Integer8 format. This very large number was chosen as being, at the time of writing,
reasonably below the the current limit of storage of a typical 32-bit PC. Subsets are then
sampled without replacement from this list. For larger values ofnCp we use an algorithm
which avoids explicit storage of the subsets. The strategy requires binomial coefficients
which are either computed with an algorithm which can be dated back to Lehmer (1964) or
retrieved from a look-up table of Pascal’s triangle values,previously built using the prop-
erty that each cell is given by the sum of the number above it and that above to the left.
The strategy is built to trade off time and space requirements on the basis of the machine
resources available at the time of execution. Details of this procedure can be found in the
appendix. In our comparisons we sampled 10,000 subsets.

Let β̃LMS be the LMS estimate ofβ. Rousseeuw (1984) bases the estimate ofσ on
the value of the median squared residuale2

med(β̃LMS). As in Rousseeuw and Leroy (1987,
p. 202) we define

σ̃LMS = 1.4826{1 + 5/(n − p)}
{

e2
med(β̃LMS)

}0.5

. (2)
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We declare as an outlier any observationi for which the absolute scaled residual

|eS
LMS,i| = |ei(β̃LMS)|/σ̃LMS > Φ−1(1 − α∗) (i = 1, . . . , n). (3)

• LTS - Least Trimmed Squares

The convergence rate of̃βLMS is n−1/3. Rousseeuw (1984, p. 876) also suggested Least
Trimmed Squares (LTS) which has a convergence rate ofn−1/2 and so better properties
than LMS for large samples. As opposed to minimising the median squared residual, we
now find β̃LTS to

minimize SST{β̂(h)} =

h
∑

i=1

e2
i {β̂(h)}, (4)

where, for any subsetH of sizeh the parameter estimateŝβ(h) are straightforwardly esti-
mated by least squares.

Let the minimum value of (4) beSST(β̃LTS). We base the estimator ofσ2 on this residual
sum of squares. However, since the sum of squares contains only the centralh observations
from a normal sample, the estimate needs scaling. The variance of the truncated normal
distribution containing the centralh/n portion of the full distribution is

σ2
T (h) = 1 −

2n

h
Φ−1

(

n + h

2n

)

φ

{

Φ−1

(

n + h

2n

)}

,

whereφ(.) andΦ(.) are respectively the standard normal density and c.d.f. This result
follows from the more general results of Tallis (1963) on elliptical truncation. To estimate
σ2 we accordingly take

σ̃2
LTS = SST(β̃LTS)/{h × σ2

T (h)}. (5)

Outliers are found as in (3) but with LTS parameter estimates.

• LMSR and LTSR - Reweighted Least Median of Squares and Reweighted Least
Trimmed Squares

To increase efficiency, reweighted versions of the LMS and LTS estimators can be com-
puted. These reweighted estimators are computed by giving weight 0 to observations which
(3), or its LTS analogue, suggests are outliers. We then obtain a sample of reduced size
n−k, possibly outlier free, to which OLS is applied. (Rousseeuwand Leroy 1987) pp. 44-
45, suggest to estimateσ2 by dividing the residual sum of squares from OLS byn− k − p.
On the other hand, for comparability with the implementation in the LIBRA library, we
divided byn − k − 1.

Let the parameter estimates beβ̃LXSR andσ̃LXSR, where by LXSR we mean either LMSR
or LTSR. The outliers are thek∗ observations rejected at this second stage, that is those for
which

|ei(β̃RLXS)|/σ̃RLXS > Φ−1(1 − α∗) (i = 1, . . . , n). (6)

We may find thatk∗ R k. Both in (3) and (6) we perform a test of Bonferronised sizeα∗.

• LTSRL - “Fast” Least Trimmed Squares
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The simple LTS algorithm outlined above can be slow as the number of observations in-
creases. Rousseeuw and Van Driessen (2006) introduced an improved algorithm with in-
creased speed and several refinements. The most important ofthese is the concentration
step, which is similar to the step used in the Forward Search in moving from a subset of
sizem to one ofm + 1.

Given a set ofn residuals from a first parameter estimateβ̃(h1) based on a subset ofh
observations, the absolute values of the residuals are ordered and a new subseth2 formed
as those observations giving theh smallest values of|ei{β̃(h1)}|. This process can be
repeated on some or all of the initial subsets, or iterated toconvergence on a few specially
selected initial subsets. A discussion of the properties ofsuch options in the more general
context of S-estimation is in Maronna, Martin, and Yohai (2006,§5.7).

Rousseeuw and Van Driessen (2006, p. 38) give the pseudo-code for their algorithm.
For small values ofn, perhaps less than 600, they suggest taking 500 random subsets of
size h1 = p. Each is subject to two concentration steps. The ten subsetsso obtained
with the smallest value ofSST{β̂(h3)} in (5) then have the concentration steps iterated to
convergence, with the minimum value ofSST{β̂(h∞)} providing the LTS estimate. For
larger sample sizes more complicated, but related strategies are suggested. In practice,
a divide and conquer strategy based on blocks of 300 observations is used to reduce the
number of concentration steps.

Once the estimatẽβLTS has been obtained, the estimation ofσ and the identification of
outliers are as in the LTS algorithm above.

• LTSRF - Fully Iterated Reweighted Least Trimmed Squares

Our experience is that the LTSRL algorithm was slower, for problems of our size, than our
implementation of LTS that uses a very efficient random sample generation method (see
the appendix). We think this was, at least in part, also due tothe housekeeping (storage
and sorting) involved in the concentration step strategy inthe algorithm of Rousseeuw and
Van Driessen (2006). Therefore, in our implementation of the Fast LTS we made some
simplifications in the use of the concentration steps. Instead of our usual 10,000 subsam-
ples, we also drew only 500. However, all of these were subject to concentration steps to
convergence. We observed that the number of iterations was essentially independent of the
number of variables and was increasing, from about5 iterations forn = 50 to 20 iterations
for n = 1000, with a rate which decreased as the sample size increased.

2.3 The Forward Search

2.3.1 Background

The forward search fits subsets of observations of sizem to the data, withm0 ≤ m ≤ n. Let
S∗(m) be the subset of sizem found by the forward search. Least squares on this subset of
observations yields parameter estimatesβ̂(m∗) ands2(m∗). From (1) then resulting least
squares residuals can be writtenei(m

∗). The search moves forward with the augmented
subsetS∗(m + 1) consisting of the observations with them + 1 smallest absolute values of
ei(m). To start we takem0 = p and search over subsets ofp observations to find the subset
that yields one of the very robust estimates ofβ described in§2.2.
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2.3.2 Testing for Outliers

In the search we wantm to increase until alln−m observations not inS∗(m) are outliers.
To test for outliers the deletion residuals are calculated for thesen−m observations not in
S∗(m). These residuals, which form the maximum likelihood tests for the outlyingness of
individual observations, are

ri(m
∗) = ei(m

∗)/
√

s2(m∗){1 + hi(m∗)}, (7)

where the leveragehi(.) = xT
i {X(.)T X(.)}−1xi. The observation nearest to those forming

S∗(m) is that with the minimum value of|ri(m
∗)|, i /∈ S∗(m). Call this imin. To test

whether observationimin is an outlier we use the absolute value of the minimum deletion
residualrmin(m

∗). If the absolute value is too large, the observationimin is considered to be
an outlier, as well as all other observations not inS∗(m). See Riani and Atkinson (2007)
for further details.

2.3.3 The FSR Algorithm

The automatic procedure in the FSR algorithm is based on thatof Riani, Atkinson, and
Cerioli (2009) who used scaled Mahalanobis distances to detect outliers in multivariate
normal data. For regression these distances are replaced bythe absolute value of the mini-
mum deletion residual. Some further details of the regression algorithm are given by Torti
(2011).

The implementation in FSDA allows appreciable diagnostic and graphical output. Ri-
ani, Atkinson, and Perrotta (2012) also present an illustrative examples of a FS analysis of
the kind of trade data motivating Riani et al. (2008).

3 The Size of the Tests

In our simulation studies we considered regression models with an intercept andv explana-
tory variables over a range of values ofv from 1 to 10 (sop ranged from 2 to 11). The
values of thexij (i = 1, . . . , n; j = 1, . . . , v) were sampled once for each pair of values of
v andn from independent standard normal distributionsN (0, 1). Since the tests for outliers
are functions of residuals, which do not depend on the valuesof the parametersβ, these
values were set to zero. We added standard normal random variables to these null models,
estimating the parameters and repeating the processnsim = 10, 000 times. We count the
proportion of samples declared to contain at least one outlier.

We start with results forv = 5. Figure 1 gives the size of the seven tests for sample
sizesn in the range 100 to 1,000. For the largest sample sizes (n = 500 and 1000) all tests,
except the traditional LTS and LMS without re-weighting, have sizes near1%. Unlike
the other tests, the size of the FS is stable around1% even for the smallest sample sizes,
whereas the other methods perform comparatively poorly. Inparticular note that the fast re-
weighted LTS (both the LTSRF and the LTSRL versions) has larger sizes than the standard
re-weighted LTS (LTSR). We believe this is because the concentration step of the fast LTS
is based on a number of subsets, 500, which is not sufficient tovisit all the local minima
that are explored with the standard LTS estimate using 10,000 subsets. Further simulations
with increased numbers of subsets did indeed show that the average squared norm of the
parameter estimates decreased as the number of subsets increased.
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The results forv = 10 in Figure 2 are similar to, but more extreme than, those for
v = 5. For the larger sample sizes all sizes, except LTS without re-weighting, are between
1% and2%. For smaller sample sizes all reweighted versions of LTS perform with the two
fast versions (LTSRF and LTSR) having larger sizes than LTSR.

As a last exploration of size we look at results for small sample sizes whenv = 1. As
Figure 3 shows, the sizes for LMSR and FS are closest to 1% for all values ofn. The size
for LMS increases with sample size up to a final2% atn = 95. Standard LTS is constantly
between4% and5% with the three re-weighted LTS methods (LTSR, LTSRF and LTSRL)
now virtually equivalent, the size decreasing with the sample size, from an initial4% to a
final 1.5%.

4 The Power of the Tests

The comparisons of size suggest that, overall, FS and LMSR have the best performance.
However, power comparisons reveal that LMSR has the lowest power of the seven proce-
dures.

In our power calculations we shifted the mean of 5% or 30% of the observations by up
to 7 units (the errors in our observations were standard normal) and calculated the average
power, that is the proportion of samples declared to containat least one outlier. We start in
Figure 4 with 5% contamination whenv = 5 andn = 500. FS clearly has the best power.
The other methods are almost equal to each other. For the majority of shift values, the
ordering of the rest from best to worst is standard LTS and LMS, the two fast re-weighted
LTS (LTSRF and LTSRL), which are indistinguishable, and finally the LTS and LMS with
re-weighting (LTSR and LMSR). The labels in the figure are positioned from the top to the
bottom to reflect this ranking.

The conclusions from Figure 4 appear clear. However, in general there are two prob-
lems of interpretation for such straightforward plots of power. One is that they are bounded
below and above by zero and one; thus the eye focuses on comparisons in the centre of the
plot, that is on powers around 50%. The other is that it is impossible to adjust by eye for
the size of the different procedures. Accordingly we accompany our plots of power by logit
plots.

Figure 5 repeats Figure 4 with the powerr replaced by logit{(r−3/8)/(n+1/4)} (Cox
and Hinkley 1974, p. 470). Under this transformation procedures with the same power plot
as parallel curves regardless of size. For an example see Atkinson (1985, Figure 8.12). In
our case, Figure 5 again shows the superior performance of FS. However it is now apparent
that the seemingly superior performance of LTS over LMS in Figure 4 is a reflection of its
larger size in Figure 1. In Figure 5 the plots for LTS and LMS are parallel. However, we
know from the results in Figure 1 forn = 500 that FS has the correct size, that is power
when the shift is zero.

The difference between the procedures becomes more marked as the level of contami-
nation increases. In our last two examples we have 30% contamination. In Figures 6 and 7
we consider small samples withn = 50 whenv = 1. The plots show that the re-weighted
methods LTS (LTSR, LTSRF and LTSRL) are indistinguishable over most of the range.
The highest power is for the FS, although its size was the lowest in Figure 3.

An interesting feature of the logit transformed power in Figure 7 is apparent around
a shift of three where the three reweighted LTS methods are distinguishable. They and

7



LMSR have slightly reduced, rather than increased, power compared to smaller shifts. This
phenomenon comes from the masking of outliers which leads toan overestimate of the
error variance and a reduction in the number of outliers detected. As the shift increases
further the outliers become identifiable. An example of suchinflation of variance due to
unidentified outliers in multivariate data is in§7.3 of Atkinson, Riani, and Cerioli (2004).

The good performance of the FS becomes even more apparent when v increases from
one to five. The results are in Figures 8 and 9. Both figures showthe outstanding perfor-
mance of the FS. The logit transformation of Figure 9 not onlyconfirms the performance
of the FS but shows the strong effect of masking on the four reweighted rules.

5 Conclusions

The idea of reweighing very robust estimates to obtain information from all apparently
non-outlying observations is intuitively appealing. However our power comparisons show
that all four reweighted rules have a behaviour which is not as good as expected (at least
for the sample sizes and the number of variables we considered). The best behaviour for
both size and power is provided by the FS. Of the other two rules LMS behaves better for
size than LTS. The logit plots show that, once the tests have been adjusted for size, there is
little to choose between them for power. This is perhaps surprising in view of the superior
asymptotic properties of LTS; the convergence rate of the LMS estimates isn−1/3 rather
thann−1/2 for LTS. However, the simulation results of Rousseeuw (1984, p. 183) fail to
reveal any differences in the behaviour of the two estimatesfor values ofn up to 2,000.

Of course, the primary interest in fitting regression modelsin applied statistics is to use
the fitted model rather than solely to detect outliers. Our paper concertizes exclusively on
a through investigation of outlier detection. A less extensive evaluation of the properties of
the parameter estimates, and the relationship with outlierdetection, for fewer rules is given
by Riani, Atkinson, and Perrotta (2012). Their results showa strong relationship between
the variance and bias of parameter estimates in very robust regression and the ability of the
fitted model to detect outliers.
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A Appendix: Efficient Random Sample Generation

LMS and LTS estimation (and, in general, all algorithms of robust statistics) spends a large
part of the computational time in sampling subsets of observations and then computing
parameter estimates from the subsets. In addition, each newsubset has to be checked as to
whether it is in general position (that is, it has a positive determinant). For these reasons,
when the total number of possible subsetsnCp is much larger than the number of distinct
subsets used for estimation (e.g.k = 500 or k = 10000 as in this paper), we need an
efficient method to generate a new randomp-element subset without checking explicitly if
it contains repeated elements. We also need to ensure that the current subset has not been
previously extracted. The lexicographic approach that we present in this appendix fulfils
these requirements. In combinatorial terms, the problem can be reformulated as follows:

Given a totally ordered setS = {1, 2, ..., n}, generate a set ofk different p-
combinations{s1, ..., sp} of ordered elements ofS.

Following Lehmer (1964), thep-combinations of elements inS can be generated in lexi-
cographic order without repetitions. The lexicographic ordering is a biunivocal correspon-
dence between thep-combinations and the set of integers{N | 0 ≤ N < nCp}. This
correspondence, called by Knuth (2005, pp. 5-6) a “combinatorial number system”, has an
explicit formulation.

In one direction, the generation orderN has the following uniquep binomial coefficient
terms representation (calledRANK in the computer science literature)

N =

p
∑

i=1

(

n − si

p − i + 1

)

, (A1)

with 0 ≤ xp < . . . < x2 < x1 < n, wherexi = n − si. For example, whenn = 7,
the generation order of the3-combination{2, 5, 6} is: N =

(

5
3

)

+
(

2
2

)

+
(

1
1

)

= 12. In
the inverse direction (UNRANK) the function that, given the generation orderN , produces
thep-combination at positionN in the lexicographic ordering is defined by the following
greedy algorithm, again due to Lehmer:

x1 is the greatest integer such that
(

x1

p

)

≤ N

x2 is the greatest integer such that
(

x2

p−1

)

≤ N −
(

x1

p

)

x3 is the greatest integer such that
(

x3

p−2

)

≤ N −
(

x1

p

)

−
(

x2

p−1

)

(A2)

...

xp is the greatest integer such that xp ≤ N −
∑p−1

i=1

(

xi

p−i+1

)

.

Now, if we want to extractk different subsamples, we simply need to extractk random
integersN1, . . . , Nk between0 andnCp − 1 and find the correspondingp-combinations.
We employ the following strategy:

A. For small values ofnCp, use a look-up table with allp-combinations built beforehand
in lexicographic order, and extract rowsN1, . . . , Nk.

B. For small to moderate values ofnCp, use UNRANK (A2) to build thep-combinations
associated with the random integersN1, . . . , Nk.
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C. For big values ofnCp, abandon the lexicographic approach and:

1. If n ≥ 4p, repeatedly sample fromS = {1, 2, ..., n} until there arep unique
values. Repeat thisk times.

2. If n < 4p, randomizeS (i.e. make a number of switches between two elements
chosen at random positions inS) and take the firstp as ap-combination. Repeat
thisk times.

Strategy B (using UNRANK) requires a number of binomial coefficients. Depending on
this number and the memory available, we adopt one of these two options:

a. Explicitly compute the binomial coefficients; each requiresmin(p − 1, n − p − 1)
multiplications.

b. Build beforehand a Pascal triangle for givenn andp, which requiresO(np) addition
operations (each cell is given by the sum of the cell above it and that above to the
left). Then, use the Pascal triangle as a look-up table.

If the random number generator is unbiased, as in the case of the Mersenne twister algo-
rithm (Matsumoto and Nishimura 1998) or the general linear congruential method (Knuth
1997, pp. 10-26), our strategies ensure that every combination is chosen with equal prob-
ability 1/

(

n
p

)

. To avoid duplicates in the random integers generated by strategies A and B
we adopt a very simple and efficient systematic sampling technique, consisting in selecting
every

(

n
p

)

/kth integer from an ordered list. See Cochran (1977) for systematic sampling.
We have observed that with this strategy the execution time of the traditional LTS and

LMS algorithms are drastically reduced and become even better than that of the Fast LTS,
at least for the combinations ofn andp discussed in the present paper. In addition, our
fully iterated LTS in the FSDA toolbox turns out to be at leasttwice as fast as the Fast LTS
in LIBRA, which uses just two concentration steps for all combinations ofp andn < 600.
For example, on a computer with a 1.6 GHz Intel T-5450 whenp = 6 andn = 500, Libra
takes about 2 seconds to obtain the FAST LTS solution based ontwo refining C-steps for
each subsample and 500 subsets. In contrast, our FAST fully iterated LTS (or LMS) takes
about 1.1 seconds, while the traditional LTS (or LMS) solution based on 10000 subsets
needs just 0.5 seconds. This difference becomes more dramatic if we increase the number
of subsets in FAST LTS to 10000. The Fast LTS in LIBRA slightlyoutperforms our fully
iterated reweighted LTS only forp = 11 andn ≥ 600, i.e. when the divide and conquer
strategy of Rousseeuw and Van Driessen (2006) is applied to reduce the application of the
concentration steps.
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Legend

• traditional LTS is represented with a dashed line.

• LTS with the final reweighing step is represented with dashedand dotted line.

– LTSR stands for the standard re-weighted LTS.

– LTSRL stands for the fast re-weighted LTS as in Libra.

– LTSRF stands for the fast re-weighted LTS as in our FSDA.

• LMS and its re-weighted version are represented with a hatched line

• FS (Forward Search) is represented with a solid line.
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Figure 1: Size forv = 5. The FS is stable around1% even for smaller sample sizes, where
the other methods perform badly. The size of LTS is particularly high. Note the uneven
spacing of values ofn.
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Figure 2: Size forv = 10. For large sample sizes, all the curves except the LTS without
re-weighting are between1% and2%. For smaller sample sizes LTS performs badly in all
cases.
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Figure 3: Smoothed values of size for smalln andv = 1. The FS and the LMS re-weighted
(LMSR) are near1% for all sample sizes. The standard LMS tends to increase withthe
sample size up to a final2%. The standard LTS is constantly between4% and5%. The
three LTS re-weighted methods (LTSR, LTSRF and LTSRL) are almost equivalent and their
size decreases with the sample size, from an initial4% to a final1.5%. In this case the fact
of using only 500 subsets to estimate the fast LTS re-weighted (LTSRF and LTSRL) does
not produce a big difference from the standard LTS re-weighted (LTSR), which uses 10,
000 subsets.
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Figure 4: Average power forn = 500, v = 5 and 5% contamination. The FS clearly has
the best power. The other methods are almost equivalent. Formost of the shift values,
from the best to the worst we find the standard LTS and LMS, the two fast LTS re-weighted
(LTSRF and LTSRL), indistinguishable, and finally the LTS and LMS with re-weighting
step (LTSR and LMSR). The labels in the figure are positioned from the top to the bottom
to reflect this ranking.
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Figure 5: Logit average power forn = 500, v = 5 and 5% contamination. For intermediate
shift values, the FS has the best performance. The other methods have indistinguishable
performance until the shift becomes large.
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Figure 6: Average power forn = 50, v = 1 and 30% contamination. The LTS re-weighted
methods (LTSR, LTSRF and LTSRL) are indistinguishable. Power is highest for the FS,
although the size was the lowest in Figure 3.

18



1 2 3 4 5 6 7
−10

−5

0

5

shift

lo
gi

t a
ve

ra
ge

 p
ow

er

FS

LMS

LTSRF

LTSR

LTSFL

LMSR

LTS

Figure 7: Logit of average power forn = 50, v = 1 and 30% contamination. The re-
weighted fast LTS (LTSRF and LTSRL) and the standard LTS re-weighted (LTSR) almost
coincide for all shift values except three. These three methods suffer some masking for this
intermediate contamination level, which disappears for larger contaminations.
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Figure 8: Average power forn = 500, v = 5 and 30% contamination. The FS has the best
power. The labels are positioned from the top to the bottom toreflect their ranking.

20



1 2 3 4 5 6 7
−15

−10

−5

0

5

10

shift

lo
gi

t a
ve

ra
ge

 p
ow

er

LTS

LMS

LTSR

LMSR

FS

LTSRF
LTSRL

Figure 9: Logit average power forn = 500, v = 5 and 30% contamination. For shift
values between 2 and 6 the average power for LMS and LTS with re-weighting (LMSR,
LTSR, LTSRF and LTSRL) is zero and the logit is not defined. These methods suffer
from masking for these intermediate contamination levels.This phenomenon was seen less
strongly in Figure 7. FS has by far the highest power.
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