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Abstract

The methods of very robust regression resist up to 50% aikesitIThe algorithms
for very robust regression rely on selecting numerous supkss of the data. We de-
scribe new algorithms for LMS and LTS estimators that hacesiased efficiency due
to improved combinatorial sampling. These and other plybagailable algorithms
are compared for outlier detection. An algorithm using tivvaird search has the best
properties for both size and power of the outlier tests.

Keywords: combinatorial search; concentration step; forward seff&); least me-
dian of squares (LMS); least trimmed squares (LTS); logislibts of power; masking;
outlier detection

1 Introduction

Multiple regression is one of the main tools of applied stais. It has however long
been appreciated that ordinary least squares as a methadtiraf fegression models is
exceptionally susceptible to the presence of outliersteld very robust methods, that
asymptotically resist 50% of outliers, are to be preferred.

Several algorithms have been proposed for very robustssigme All algorithms es-
timate the parameters by least squares applied to subsetssefvations; they differ in
the number and sizes of the subsets and how those subsetsiadce Ve introduce new
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versions of standard algorithms with improved combinalasearches for these subsets.
The purposes of our paper are to describe these improveraedtso compare publicly
available versions of seven algorithms.

Very robust regression was introduced by Rousseeuw (1984)developed sugges-
tions of Hampel (1975) that led to the Least Median of SQulr®ES) and Least Trimmed
Squares (LTS) algorithms. The algorithms for finding thest@reates compare properties
of the fits to many subsets pfobservations, being the number of parameters in the linear
model. Of course, in these cases, the least squares fit isaah fixto the observations.
In the reweighted versions of these algorithms describé@.i all & observations that are
identified as outliers are rejected and least squares @sgimigaused on the remaining— &
observations. Parameter estimation thus involves twoessitod the data.

More recently developed methods fit to subsets of severes sin the Forward Search
(FS: Atkinson and Riani 2000 with a recent discussion in Adkin, Riani, and Cerioli
2010) subsets of increasing sizeare used, starting fromm, = p and increasing until all
observations not in the subset are identified as outlierastisguares is used for parameter
estimation for each subset. In this way the subset size fleselsponds to the properties of
the data. The FS for regression is described by Riani andhéaki (2007).

In order to speed up the LTS algorithm for very large datg sissseeuw and Van Driessen
(2006) introduced a “concentration” step into the LTS aipon in which subsets of both
sizep and of sizeh = (n+p+1)/2 are used. Our numerical experience, outlined in the ap-
pendix, is that this can result in a slower algorithm whemgshe same number of subsets
as the algorithm without concentration. However, if we &lthe number of subsets, to
allow for the effect of the concentration step, we lose aacyiin parameter estimation (see
63). We provide a different, faster, version of LTS that alsesiconcentration steps whilst
overcoming these problems. We consider only reweightesiames of these algorithms.

To compare these seven methods of robust regression we titlodiaability to detect
outliers. The motivation comes from the study by Riani, Aan, and Cerioli (2009), who
reported excellent size and power for the FS for multivartta. We likewise find that the
FS dominates the other six regression methods.

Our paper is structured as follows. The algorithms for verdyust regression are de-
scribed in§2: the six for comparison if2.2 and the FS i§2.3. Comparison of the size of
the tests is i3, with power comparisons igd. Brief conclusions are i§5. Details of the
improved combinatorial searches over subsets are in thenapp

2 Algorithms for Very Robust Regression

We compare and contrast the properties of seven methodefprebust regression. The
algorithms that we use are the Forward Search Regressiobneé¢BSR), the LMS and LTS
routines and their reweighted versions contained in the M¥8 toolbox called FSDA
(Forward Search Data Analysis) att p: //ww. ri ani . it/ MATLAB, two versions
of Fast LTS, the first based on the implementation containethe LIBRA toolbox at
http://w s. kul euven. be/ st at/robust (Verboven and Hubert 2005, Verboven
and Hubert 2010) as originally proposed by Rousseeuw andDviassen (2006) and the
second based on our implementation in FSDA.



2.1 Least Squares for Subsets of Observations

In the regression model = X + ¢, y is then x 1 vector of responsesy is ann x p
full-rank matrix of known constants, witith row 7, and3 is a vector ofp unknown
parameters. The normal theory assumptions are that theseraoe i.i.d. N (0, o2).

Let S(m) be a subset of: observations for which the matrix of regressors\igm).
Least squares on this subset of observations yields pagamstimates}(m) ands?(m),
the mean square estimateadfonm — p degrees of freedom. Residuals can be calculated
for all observations including those notdtim). Then resulting least squares residuals are

ei(m) = y; — 27 B(m), i=1,2,...,n. (1)

The algorithms use different functions of thém) to declare observations as outlying.
The forward search algorithm is designed to have sipédeclaring an outlier free sample
to contain at least one outlier. Therefore, when evaluategroperties of the other algo-
rithms, we use Bonferroni corrections for simultaneitythwevel o* = «/n, so taking the
1 — o cutoff value of the reference distribution. In our calcidasa = 0.01.

2.2 Some Very Robust Procedures

e LMS - Least Median of Squares

The LMS estimator minimizes thigh ordered squared residuﬁ,[] (6) with respect to3,
whereh = [(n + p + 1)/2] and |.| denotes integer part. Algorithms for LMS find an
approximation to the estimator, selecting the best fit, ihdhe one giving the smallest
hth ordered squared residual out of alresiduals, to randomly chosen subsets aib-
servations. Since there apeparameters ang observations in the subset, the fit to the
observations in the subset is exact. In the PROGRESS digodf Rousseeuw and Leroy
(1987,84.4) sampling of observations is at random. Samples cantaduplicate rows are
rejected, although the same subset may be selected morertben

In our versions of LMS and LTS we instead sample without regtaent from the lex-
icographic list of all possible subsets. 1€, < 5 x 10" we store a list of all subsets
in Integer8 format. This very large number was chosen aggbeinthe time of writing,
reasonably below the the current limit of storage of a tylp8&abit PC. Subsets are then
sampled without replacement from this list. For larger ealof"C), we use an algorithm
which avoids explicit storage of the subsets. The strateguires binomial coefficients
which are either computed with an algorithm which can bedlbtek to Lehmer (1964) or
retrieved from a look-up table of Pascal’s triangle valyesyiously built using the prop-
erty that each cell is given by the sum of the number abovedtthat above to the left.
The strategy is built to trade off time and space requirementthe basis of the machine
resources available at the time of execution. Details &f pnocedure can be found in the
appendix. In our comparisons we sampled 10,000 subsets.

Let BLMS be the LMS estimate of. Rousseeuw (1984) bases the estimate oh
the value of the median squared residefal,( GLvs). As in Rousseeuw and Leroy (1987,
p. 202) we define

~ 0.5
Gums = 1.4826{1 +5/(n — p)} {ezmed(ﬁLMs)} . )



We declare as an outlier any observatidar which the absolute scaled residual
letms.i| = lei(Bums)| /Gims > @ (1 — o) (i=1,...,n). (3)

e LTS - Least Trimmed Squares

The convergence rate of ys is n~'/3. Rousseeuw (1984, p. 876) also suggested Least
Trimmed Squares (LTS) which has a convergence rate 6f> and so better properties
than LMS for large samples. As opposed to minimising the arediguared residual, we
now find 315 to

h
minimize SST{B(h)} =Y _e}{B(h)}, (4)

where, for any subsét of sizeh the parameter estimatéﬁh) are straightforwardly esti-
mated by least squares.

Let the minimum value of (4) bﬁST(BLTS). We base the estimator of on this residual
sum of squares. However, since the sum of squares contdinthercentralh observations
from a normal sample, the estimate needs scaling. The eariahthe truncated normal
distribution containing the central/n portion of the full distribution is

-1 e (oo (52)).

where¢(.) and ®(.) are respectively the standard normal density and c.d.fs Tésult
follows from the more general results of Tallis (1963) ompegital truncation. To estimate
o? we accordingly take

Gtrs = SSt(Burs)/{h x o7.(h)}. (5)
Outliers are found as in (3) but with LTS parameter estimates

e LMSR and LTSR - Reweighted Least Median of Squares and Rewelded Least
Trimmed Squares

To increase efficiency, reweighted versions of the LMS an8 EBtimators can be com-
puted. These reweighted estimators are computed by givenghwO to observations which
(3), or its LTS analogue, suggests are outliers. We thenirobtaample of reduced size
n — k, possibly outlier free, to which OLS is applied. (Rousseaum Leroy 1987) pp. 44-
45, suggest to estimaté by dividing the residual sum of squares from OLSby: k — p.
On the other hand, for comparability with the implementatio the LIBRA library, we
divided byn — k — 1.

Let the parameter estimateS/E_QSR anda xsr, Where by LXSR we mean either LMSR
or LTSR. The outliers are thie observations rejected at this second stage, that is those fo
which

‘ei(BRLxs)‘/a'RLXS > (I)_l(l—Oé*) (7,: 1,...,n). (6)
We may find that* § k. Both in (3) and (6) we perform a test of Bonferronised size

e LTSRL - “Fast” Least Trimmed Squares



The simple LTS algorithm outlined above can be slow as thebsurof observations in-
creases. Rousseeuw and Van Driessen (2006) introducedpaovied algorithm with in-
creased speed and several refinements. The most importdrésef is the concentration
step, which is similar to the step used in the Forward Searchdving from a subset of
sizem to one ofm + 1.

Given a set of, residuals from a first parameter estimaté, ) based on a subset bf
observations, the absolute values of the residuals areeatd®d a new subsét formed
as those observations giving thesmallest values ofe;{3(h,)}|. This process can be
repeated on some or all of the initial subsets, or iteratesbtwergence on a few specially
selected initial subsets. A discussion of the propertiesuch options in the more general
context of S-estimation is in Maronna, Martin, and Yohaid@®5.7).

Rousseeuw and Van Driessen (2006, p. 38) give the pseudnfoodheir algorithm.
For small values of., perhaps less than 600, they suggest taking 500 randomtsudise
sizeh; = p. Each is subject to two concentration steps. The ten sulsetdbtained
with the smallest value o$.57{3(h3)} in (5) then have the concentration steps iterated to
convergence, with the minimum value 861{3(hs)} providing the LTS estimate. For
larger sample sizes more complicated, but related stedemie suggested. In practice,
a divide and conquer strategy based on blocks of 300 obgmmgat used to reduce the
number of concentration steps.

Once the estimal;égs has been obtained, the estimatiorvadind the identification of
outliers are as in the LTS algorithm above.

e LTSRF - Fully Iterated Reweighted Least Trimmed Squares

Our experience is that the LTSRL algorithm was slower, fatgms of our size, than our
implementation of LTS that uses a very efficient random sangeheration method (see
the appendix). We think this was, at least in part, also dubedcousekeeping (storage
and sorting) involved in the concentration step strategh@malgorithm of Rousseeuw and
Van Driessen (2006). Therefore, in our implementation ef Bast LTS we made some
simplifications in the use of the concentration steps. bdtaf our usual 10,000 subsam-
ples, we also drew only 500. However, all of these were stiltpeconcentration steps to
convergence. We observed that the number of iterations sgangally independent of the
number of variables and was increasing, from aldatgrations forn = 50 to 20 iterations
for n = 1000, with a rate which decreased as the sample size increased.

2.3 The Forward Search
2.3.1 Background

The forward search fits subsets of observations ofisifethe data, withny < m < n. Let
S*(m) be the subset of size found by the forward search. Least squares on this subset of
observations yields parameter estimatés*) ands?(m*). From (1) then resulting least
squares residuals can be writtefirm*). The search moves forward with the augmented
subsetS*(m + 1) consisting of the observations with the+ 1 smallest absolute values of
e;(m). To start we taken, = p and search over subsetspobbservations to find the subset
that yields one of the very robust estimategiafescribed ir2.2.



2.3.2 Testing for Outliers

In the search we want to increase until alh — m observations not is*(m) are outliers.
To test for outliers the deletion residuals are calculatedifese: — m observations not in
S*(m). These residuals, which form the maximum likelihood testgfie outlyingness of
individual observations, are

ri(m*) = ei(m*)//s2(m*) {1 + hy(m*)}, (7)

where the leveragk;(.) = I { X ()T X (.)}~'z;. The observation nearest to those forming
S*(m) is that with the minimum value of;(m*)|,7 ¢ S*(m). Call thisinyi,. To test
whether observatiof},i is an outlier we use the absolute value of the minimum deietio
residualmi,(m*). If the absolute value is too large, the observaiigp is considered to be
an outlier, as well as all other observations nobirim). See Riani and Atkinson (2007)
for further details.

2.3.3 The FSR Algorithm

The automatic procedure in the FSR algorithm is based onothRiani, Atkinson, and
Cerioli (2009) who used scaled Mahalanobis distances tectetutliers in multivariate
normal data. For regression these distances are repladée hpsolute value of the mini-
mum deletion residual. Some further details of the regogsaigorithm are given by Torti
(2011).

The implementation in FSDA allows appreciable diagnostid graphical output. Ri-
ani, Atkinson, and Perrotta (2012) also present an illtisg@&xamples of a FS analysis of
the kind of trade data motivating Riani et al. (2008).

3 The Size of the Tests

In our simulation studies we considered regression modhsam intercept and explana-
tory variables over a range of valuesw0ofrom 1 to 10 (sop ranged from 2 to 11). The
values of ther;; (i =1,...,n;j =1,...,v) were sampled once for each pair of values of
v andn from independent standard normal distributidng), 1). Since the tests for outliers
are functions of residuals, which do not depend on the vadfiglse parameterg, these
values were set to zero. We added standard normal randoablesito these null models,
estimating the parameters and repeating the proecgss= 10,000 times. We count the
proportion of samples declared to contain at least oneasutli

We start with results for = 5. Figure 1 gives the size of the seven tests for sample
sizesn in the range 100 to 1,000. For the largest sample sizes §00 and 1000) all tests,
except the traditional LTS and LMS without re-weightingyvéaizes neat%. Unlike
the other tests, the size of the FS is stable aroljiaceven for the smallest sample sizes,
whereas the other methods perform comparatively poorlyatticular note that the fast re-
weighted LTS (both the LTSRF and the LTSRL versions) haslasgzes than the standard
re-weighted LTS (LTSR). We believe this is because the catnagon step of the fast LTS
is based on a number of subsets, 500, which is not sufficievistball the local minima
that are explored with the standard LTS estimate using D0s00sets. Further simulations
with increased numbers of subsets did indeed show that #rage squared norm of the
parameter estimates decreased as the number of subsetseutr
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The results forn = 10 in Figure 2 are similar to, but more extreme than, those for
v = 5. For the larger sample sizes all sizes, except LTS withcutaighting, are between
1% and2%. For smaller sample sizes all reweighted versions of LT $parwith the two
fast versions (LTSRF and LTSR) having larger sizes than LTSR

As a last exploration of size we look at results for small skenspzes whenr = 1. As
Figure 3 shows, the sizes for LMSR and FS are closest to 1%lfealaes ofn. The size
for LMS increases with sample size up to a fied atn = 95. Standard LTS is constantly
between% and5% with the three re-weighted LTS methods (LTSR, LTSRF and LISR
now virtually equivalent, the size decreasing with the slansfze, from an initiak% to a
final 1.5%.

4 The Power of the Tests

The comparisons of size suggest that, overall, FS and LMSR tiee best performance.
However, power comparisons reveal that LMSR has the lowasepof the seven proce-
dures.

In our power calculations we shifted the mean of 5% or 30% efdhservations by up
to 7 units (the errors in our observations were standard aramd calculated the average
power, that is the proportion of samples declared to coraili@ast one outlier. We start in
Figure 4 with 5% contamination when= 5 andn = 500. FS clearly has the best power.
The other methods are almost equal to each other. For theitgagb shift values, the
ordering of the rest from best to worst is standard LTS and L& two fast re-weighted
LTS (LTSRF and LTSRL), which are indistinguishable, andlfinthe LTS and LMS with
re-weighting (LTSR and LMSR). The labels in the figure arefmsed from the top to the
bottom to reflect this ranking.

The conclusions from Figure 4 appear clear. However, in igerleere are two prob-
lems of interpretation for such straightforward plots oieo. One is that they are bounded
below and above by zero and one; thus the eye focuses on asomsain the centre of the
plot, that is on powers around 50%. The other is that it is isgfiale to adjust by eye for
the size of the different procedures. Accordingly we accanyur plots of power by logit
plots.

Figure 5 repeats Figure 4 with the poweaeplaced by logif(r—3/8)/(n+1/4)} (Cox
and Hinkley 1974, p. 470). Under this transformation praced with the same power plot
as parallel curves regardless of size. For an example seesatk (1985, Figure 8.12). In
our case, Figure 5 again shows the superior performance. di&¥&ever it is now apparent
that the seemingly superior performance of LTS over LMS guke 4 is a reflection of its
larger size in Figure 1. In Figure 5 the plots for LTS and LM8 parallel. However, we
know from the results in Figure 1 for = 500 that FS has the correct size, that is power
when the shift is zero.

The difference between the procedures becomes more maskbd Bevel of contami-
nation increases. In our last two examples we have 30% caomadion. In Figures 6 and 7
we consider small samples with= 50 whenv = 1. The plots show that the re-weighted
methods LTS (LTSR, LTSRF and LTSRL) are indistinguishahleranost of the range.
The highest power is for the FS, although its size was thesoimeigure 3.

An interesting feature of the logit transformed power inUfey 7 is apparent around
a shift of three where the three reweighted LTS methods aténduishable. They and



LMSR have slightly reduced, rather than increased, powerpewed to smaller shifts. This
phenomenon comes from the masking of outliers which leadstoverestimate of the
error variance and a reduction in the number of outliersadete As the shift increases
further the outliers become identifiable. An example of sinflation of variance due to
unidentified outliers in multivariate data is §i.3 of Atkinson, Riani, and Cerioli (2004).

The good performance of the FS becomes even more apparentwhereases from
one to five. The results are in Figures 8 and 9. Both figures shewutstanding perfor-
mance of the FS. The logit transformation of Figure 9 not adgfirms the performance
of the FS but shows the strong effect of masking on the fouerged rules.

5 Conclusions

The idea of reweighing very robust estimates to obtain médron from all apparently
non-outlying observations is intuitively appealing. Hw®eour power comparisons show
that all four reweighted rules have a behaviour which is sog@od as expected (at least
for the sample sizes and the number of variables we consifdefde best behaviour for
both size and power is provided by the FS. Of the other twasruMS behaves better for
size than LTS. The logit plots show that, once the tests haea hdjusted for size, there is
little to choose between them for power. This is perhapsr&ing in view of the superior
asymptotic properties of LTS; the convergence rate of theSLddtimates is~'/? rather
thann—'/2 for LTS. However, the simulation results of Rousseeuw (1984183) fail to
reveal any differences in the behaviour of the two estimfategalues ofn. up to 2,000.

Of course, the primary interest in fitting regression modelpplied statistics is to use
the fitted model rather than solely to detect outliers. Oyep@oncertizes exclusively on
a through investigation of outlier detection. A less exiemsvaluation of the properties of
the parameter estimates, and the relationship with owatétzction, for fewer rules is given
by Riani, Atkinson, and Perrotta (2012). Their results skaostrong relationship between
the variance and bias of parameter estimates in very robgstssion and the ability of the
fitted model to detect outliers.
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A Appendix: Efficient Random Sample Generation

LMS and LTS estimation (and, in general, all algorithms dfust statistics) spends a large
part of the computational time in sampling subsets of ola&ns and then computing
parameter estimates from the subsets. In addition, eaclsuieset has to be checked as to
whether it is in general position (that is, it has a positie¢éedminant). For these reasons,
when the total number of possible subs&t$ is much larger than the number of distinct
subsets used for estimation (e.f.= 500 or £ = 10000 as in this paper), we need an
efficient method to generate a new randpm@ement subset without checking explicitly if
it contains repeated elements. We also need to ensure ¢hatitrent subset has not been
previously extracted. The lexicographic approach that vesgnt in this appendix fulfils
these requirements. In combinatorial terms, the problambeareformulated as follows:

Given a totally ordered set = {1,2,...,n}, generate a set df different p-
combinations{sy, ..., s, } of ordered elements &f.

Following Lehmer (1964), the-combinations of elements ifi can be generated in lexi-
cographic order without repetitions. The lexicographidesing is a biunivocal correspon-
dence between the-combinations and the set of integd | 0 < N < "C,}. This
correspondence, called by Knuth (2005, pp. 5-6) a “combmmatnumber system”, has an
explicit formulation.

In one direction, the generation ord€rhas the following unique binomial coefficient
terms representation (call@RANKin the computer science literature)

N = Z( —H—l) (A1)

with 0 < z, < ... < 22 < 21 < n, wherex; = n — s;. For example, whem = 7,
the generation order of thizcombination{2,5,6} is: N = (}) + (2) + (}) = 12. In
the inverse direction NRANK) the function that, given the generation ordérproduces
the p-combination at positioV in the lexicographic ordering is defined by the following
greedy algorithm, again due to Lehmer:

x, is the greatest integer such that (

\/

<N
z, is the greatest integer such that (,” ) N—()
- (5) = () (A2)

w3 is the greatest integer such that (*%,) <

T

z, is the greatest integer such that z, < N — Y=/ ().

Now, if we want to extract: different subsamples, we simply need to extracandom
integersNy, ..., N; between) and™C, — 1 and find the correspondingcombinations.
We employ the following strategy:

A. For small values ofC,, use a look-up table with al-combinations built beforehand
in lexicographic order, and extract rows, . . ., V,.

B. For small to moderate valuesaf’,, use UNRANK (A2) to build the-combinations
associated with the random integé¥s, . .., V.
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C. For big values ofC,,, abandon the lexicographic approach and:

1. If n > 4p, repeatedly sample frori = {1,2,...,n} until there arep unique
values. Repeat thistimes.

2. If n < 4p, randomizeS (i.e. make a number of switches between two elements
chosen at random positions$) and take the first as ap-combination. Repeat
this k times.

Strategy B (using UNRANK) requires a number of binomial éicednts. Depending on
this number and the memory available, we adopt one of thesepions:

a. Explicitly compute the binomial coefficients; each regsinin(p — 1,n — p — 1)
multiplications.

b. Build beforehand a Pascal triangle for giveandp, which requireg)(np) addition
operations (each cell is given by the sum of the cell abovedtthat above to the
left). Then, use the Pascal triangle as a look-up table.

If the random number generator is unbiased, as in the cabe Meérsenne twister algo-
rithm (Matsumoto and Nishimura 1998) or the general linegrgeuential method (Knuth
1997, pp. 10-26), our strategies ensure that every combimatchosen with equal prob-
ability 1/(;). To avoid duplicates in the random integers generated byesgfies A and B
we adopt a very simple and efficient systematic samplingiiecie, consisting in selecting
every(Z)/kth integer from an ordered list. See Cochran (1977) for syatee sampling.

We have observed that with this strategy the execution tifleeotraditional LTS and
LMS algorithms are drastically reduced and become eveeibidtan that of the Fast LTS,
at least for the combinations af andp discussed in the present paper. In addition, our
fully iterated LTS in the FSDA toolbox turns out to be at le@gite as fast as the Fast LTS
in LIBRA, which uses just two concentration steps for all d@nations ofp andn < 600.
For example, on a computer with a 1.6 GHz Intel T-5450 when 6 andn = 500, Libra
takes about 2 seconds to obtain the FAST LTS solution basédmrefining C-steps for
each subsample and 500 subsets. In contrast, our FAST teithted LTS (or LMS) takes
about 1.1 seconds, while the traditional LTS (or LMS) santbased on 10000 subsets
needs just 0.5 seconds. This difference becomes more dcafmae increase the number
of subsets in FAST LTS to 10000. The Fast LTS in LIBRA slighdlytperforms our fully
iterated reweighted LTS only fgr = 11 andn > 600, i.e. when the divide and conquer
strategy of Rousseeuw and Van Driessen (2006) is appliestiace the application of the
concentration steps.
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Legend

traditional LTS is represented with a dashed line.

LTS with the final reweighing step is represented with dasiretidotted line.

— LTSR stands for the standard re-weighted LTS.
— LTSRL stands for the fast re-weighted LTS as in Libra.
— LTSRF stands for the fast re-weighted LTS as in our FSDA.

LMS and its re-weighted version are represented with a leatthe

FS (Forward Search) is represented with a solid line.
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Figure 1: Size fow = 5. The FS is stable arounids even for smaller sample sizes, where
the other methods perform badly. The size of LTS is partitylaigh. Note the uneven
spacing of values of.
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Figure 2: Size fonw = 10. For large sample sizes, all the curves except the LTS withou
re-weighting are betweetV;, and2%. For smaller sample sizes LTS performs badly in all
cases.
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Figure 3: Smoothed values of size for smadindv = 1. The FS and the LMS re-weighted
(LMSR) are nean% for all sample sizes. The standard LMS tends to increase tivith
sample size up to a fin@%. The standard LTS is constantly betweti and5%. The
three LTS re-weighted methods (LTSR, LTSRF and LTSRL) areat equivalent and their
size decreases with the sample size, from an initiato a final1.5%. In this case the fact
of using only 500 subsets to estimate the fast LTS re-wethfif€SRF and LTSRL) does
not produce a big difference from the standard LTS re-weigl{t TSR), which uses 10,
000 subsets.
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Figure 4: Average power far = 500,v = 5 and 5% contamination. The FS clearly has
the best power. The other methods are almost equivalentmist of the shift values,
from the best to the worst we find the standard LTS and LMS wodast LTS re-weighted
(LTSRF and LTSRL), indistinguishable, and finally the LTSIdrMS with re-weighting
step (LTSR and LMSR). The labels in the figure are positiomechfthe top to the bottom
to reflect this ranking.
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Figure 5: Logit average power far= 500, v = 5 and 5% contamination. For intermediate
shift values, the FS has the best performance. The otherogetiave indistinguishable
performance until the shift becomes large.

17



0.8¢
)
2 0.6l
Q0'6
Q
Sk
EJ 0.4t
©
0.2¢
O : b \::\p\.-\!\u\\\\\\\\““\
1 2 3 4 5 6 4

Figure 6: Average power for = 50, v = 1 and 30% contamination. The LTS re-weighted
methods (LTSR, LTSRF and LTSRL) are indistinguishable. &ois highest for the FS,
although the size was the lowest in Figure 3.
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Figure 7: Logit of average power for = 50,v = 1 and 30% contamination. The re-
weighted fast LTS (LTSRF and LTSRL) and the standard LTS egghited (LTSR) almost
coincide for all shift values except three. These three puglsuffer some masking for this
intermediate contamination level, which disappears faydacontaminations.
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Figure 8: Average power for = 500, v = 5 and 30% contamination. The FS has the best
power. The labels are positioned from the top to the bottoreftect their ranking.

20



10 . . . . .

| -
=
@)
o
()]
(@)}
©
—
g
(qv]
= .
@ = o o - \\\\ ; \'
2 _10F'ﬁ'};f{uu;“\\\\\\\\\“ i'\'LTSR
//.,/,'/,~ ;
- N, -
LMSR- N, !
_ S, !
_15 = 1 1 1
1 2 3 4 5 6 4

shift

Figure 9: Logit average power for = 500,v = 5 and 30% contamination. For shift
values between 2 and 6 the average power for LMS and LTS witteighting (LMSR,
LTSR, LTSRF and LTSRL) is zero and the logit is not defined. Sehenethods suffer
from masking for these intermediate contamination levEtss phenomenon was seen less
strongly in Figure 7. FS has by far the highest power.
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