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Abstract

In this paper, we introduce the notion of parabolic stable pairs on Calabi-Yau
3-folds and invariants counting them. By applying the wall-crossing formula devel-
oped by Joyce-Song, Kontsevich-Soibelman, we see that they are related to gener-
alized Donaldson-Thomas invariants counting one dimensional semistable sheaves
on Calabi-Yau 3-folds. Consequently, the conjectural multiple cover formula of gen-
eralized DT invariants is shown to be equivalent to a certain product expansion
formula of the generating series of parabolic stable pair invariants. The application
of this result to the multiple cover formula will be pursued in the subsequent paper.

1 Introduction

The purpose of this paper is to introduce the notion of parabolic stable pairs, construct
their moduli spaces and counting invariants. This is a new notion relevant to curve count-
ing invariants on Calabi-Yau 3-folds, and very similar to classical parabolic vector bundles
on curves [14], coherent systems [17] and stable pairs [16], [7]. The wall-crossing formula
established by Joyce-Song [7] and Kontsevich-Soibelman [10] are applied to the study of
parabolic stable pairs. Applying the wall-crossing formula, we see that the parabolic sta-
ble pair invariants are related to generalized Donaldson-Thomas (DT) invariants counting
one dimensional semistable sheaves on Calabi-Yau 3-folds. On the other hand, the gen-
eralized DT invariants are expected to satisfy a certain multiple cover formula, which is
equivalent to the strong rationality conjecture of the generating series of Pandharipande-
Thomas (PT) invariants. The conjectural multiple cover formula is shown to be equivalent
to a certain product expansion of the generating series of parabolic stable pair invariants.
In a subsequent paper [20], by applying the results in the present paper, we will show the
multiple cover formula for generalized DT invariants in some cases.

1.1 Motivation
Let X be a smooth projective Calabi-Yau 3-fold over C, i.e.

3
ATY = 0x, H'(X,0x)=0.



The notion of DT invariants is introduced in [19] in order to give a holomorphic analogue
of Casson invariants on real 3-manifolds. They are integer valued counting invariants of
stable sheaves on a Calabi-Yau 3-fold X, and their rank one theory is conjectured to be
equivalent to Gromov-Witten theory [13]. In recent years, the generalized DT invariants
counting not only stable sheaves but also semistable sheaves are introduced by Joyce-
Song [7], Kontsevich-Soibelman [10]. They are Q-valued, and their definition involves
sophisticated techniques on motivic Hall algebras. It is very difficult to compute or study
the generalized DT invariants from their definition.

In this paper, we are interested in generalized DT invariants counting one dimensional
semistable sheaves on X. Given data,

TLGZ, 6€H2(X7Z)7
the generalized DT invariant is denoted by

Nn,ﬂ S Q (1)

The invariant (1) counts one dimensional semistable sheaves F' on X satisfying
X(F) =n, [F]=0.

If § and n are coprime, (e.g. n = 1,) then the invariant N, s is an integer, and can be
defined as a holomorphic Casson invariant as in [19]. However if # and n are not coprime,
then the invariant (1) may not be an integer, and its definition requires techniques on Hall
algebras. Roughly speaking, it is defined by the integration of the Behrend function [1]
on the ‘logarithm’ of the moduli stack of semistable sheaves in the Hall algebra. For the
detail, see Definition 3.17.

A particularly important case is when n = 1. In this case, the invariant N;g is
nothing but Katz’s definition of genus zero Gopakumar-Vafa invariant [9]. In [7], [21],
the following conjecture is proposed:

Conjecture 1.1. [7, Conjecture 6.20], [21, Conjecture 6.3] We have the following
formula,

1
Nog= Y 2 Vs /e (2)
k>1,k|(n.B)

The formula (2) is called a multiple cover formula of N, . The motivation of the
above conjecture is that the formula (2) is equivalent to Pandharipande-Thomas’s conjec-
ture [16, Conjecture 3.14] on the strong rationality of the generating series of stable pair
invariants. (See Subsection 4.1 for some more discussions.) So far the above conjecture is
checked in few cases, e.g. (3 is a multiple of a homology class of a (—1, —1)-curve. (cf. [7,
Example 4.14].) In general the above conjecture seems to be difficult to solve, especially
due to the technical difficulties of the definition of (1).

In the present and the subsequent paper [20], we approach Conjecture 1.1 by the
following ideas:



e Introduce the notion of parabolic stable pairs and their counting invariants. They
are integer valued and we can relate them to the invariant NV, 3. Consequently the
conjectural multiple cover formula (2) can be reduced to a certain formula relating
parabolic stable pair invariants and the invariant N g.

e There is also a local version of parabolic stable pair theory, and the local theory
admits an action of the Jacobian group of the underlying curve. We study the
formula (2) by the localization with respect to the actions of the Jacobian group to
parabolic stable pair invariants.

The second idea on the Jacobian localizations will be pursued in [20]. The present paper
is devoted to give a foundation on parabolic stable pairs.

1.2 Parabolic stable pairs

Recall that a parabolic structure on a vector bundle on a curve is given by a data of a
filtration on some fiber together with a parabolic weight [14]. We apply this idea to a one
dimensional sheaf F' on a Calabi-Yau 3-fold X. In this case, we interpret the ‘fiber’ as a
tensor product of the sheaf F' with the structure sheaf of a fixed divisor H inside X.

Let Ox(1) be an ample line bundle on X, and we set w = ¢1(Ox(1)). We would like
to take a divisor in X,

H € |Ox(h)], h>0,

so that H intersects with one dimensional sheaves F' we are interested in transversally. In
fact if we fix d € Z+, then we can find H so that any one cycle C' on X with w- [C] < d
satisfies, (cf. Lemma 2.9,)

dimHNC =0.

Below we fix such d and H. We introduce the notion of parabolic stable pairs on X to be
pairs,

(F,s), s€F®O0Ogy, (3)

where F'is a pure one dimensional sheaf on X with w-[F] < d. The above pair (3) should
satisfy the following stability condition:

e The sheaf F' is an w-semistable sheaf. We denote

X
po (F) = o P

e For any surjection 7: F — F' with p,(F') = p,(F), we have

(7 ® On)(s) # 0.



S€F®OH

Figure 1: Parabolic stable pair

The reason we call a pair (3) as a parabolic stable pair is that it resembles both of
some particular parabolic vector bundles on smooth projective curves [14], and stable pairs
studied by Pandharipande-Thomas [16], Joyce-Song [7], based on the earlier work of co-
herent systems by Le Potier [17]. See Figure 1 for a geometric picture, and Subsection 2.3

for the discussion.
Let

MP¥ (X, 3): Sch/C — Set,

be the moduli functor which assigns an C-scheme 7" to the set of flat families of parabolic
stable pairs (F, s) over T satisfying [F] = § and x(F') = n. Our first result is the following:

Theorem 1.2. [Theorem 2.10] The moduli functor MP*(X, ) is represented by a
projective scheme of finite type over C, denoted by MP* (X, 3).

1.3 Counting invariants of parabolic stable pairs

By Theorem 1.2, we are able to define the integer valued invariants counting parabolic
stable pairs,

DT} := / vardx,
MZ™(X,B)

where v, is Behrend’s constructible function [1],
var: MP™ (X, B) — Z.

For ;1 € Q, the generating series of the invariants DT}"; is defined by

ar . ar n,f
DTP™(p,d) :==1+ »  DTP% g,
0<p-w<d
n/w-B=p



By applying the wall-crossing formula [7], [10], we can express the generating series
DTP*(u,d) in terms of N, g, where N, 5 is the generalized DT invariant (1). The equality
of the generating series is described in the ring A<4, which is a quotient of A,

A= @ Qq"t?,

n€eZ,3>0

by the ideal generated by ¢"t® with 8 -w > d. Here 8 > 0 means that 3 is a homology
class of an effective one cycle on X.

Theorem 1.3. [Theorem 3.21] We have the following formula in A<q,

DTpar(M, d) — H exp ((—1)6'H_1Nn,5qnt’8)ﬁ'H . (4)
B>0,
n/w-B=p
As a corollary, Conjecture 1.1 can be translated into a property on the generating
series of the invariants of parabolic stable pairs.

Corollary 1.4. [Proposition 4.5] The formula (2) holds for any (n, ) with §-w < d
and n/f -w = p if and only if the following formula holds in A<q,

DTpar(M, d) _ H (1 N (_l)ﬁ.ant,B)(ﬂ-H)Nl,ﬂ (5)

B>0,
n/w-B=p

Note that the equality (5) is a relationship between Z-valued invariants. There is
also a local version of local parabolic stable pair theory and the result corresponding to
Theorem 1.3. The detail will be discussed in Section 4.

1.4 Relation to existing works

The notion of parabolic structures on vector bundles on curves is introduced by Mehta
and Seshadri [14]. It consists of a vector bundle F' on a curve C' and a filtration of some
fiber of FF — C, satisfying some stability condition. Since its introduction, several gen-
eralizations have been discussed [12], [2]. In [12], Maruyama and Yokogawa generalize
the notion of parabolic structures on vector bundles on curves to torsion free sheaves
on arbitrary smooth projective variety, and construct their coarse moduli spaces. The
result of Theorem 1.2 is interpreted as a version of their result for torsion one dimensional
sheaves. In [2], Boden and Yokogawa studies parabolic Higgs bundles over smooth pro-
jective curves. Since a Higgs bundle is interpreted as a torsion sheaf on the total space
of the canonical line bundle on a curve, our work is also interpreted as a 3-fold version of
parabolic Higgs bundles. The setting of the above works are more general than ours in
the sense that they work under an arbitrary choice of a filtration and a parabolic weight
which determine parabolic structures. We stick to our situation, corresponding to a spe-
cific choice of a filtration type and a parabolic weight, as we will not need other choices.
(See Subsection 2.3.) A complete generalization may be pursued elsewhere.



The idea of parabolic stable pair theory and the result of Theorem 1.3 are very similar
to Joyce-Song’s stable pair theory. In [7], Joyce-Song study stable pairs of the form,

Ox(—n) —>F, (6)

where F'is a coherent sheaf on X and n > 0, satisfying a certain stability condition.
Then Joyce-Song’s stable pair invariants are shown to be related to their generalized DT
invariants, in a way very similar to the formula (4). However there is an advantage of
parabolic stable pair theory. First we note that, for each fixed reduced curve C C X,
there is also a local version of parabolic stable pair invariants, and the local version of the
formula (5) which is enough to show the global formula (5). (See Proposition 4.17.) The
local parabolic stable pair theory admits an action of the Jacobian group PicO(C’), while
the local stable pair theory (6) does not. Hence we can try to localize by this action.
It is much easier to apply the Jacobian localization to the invariants DTpar rather than
N, g, as the definition of the latter invariants involve very complicated technlques on Hall
algebras. The definition of the invariant DTp is much more elementary, and there is
no technical problem in applying the locahzatlon to that invariant. This idea works well
at least when C' has at worst nodal singularities, and the details will be pursued in the
subsequent paper [20]. (See Remark 4.19.)

1.5 Plan of the paper

The organization of the paper is as follows. In Section 2, we introduce parabolic stable
pairs and construct their moduli spaces. In Section 3, we discuss categorical framework
to discuss parabolic stable pairs, and the wall-crossing formula to show Theorem 1.3.
In Section 4, we discuss a relationship between parabolic stable pair invariants and the
conjectural multiple cover formula of generalized DT invariants.
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2 Moduli spaces of parabolic stable pairs

In this section, we introduce the notion of parabolic stable pairs and study their moduli
spaces. In what follows, X is a smooth projective Calabi-Yau 3-fold over C,

3

N\TY =0x, H'(X,0x)=0.
We fix an ample line bundle Ox (1) on X and set w = ¢;(Ox(1)).
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2.1 Semistable sheaves

First we recall the notion of w-semistable one dimensional sheaves on X. We set
Coh<;(X) := {F € Coh(X) : dimSupp(F) < 1}.

For an object F € Coh<;(X), its slope is defined by

X(F)
[Fl-w

Nw(F) =

Here x(F') is the holomorphic Euler characteristic of F' and [F] is the fundamental one
cycle associated to F', defined by

[F] = (length, F){n}. (7)

n

In the above sum, 7 runs all the codimension two points in X. If [F]-w =0, i.e. Fisa
zero dimensional sheaf, then p,(F) is defined to be cc.

Definition 2.1. An object F' € Coh<1(X) is w-(semi)stable if for any subsheaf F' C F,
we have the inequality,

po(F') < (L) po(F).

Note that any one dimensional semistable sheaf F'is pure, i.e. there is no zero dimen-
sional subsheaf in F'.

2.2 Definition of parabolic stable pairs

Let X be a Calabi-Yau 3-fold and w = ¢;(Ox(1)) as in the previous subsection. In this
subsection, we also fix another divisor,

HcCX. (8)

We introduce the notion of parabolic stable pairs to be pairs of one dimensional sheaf F'
together with a data

S€F®OX OH7 (9)

satisfying a certain stability condition. In what follows, we write F' ®p, Og as F' @ Oy
for simplicity.

In order to make the notation (9) well-defined, we need a transversality condition of
the support of F'. Namely for a one cycle C' on X, we say C' intersects with H transversally
if H N C is zero dimensional, or equivalently, any irreducible component C' C C is not
contained in H. (We allow the multiplicity of H N C.) For a one dimensional sheaf F'
on X, we say that F' intersects with H transversally if the one cycle [F] given by (7)
intersects with H transversally. Then F' ® Oy is a zero dimensional sheaf on X, and we
identify F' ® Oy with its global section I'(X, FF ® Op) as a finite dimensional C-vector
space.



Definition 2.2. For a fized divisor H on X as above, a parabolic stable pair is defined
to be a pair

(F,s), s€F® Oy, (10)
such that the following conditions are satisfied.
e The sheaf F' is a one dimensional w-semistable sheaf on X.
e The one cycle [F| intersects with H transversally.
e For any surjection F — F' with po(F) = py(F"), we have

(7 ® On)(s) # 0.

For two parabolic stable pairs,
(Fysi), 1=1,2,
we say they are isomorphic if there is an isomorphism of sheaves,
g: b1 = Fs,

satisfying (¢ ® On)(s1) = s2. In the following local (—1, —1)-curve example, the isomor-
phism classes of parabolic stable pairs can be easily classified.

Example 2.3. Let f: X — Y be a birational contraction which contracts a (—1,—1)-
curve C' C X, t.e.

C=P', Ngx20c(-1)® Oc(-1).

Suppose that a divisor H C X intersects with C' at a one point p € C. Let (F,s) be a
parabolic stable pair on X with F supported on C. It is easy to see that any semistable
sheaf on X supported on C' is an Oc-module, hence we have

= Oc(a)®r,

for some a € Z and r € Z>,. By applying an action of Aut(F) = GL(r,C), we may
assume that s € F @ Og =2 Op(a)®" is of the form,

s=(s1,0,--+,0) € Op(a) ®--- B Opla),
with s1 # 0. However if r > 2, then the surjection
F~0c(a)? 3 (21, ,2.) =z, € Oc(a),

violates the third condition of Definition 2.2. Therefore parabolic stable pairs supported
on C are given by

(Oc(a),s), a € Z, s € Oy(a)\ {0}.



The next example shows that there is a parabolic stable pair (F,s) with F' strictly
w-semistable.

Example 2.4. Leti: C'— X be an irreducible curve whose arithmetic genus is one, i.e.
HY(C,0¢) = C.

Suppose that there is a divisor H C X which intersects with C' at a one point p € C.
There is a non-trivial exact sequence of sheaves on C,

By taking the pushforward i, and the tensor product with O, we obtain the exact sequence
of vector spaces,

050, i,E00,220, 0.
Suppose that s € i,E ® O satisfies ja,(s) # 0. Then it is easy to see that the pair
(1., s),

18 a parabolic stable pair. Note that 1, FE is w-semistable but not w-stable.

2.3 Relation to parabolic vector bundles, PT stable pairs

The notion of parabolic stable pairs resembles particular parabolic vector bundles on
smooth projective curves [14]. Recall that for a smooth projective curve C' and a vector
bundle F on C, a quasi-parabolic structure on E at p € C' is given by a filtration,

OZF()CFlC"'CFn:Ep, (11)

where E, is the fiber of E — C'at p. A parabolic structure is given by choosing a parabolic
weight,

O<a, <ap,_1 < <a <1,

giving a stability condition on quasi-parabolic vector bundles.

Suppose that the curve C' is embedded into a Calabi-Yau 3-fold X by i: C' — X, and
a divisor H C X scheme theoretically intersects with C' at a point p € C. Then we have
the isomorphism of C-vector spaces,

i,E® Oy = E,,

and s € i,F ® Oy determines a one dimensional subspace in E,. Thus a parabolic stable
pair

(i.E,s), s€i,F® Oy,



determines a filtration (11) with F} one dimensional and F, = E,. The stability condition
in Definition 2.2 corresponds to a choice of a parabolic weight 0 < ay < o < 1.

On the other hand, if F'is a pure one dimensional sheaf whose support intersects with
H transversally, a pair (10) is also interpreted to be a pair,

(F,s), Ngx[-1] > F. (12)

Here Ny x is the normal bundle of H to X, and [—1] is a (—1)-shift in the derived category
of coherent sheaves on X. The above observation follows from the following lemma.

Lemma 2.5. Let F' be a pure one dimensional sheaf whose support intersects with H
transversally. Then we have the canonical isomorphisms,

F®OH, Z:]_,
0, i#1.

Proof. We have the following local to global spectral sequence,

EY?:= HP(X,Ext% (Nyx, F)) = Ext’ (Ng/x, F). (13)
By the exact sequence,
0— Ox = Ox(H) = Ny/x — 0,
we have Ext'y (Npy/x, F) = 0 for i # 0,1 and the exact sequence,
0 — Hom(Ng/x,F) = F(=H) 5 F — Exty (Ng/x, F) — 0.

By the transversality assumption, the map 7 is an isomorphism in dimension one. Also
since F'is pure, the morphism 7 is injective, hence we have

Hom(Ng/x,F) =0, Exty(Ngx,F)2F® Oy.

Since F'® Oy is a zero dimensional sheaf, the spectral sequence (13) degenerates and the
assertion holds. O

Remark 2.6. Note that we have the canonical isomorphism,
Nu/x = Oy (H),

since H is a divisor. By taking a trivialization of Oy (H) near the intersection Supp(F)N
H, the pair (12) is also interpreted to be a pair,

(F,s), Og[-1]>F. (14)

However the correspondence between (10) and (14) is not canonical, so we interpret (10)
as a pair (12), not (14).
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The pair (12) also resembles stable pairs discussed in [16], [7], or more generally
coherent systems [17]. For instance, a PT stable pair [16] consists of a pair,

Ox > F, (15)

where F' is a pure one dimensional sheaf and s is surjective in dimension one. Our pair
(12) replaces Oy by Ny x[—1]. (But the stability conditions are different.)

In subsection 3.2, we will interpret the stability condition in Definition 2.2 in terms of
a stability condition in the category of pairs of the form

Ng (-1 = F, (16)

and proceed the arguments as given in [7, Section 13]. In fact using the description of
parabolic stable pairs in terms of stable objects in the category of pairs (16), we can show
the following.

Lemma 2.7. For a parabolic stable pair (F,s), let Aut(F,s) be
Aut(F,s) :={g € Aut(F) : (¢ ® Og)(s) = s}.
Then we have Aut(F,s) = {idp}.

Proof. The proof will be given in Corollary 3.10. O

2.4 Families of parabolic stable pairs

The moduli space of parabolic stable pairs is defined to be the scheme representing the
functor,

MP¥ (X, 3): Sch/C — Set, (17)

which assigns an C-scheme T to the isomorphism classes of families of parabolic stable
pairs (F, s) satisfying a numerical condition,

[F1=5, x(F)=n. (18)

Here 8 € Hy(X,Z) and, by an abuse of notation, [F] is the homology class of the funda-
mental one cycle (7).

More precisely, the functor (17) is defined as follows. The set of T-valued points of
MPa (X 3) consists of isomorphism classes of pairs,

(F.s),
satisfying the following conditions.

e F € Coh(X xT) is a flat family of one dimensional coherent sheaves on X satisfying
(18), the first and the second conditions in Definition 2.2.

11



e 5 is a global section,
s € F(T, WT*(f® TF;(OH)),

such that for each closed point ¢ € T, the pair (F;, s;) is a parabolic stable pair on
X. Here mx and 7w are projections from X x T onto the corresponding factors.

Here we explain the above second condition. Note that the support of F ® 7% Op is finite
over T by the first condition, hence we have

Rinr (F @ n50y) = 0,
for i > 0. By the base change theorem, 77, (F @ w5 Op) is a vector bundle on T, satisfying
Tre(F @ mxOn) ® k(t) =2 F, @ Oy, (19)
for any closed point ¢ € T.. The above second condition is now clear from (19).

Remark 2.8. The moduli functor MP* (X, 3) also depends on w and H. We omit these
in MP¥(X, B) in order to simplify the notation.

In general, the moduli space of parabolic stable pairs may not be compact, since the
semistable sheaf F' may degenerate to a sheaf which lies in H. In order to avoid such a
case, we need to choose a suitable divisor

H € |0x(h)], h>0,

which intersects with one dimensional semistable sheaves we are interested in transversally.
(Recall that Ox(1) is an ample line bundle on X with ¢;(Ox (1)) = w.) Such a divisor H
can be found, once we fix a positive integer d € Z>; and consider only one dimensional
semistable sheaves F' satisfying w - [F] < d. In fact we have the following lemma.

Lemma 2.9. For each d € Z+y, there is a divisor H € |Ox(h)| for h > 0, (depending
on d,) which intersects with any one cycle C' on X satisfying w - C < d, transversally.

Proof. Let Chow<4(X) be the Chow variety parameterizing one cycles C' on X with
w-C < d. Let Ox(1) be a very ample line bundle on X. We would like to find A > 0
and an element H € |Ox(h)| which satisfies the desired condition. We define the set Z
to be the subset,

7 C ChOWSd(X) X |OX(h)|7

consisting of ([C], H) such that there is an irreducible component C' C C' with C' C H.
A desired H can be found if the projection

7 = 0x ()], (20)

is not a dominant map.

12



By the boundedness of the Chow variety, we may assume that
H'(X,Iei(h)) = H'(C", O (h)) = 0, (21)

for any one cycle [C'] € Chow<4(X) and an irreducible component C" C C. Also the Euler
characteristic x(O¢r) for the above C is bounded below, say x(Oc¢) > D. Let e be the
smallest number of deg O¢ (1) among curves C' on X, and Z¢ the fiber of the projection

Z — Chow<4(X),

at a one cycle [C]. If C' C C' is an irreducible component, we have the exact sequence,

0— I ® Ox(h) = Ox(h) = Oc(h) — 0. (22)
Using (21), (22) and the Riemann-Roch theorem, the dimension of Zj) is evaluated as

dim Z¢; = dim|Ox (h)| — dim H*(C", Oc (h))

< dim|Ox (h)| — he — D.
Therefore we have
dim Z < dim Chow<4(X) + dim|Ox (h)| — he — D. (23)

Suppose that the map (20) is a dominant map. Then we have dim Z > dim|Ox (h)|, hence
the inequality (23) implies

he < dim Chow<4(X) — D. (24)

The above inequality is not satisfied for h > 0. If h > 0 does not satisfy the above
inequality, then we can find a desired H € |Ox(h)|. O

The next subsections are devoted to show the following theorem.

Theorem 2.10. For d € Z, choose a divisor H € |Ox(h)| satisfying the condition of
Lemma 2.9. Then forn € 7 and B € Hy(X,Z) with w - 5 < d, the functor MP* (X, 3) is
represented by a projective C-scheme MP* (X, ().

2.5 Construction of the moduli space

In this subsection, we give a construction of the moduli space of parabolic stable pairs.
As we discussed in Subsection 2.3, the notion of parabolic stable pairs resemble both of
parabolic vector bundles on curves and PT stable pairs (coherent systems). The moduli
space of parabolic vector bundles is constructed in [14], and its generalization to parabolic
sheaves for torsion free sheaves on arbitrary algebraic varieties is discussed in [12]. On
the other hand, the moduli space of coherent systems is constructed in [17], and its
construction is simplified for PT stable pairs in [18]. Our strategy is to imitate the
construction of the moduli space of PT stable pairs by applying the arguments in [18,
Section 3].
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Let us take d € Z, H € |Ox(h)| and n, 5 as in the statement of Theorem 2.10. We first
note that, by the boundedness of semistable sheaves, there is m > 0 such that m' > m
implies H(X, F(m')) = 0 for i > 0 and F(m/) is globally generated for any w-semistable
one dimensional sheaf F' with [F] = 8 and x(F) = n. However for later use, we take
m > 0 satisfying the following stronger condition. Note that we have

po(F (1)) = 1+ py(F).

Also the set of w-semistable one dimensional sheaves F” satisfying

w-[F) < d, ﬁ < p(F) <1+ ﬁ, (25)

is bounded. Hence we can take m > 0 such that
H'(X,F'(m)) =0, >0, (26)

and F'(m) is globally generated for any w-semistable sheaves F' satisfying w - [F'] < d
and p,(F') > n/w- 3. Below we fix such m > 0.

Let F' be an w-semistable one dimensional sheaf with [F] = # and x(F) = n. By the
above choice of m, we have

xr(m) := dim H°(X, F(m)) (27)
=m(w-B)+n,

by the Riemann-Roch theorem. Below we write
Xn,g(m) :=m(w - B) +n,

and set V' to be the C-vector space of dimension X, s(m). Then by the vanishing (26),
for such an w-semistable sheaf F', we have a surjection,

V® Ox(—m) = F, (28)
such that the induced morphism
V = H(X,F(m)) (29)
is an isomorphism.
We consider the Quot-scheme,
Q@ := Quot(V ® Ox(—m),n, ), (30)

which parameterizes quotients V@ Ox(—m) — F with F one dimensional sheaf satisfying
[F] = and x(F) = n. The scheme ) contains the open subset,

UcCQ, (31)

which corresponds to quotients (28) such that F' is w-semistable and the induced morphism
(29) is an isomorphism. Note that outside U the sheaf F' may no longer be semistable
nor a pure sheaf.
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Let
(V X Ox(—m)) & OQ —» F,

be the universal quotient on X x () and we denote by Fy the restriction of F to X x U.
By the arguments in the previous subsection and Lemma 2.9, we have the vector bundle
RU on U,

Ry = WU*(FU X OHXU) — U. (32)

Note that pairs (F,s) satisfying the first and the second conditions in Definition 2.2 and
[F] = B, x(F) = n bijectively correspond to closed points in Ry up to the action of
GL(V) on Ry. Let

Rs(’] C Ry,

be the subset corresponding to parabolic stable pairs. Suppose for instance that Rj; is
an open subset of Ry. Then the resulting moduli space can be constructed to be the
quotient space,

RS /GL(V) = RS /SL(V), (33)

where R is the quotient space of R, by the diagonal subgroup C* C GL(V). Note that
we have

RS C P(Ry), (34)

where P(Ryy) is the projectivization of Ry.

By Lemma 2.7, the action of SL(V) on R is free, hence the quotient space (33) is at
least an algebraic space of finite type, once we prove the openness of parabolic stable pair
locus. In fact we show that R; coincides with a GIT stable locus in a certain projective
compactification of P(Ry), hence in particular R is an open subset of P(Ry).

2.6 Compactification of P(Ry)

In order to interpret R as a GIT stable locus, we embedded P(Ry) into a product
of a Grassmannian and the Quot scheme Q). Let V ® Ox(—m) — F be a quotient
corresponding to a point in @, and V' C V' a linear subspace. Let I’ C F be the subsheaf
generated by V', We take an exact sequence,

0—>G > V' ®O0x(—m) = F' —0.

By the boundedness of Quot scheme and the subspaces V' C V, we can take m’ > 2m
satisfying

HY(H,G' ® Oy(m')) =0, (35)
and Ox(m') is globally generated. Below such m' > 2m is also fixed.
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Suppose that V ® Ox(—m) — F corresponds to a point in U. By the vanishing (35)
for V' =V, we have the surjection,

VK —-»F®Og(m'), (36)

where K = H°(H,Og(m’ — m)). Also since Ox(m') is globally generated, the natural
morphism,
F — F(m') ® H’(X,0x(m)", (37)

\

is injective whose cokernel is a pure one dimensional sheaf. By setting M = H°(X, Ox(m'))",

tensoring M, Oy with (36), (37) respectively, and composing them, we obtain the surjec-
tions,

VK@M —» FQOg(m')®e M
— (F®Ou(m') @ M)/ (F® On).

Hence a one dimensional subspace in F'® Oy corresponds to a dys (- H) — 1-dimensional
quotient of V ® K ® M, where dy; = dim M.
The above argument yields the embedding,

P(Ry) - GV K@ M,dy(B-H)—1) x Q.

Here for a vector space V', we denote by G(V,m) the Grassmannian parameterizing quo-
tients V' — V'’ with dim V' = m. We define R to be the Zariski closure,

R:=P(Ry) CG(VOK®M,dy(f-H)—1) x Q.

The next purpose is to give a polarization of R. Let V ® Ox(—m) — F be a quotient
giving a closed point in (). By taking [ > 0, we have the surjection,

VeWw - H'(X,F(l),
where W = H°(X, Ox (I —m)). The above surjections induce the embedding,
Q= GV W, xns(l)).

Recall that any Grassmannian G/(V, m) is embedded into P(A™V) via Pliicker embedding.
Pulling back O(1) on P(A™V'), we have a GL(V)-equivariant polarization Og(v;m)(1) on
G(V,m).

For simplicity we write
Gi=GVRKQM,dy(f-H)—1), Go =GV W, xns(l)).

By the above argument, we have R C G XG5, hence there is a following SL(V')-equivariant
ample line bundle £ on R,

L:= OGl (1) X OG’2 (1)|R
In the next subsection, for [ > 0, we see that the GIT stable locus in R w.r.t. £ coincides
with Rg.
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2.7 Hilbert-Mumford criterion

We apply the Hilbert-Mumford criterion [15] to investigate the GIT stable locus with
respect to (R, £). Let A be a one parameter subgroup,

A: C — SL(V).
Then A corresponds to the grading of V|
V=@
keZ

where V}, is the space of weight k. Let us take a closed point in R,

VOK®M-% AV &0x(-m) > F)e RC Gy x Q.

For simplicity, we write the above point by (¢, p). We set Vo, := @,<;V; and A<y, Fey,
to be

Fep = p(Var ® Ox (—m)).

Let Ay, := A<y /A<x_1 and Fy, := F<i/F<;_1. By the construction, we have the surjections,
Ok Vi @ K@ M — Ay,
pr: Vi ® Ox(—m) — F}..

The following proposition follows from an argument of the application of Hilbert-Mumford
criterion to the moduli of sheaves. For instance, see [4, Lemma 4.4.3, Lemma 4.4.4], [18,
Lemma 3.12].

Proposition 2.11. In the above situation, we have
lim A(E) - (8, p) = (BrPk, Brpr) -

The Hilbert-Mumford weight pi*((¢, p), \) is given by

1
dimV

Z {dim V' (xp<r(l) + dim Acg) — dim Ve (xp (1) + dim A) } .

Here xr(l) is the Hilbert polynomial (27).

By the Hilbert-Mumford criterion, a point (¢, p) € R is GIT (semi)stable if for any
non-trivial one parameter subgroup A as above, we have p*((#,p),\) > (>)0. This
condition is equivalent to that, for any proper subspace V' C V, we have

dimV (xp (1) + dim A") — dim V' (xg (1) + dim A) > (>)0. (38)

Here A’ C A and F' C F are subspace and the subsheaf generated by V' ® K ® M and
V'® Ox(—m) respectively. In fact if we have such a subspace V' C V| then there is a one
parameter subgroup A whose induced grading on V' is Vo_; =0, Voo = V' and Vo, = V.

Let R and R be the GIT stable and semistable locus in R, and R} the subspace
of P(Ry) given in (34). We prove the following proposition.
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Proposition 2.12. For (¢, p) € R, the following three conditions are equivalent.
(i) We have (¢, p) € RS-
(ii) We have (¢, p) € R,
(iii) We have (¢, p) € RE™.

Proof. (i) = (ii) : Suppose that (¢, p) € R, i.e. it determines a parabolic stable pair.
We show that the LHS of (38) is positive for any proper subspace V' C V. For simplicity,
we write xp(l) = rl +n and xp (l) = 'l +n'. Note that r = § - w. Since we are taking
[ > 0, the assertion holds if either

r'dimV > rdim V', (39)
or 'dimV = rdimV’ and
dim V' (n' +dim A") > dim V'(n + dim A), (40)

holds. Also since V" is a subspace of H°(X, F'(m)), we may assume that V' = H°(X, F'(m)).
Then we have
rdim V' m + p,(F')
r'dimV  m 4 p,(F)

<1

b

by the w-semistability of F. Therefore (39) does not hold only if u,(F') = p,(F) and
rdimV’' =rdimV.

Suppose that (39) does not hold. Then by the above argument, we have n' dimV =
ndim V', hence it is enough to show that

dimV -dim A’ > dim V"’ - dim A. (41)

Since we have the surjection V'@ K@ M — F' ® Og(m') ® M by the vanishing (35), we
have

A'=TIm(FF@ Og(m' )M - F® Og(m')®@ M — A).
There is a commutative diagram,

0

F'® Oy F® Oy (42)

| |

0—=F' ®Oy(m)® M —F @ Ox(m') @ M

lw' X

0 A A.

By the assumption, Ker(¢)) is one dimensional, contained in F' ® Oy, and any non-zero
element s € Ker(1)) gives a parabolic stable pair (F,s). Since Ker(¢') C Ker(y)) = C - s,
and the top square of (42) is Cartesian, the stability condition in Definition 2.2 implies
that Ker(¢)') = 0. Hence dim A" = dy/hr’, and together with rdim V' = 7' dim V', dim A =
dyrhr — 1, we obtain the inequality (41).
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(ii) = (iii) : Obvious.

(iii) = (i) : Suppose that (¢,p) is a GIT semistable point. First we show that
(p,p) € P(Ry) C R. Since P(Ry) is projective over U, it is enough to show that p: V ®
Ox(—m) — F is a point in U, i.e. F is w-semistable and the map

V — HY(X, F(m)), (43)

is an isomorphism. By the GIT stability, for any proper subspace V' C V, the LHS of
(38) is positive for [ > 0. By looking at the leading coefficients, we have

r'dimV > rdim V", (44)

In order to show the map (43) is an isomorphism, it is enough to show the injectivity of

(43). If (43) is not injective, then there is a proper subspace V' C V which generates a

zero sheaf in F', which contradicts to (44). Therefore the map (43) is an isomorphism.
Next we show that F' is w-semistable. Let us take an exact sequence in Coh<(X),

0= F —-F5F" =0, (45)

and suppose that g, (F') > p,(F). Let V' be the C-vector space H°(X, F'(m)), which
is considered to be a subspace of V' via the isomorphism (43). Then by a choice of m in
Subsection 2.5, V' ® Ox(—m) generates F'. Applying (44), we obtain pu,(F) > u,(F’'), a
contradiction. Hence F' is w-semistable.

Finally we show that (¢, p) determines a parabolic stable pair. Since (¢, p) € P(Ry),
the surjection ¢: V@ K ® M — A factors through FF'® Og(m) @ M,

VRK®M = F®Oy(m)eM S A,

such that Ker(1) is one dimensional and contained in F'® Oy. We would like to show
that, for any non-zero element s € Ker(¢), the pair (F,s) is a parabolic stable pair.
Suppose by contradiction that there is an exact sequence of the form (45) with p,(F') =
piw(F) = py(F") and (7 ® Op)(s) = 0. Setting V' = H°(X, F'(m)), our choices of m and
m' yield the commutative diagram,

VeK@M—F ®O0gm)eM-Y - a4

I

VRIKM—F0y(m')®M— A.

Here all the vertical arrows are injections and horizontal arrows are surjections. By the
assumption (1®Op)(s) = 0, we have Ker(¢)') = Ker(¢)) = C-s, hence dim A" = dpshr'—1.
On the other hand, (p,¢) is GIT semistable by the assumption, hence the LHS of (38)
should be non-negative. Also since p,(F') = u,(F"), we have

rdim V" m + p, (F)

= =1.
r'dimV m+ p,(F)
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Hence we have

dimV'" " '

- =, 46
dim V' r n (46)
Therefore we have
d%mV’ . d.imA _ 7"_’ . dyhr — 1 o1 (47)
dimV -dim A" r dyhr' —1
The equalities (46), (47) imply that the LHS of (38) is negative, a contradiction. O
Proof of Theorem 2.10:
Proof. By Proposition 2.12, if we take [ > 0, then we have
Ri/SL(V) = RE®/SL(V) = R/ SL(V). (48)

Then by a general theory of GIT quotient [15], the space (48) is a projective scheme. By
Lemma 2.7, the automorphism group of any parabolic stable pair is trivial, hence there
is a universal parabolic stable pairs on (48). Hence the scheme (48) is the desired fine
moduli space. O

Remark 2.13. If we take H € |Ox (h)| which does not satisfy the condition in Lemma 2.9,
then the moduli functor MP* (X, 3) may not be represented by a projective scheme. How-
ever in the argument of Theorem 2.10, let us replace U C Q) in (31) by the open subscheme

UecUcCQ,

corresponding to quotients V@ Ox(—m) — F where F intersects with H transversally.
Then following the same arguments, we can show that MP* (X, ) is represented by a
quasi-projective scheme over C.

Remark 2.14. It is a natural question whether there is a symmetric perfect obstruction
theory on MP* (X, ) or not. This question seems to be not obvious by the following
reason. For instance in PT stable pair case [16], for a PT stable pair (F,s) as in (15),
we have the associated object in the derived category, I* = (Ox — F). The perfect
obstruction theory can be constructed by taking the cone of the trace morphism,

R Hom(I*, I*) % R Hom(Ox, Ox).

In our case, by regarding a parabolic stable pair (F,s) as a pair Ny x[—1] > F, we can
associate E € Coh(X) which fits into the exact sequence,

0—F—FE— Ng/x =0,

whose extension class is s. One might expect that, as an analogy of the trace map, there
may be a natural morphism,

RHOHI(E, E) — RHOHI(NH/X,NH/S), (49)

and taking its cone may give a perfect obstruction theory. Unfortunately there is no such
a map (49), so we cannot discuss as in the PT stable pair case.
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3 Wall-crossing formula

In this section, we introduce invariants counting parabolic stable pairs, and show that
they are related to generalized DT invariants introduced in [7], [10]. As in the previous
section, X is a smooth projective Calabi-Yau 3-fold over C.

3.1 Counting invariants

Let us take d € Z~y and a divisor H C X satisfying the condition in Lemma 2.9. By
Theorem 2.10, for n € Z and 8 € Hy(X,Z) with w - 8 < d, there is a fine moduli space
MP*" (X, 5) which parameterizes parabolic stable pairs (F, s) with [F] = 5 and x(F) = n.

Recall that, for any C-scheme M, Behrend [1] constructs a canonical constructible
function

v:M — 7,
satisfying the following properties.

e For p € M, suppose that there is an analytic open neighborhood p € U, a complex
manifold V' and a holomorphic function f: V' — C such that U = {df = 0}. Then
v(p) is given by

v(p) = (1)1 = x(M,(f))).
Here M,(f) is the Milnor fiber of f at p.

e [f there is a symmetric perfect obstruction theory on M, we have

deg[M]Vir:/ vdy
M

= Z my (v (m)).

We define the invariant DTfL?E as follows.

Definition 3.1. We define DT:fE € Z to be

DTP = / vaedx.
MZ™(X,B)

Here vy is the Behrend function on MP* (X, f3).

Remark 3.2. We remark that the invariant DTfﬁg also depends on the choice of w and

H. We omit these notation in DT}"; for the simplification.

In the local (=1, —1)-curve example, the above invariant can be computed very easily.
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Example 3.3. Let f: X = Y, C C X be as in Example 2.53. Suppose that there is
H € |Ox(1)| which intersects with C' at a one point. Then by the classification of parabolic
stable pairs in Example 2.3, we have

ar S eCC, m:]_,
M miey ={ P

Therefore we have

1, m=1
par . ] 9
DL mger —{ 0, m>2.

AVART

We introduce the generating series of DT}"; as follows. For y € Q, we set

DT (u,d) ;=14 » DT q"t". (50)
0<p-w<d
njw-B=p

The above series is contained in the ring A<; defined as follows. First the ring A is defined
by

A= @ Qq"t".

n€eZ,5>0

Here 8 > 0 means that 3 is a numerical class of an effective one cycle on X. The ring A
is defined by the quotient ring of A by the ideal generated by ¢"t’ with w -3 > d. We
have

DT (1, d) € Aey.

3.2 Category of parabolic pairs

Let (F, s) be a parabolic stable pair as in Definition 2.2. As we observed in Subsection 2.3,
the pair (F, s) can be also interpreted as a pair,

Ng/x[-1] 5 F. (51)

In this subsection and next subsection, we construct the category of pairs as above, and
interpret the stability condition in Definition 2.2 in terms of the pair (51).

Let (X,w,d, H) be as in Lemma 2.9. For u € Q, the category A(u,d) is defined as
follows.

Definition 3.4. We define the category A(pu,d) to be the category of pairs,
Nyx[=1] = F,

where r € Z>o and F is a one dimensional w-semistable sheaf satisfying

po(F) = p, w-[F] <d.
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For two objects E; = (Ng%([—l] X F) € A(p,d) with i = 1,2, the set of morphisms
Hom(E,, Es) is given by the commutative diagram,

N (52)
¢>®idNH/XJ/ Lg
N1 B,

for ¢ € M(r1,73) and g € Hom(Fy, Fy).

Let g: Fi — F; be a morphism of one dimensional w-semistable sheaves with p,,(F;) =
p. It is easy to see that Ker(g), Im(g) and Cok(g) are all w-semistable sheaves with
po(x) = p. Also let us take an exact sequence of w-semistable one dimensional sheaves,

0— F), > Fy, = F3 — 0.
If w-[F3] < d, then we have the exact sequence by Lemma 2.5,
0— EXtﬁ((NH/X,Fl) — EXtﬁ((NH/X, FQ) — Eth(NH/X, F3) — 0. (53)

The condition w - [F3] < d is required for the divisor H to intersect with F; transversally.
Hence for a morphism (52), we can define its kernel, image and cokernel in A(u,d). For
instance, the kernel is given by

Ker(¢) ® Ny x[—1] — Ker(g).

The notion of monomorphisms, epimorphisms and exact sequences in A(u,d) can be
defined in an usual way using the above kernel, image and the cokernel.
However for two objects

B = (N [-1] % F) € A, d), (54)
with ¢ = 1,2, the set of extensions in A(u,d),

0— By — (Ngjx[-1] = F) = B> — 0, (55)

can be defined only if the following condition holds:
w- ([F] + [F2]) < d. (56)

In particular Ey @ E, cannot be defined without the condition (56). This implies that
A(p, d) is not an abelian category.

For our purpose, we only use extensions (55) satisfying the condition (56). Except
the above restriction for the possible extensions, the category A(u,d) behaves as if it is
a C-linear abelian category. For instance if the condition (56) is satisfied, then the set
of isomorphism classes of extensions (55), Ext!(E,, E), is a finite dimensional C-vector
space. Furthermore the following lemma holds.
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Lemma 3.5. For two objects (54), suppose that the condition (56) holds. Then we have
the following exact sequence of C-vector spaces,

0— HOHI(EQ, El) — M(?"g, 7"1) D HOHI(FQ, Fl) (57)
— Hom (N3 [—1], Fi) — Ext'(Ey, B1) — Ext'(F, F1) — 0. (58)

Proof. Let E = (Ng;x[—l] % F) be an object in A(j, d) which fits into an exact sequence

(55). Then we have the exact sequence of sheaves,
0—F —F— F,—0, (59)
hence we obtain a linear map,
vi: Ext'(Es, Ei) — Ext'(Fy, Fy),

sending F to F. The map =, is surjective by the exact sequence (53) applied to (59).
Let us look at the kernel of v;. The kernel of v; consists of isomorphism classes of
extensions in 7 (u, d) of the form

0 NEBH [_1] i1 NEB?"1+7"2[_1] i2 NEBW [_1] 0

H/X H/X H/X )
0 P " ReFR " £ 0.

Here iy, j; are embedding into corresponding factors, and is, jo are projections onto cor-
responding factors. The above extension is given if we give a Hom(NI?;g([—l], Fy)-factor
of s, hence we obtain a surjection,

72 Hom (N3 [—1], F1) — Ker(m).

Next we look at the kernel of 7. An element s’ € Hom(NI?;g([—l],Fl) is contained in
Ker(7,) if and only if there are split projections i}, j] of i, j; respectively such that the
following diagram commutes,

N =1 = N7y [, (60)
)
Fy @ Fy d Fi,

where s is given by the matrix,

a5 s’
N 0 So '

Let ¢ and ¢ be Hom(NI?g([—l],NI?;}([—l]) and Hom(F3, F})-components of i} and j}

respectively. Then the diagram (60) commutes if and only if the following equality holds:

s'=5s10¢—1 o s,.
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Hence we obtain the surjection,
v3: M(rg, ) @ Hom(Fy, Fy) — Ker(vys),

sending (¢, 1) to s10 ¢ — 1 o so.
Finally the kernel of 73 coincides with Hom(FEy, Ey) by its definition. Therefore we
obtain the exact sequence (57). O

3.3 Weak stability conditions on A(y,d)

In this subsection, we construct weak stability conditions on A(yu, d) and investigate their
relationship to parabolic stability. First we define the slope function on A(u, d).

Definition 3.6. For a non-zero object E = (Nﬁ;X[—l] 5 F) € A(p,d) and o € Q, we
set 11 (E) to be

—~ _ a, if m #£ 0,
MQ(E) N { M(: Mw(F))v if?“ =0.

The above Ji,-slope function satisfies the following weak seesaw property. Let 0 —
FE, — Ey — E3 — 0 be an exact sequence in A(u,d) with Ej, E5 # 0 in the sense
explained in the previous subsection. Then either one of the following conditions hold:

ﬁa(El) Z ﬁa(E2) 2 ﬁa(E?))a
lia(E1) < Ha(E2) < la(E3).
The ji,-stability on A(u, d) is defined as follows.

Definition 3.7. An object E € A(p,d) is Jio-(semi)stable if for any exact sequence 0 —
FEy — Ey — E3 — 0 in A(p, d) with Ey, E5 # 0, we have the inequality,

ﬁa(El) < (S)ﬁa(E?))
The po-stability satisfies the usual Harder-Narasimhan (HN) property.
Lemma 3.8. For any E € A(u,d), there is a filtration in A(p, d),

OZE()CElC"'CEN:E, (61)

with N < 2 such that each F; = E;/E;_y is Jio-semistable satisfying fia(F;) > fia(Fii1)
for alli. The exact sequence (61) is unique up to isomorphism.

Proof. Note that for any non-zero object (NI?;X[—I] — F) € A(p,d), we have r > 0,

w - [F] > 0 and either one of them is non-zero. Hence there are no infinite sequences in

A, d),

E=FE,DFE,D---DFE, D" -,
E=Ey—»FE —-—E, =

Therefore the criterion in [22, Proposition 2.12] is satisfied, and there are HN filtrations
with respect to Jin-stability. Since i, (%) € {«, pu}, the HN filtrations are at most 2-steps,
Le. N <2. O
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Next we see the relationship between Ji,-stability and parabolic stability.

Proposition 3.9. For an object

we have the following.

(i) If « < p, then E is [i,-semistable if and only if F = 0.

(ii) If a« = p, then any object E as in (62) is Ji-semistable.

(11i) If « > p, then E is [io-semistable if and only if it is [i,-stable, if and only if the
pair

(F,s), s€F®O0Oy, (63)
determined by (62) and Lemma 2.5 is a parabolic stable pair.

Proof. (i) Suppose that E is [i,-semistable and F' # 0. Then we have the exact sequence
in A(p, d),

0—=(0—=F)—=FE— (Nygx[-1] = 0)—=0.
Since we have
Aal0 = F) =, Ba(Nuyx[-1] = F) =

the above sequence destabilize E, a contradiction.

Conversely if £ = (Ng/x[—1] — 0), then there is no exact sequence 0 — E; — E —
Ey; — 0 with Ey, E5 # 0. In particular E is Ji,-stable.

(ii) Obvious.

(iii) Suppose that F is Ji,-semistable and assume that there is a surjection F' NN
with ju,(F') = p such that (71 ® Og)(s) = 0. Then by Lemma 2.5, there is an exact
sequence in A(u,d) of the form,

0— (Ng/x[-1] = F") - E— (0= F') = 0. (64)

Since a > p, the sequence (64) destabilizes E, a contradiction.
Conversely suppose that the pair (63) is parabolic stable and take an exact sequence

in A(p, d),

0— (N [-1] = F') = E — (N&®

X H/X[—l] — F"y = 0.

Since a + b = 1, we have the two possibilities, (a,b) = (1,0) and (a,b) = (0,1). When
(a,b) = (1,0), then the surjection F' — F" takes s to 0 by taking ® O, hence it contra-
dicts to the parabolic stability. When (a,b) = (0, 1), then we have

fa(0 = F') = p < o = [io(Ngyx[—1] = F").
Hence FE is ji,-stable. O
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As a corollary, we have the following.

Corollary 3.10. Let (F,s) be a parabolic stable pair and E = (Ng/x[—1] — F) the
associated object in A(p, d) by Lemma 2.5. Then we have

Hom(E, E) = C. (65)
In particular the group Aut(F,s) defined in Lemma 2.7 is {idp}.

Proof. By Proposition 3.9, the object E is ji,-stable, hence (65) follows from a general
argument of stable objects. (cf. [4, Corollary 1.2.8].) The group Aut(F,s) is identified
with the subset of Hom(F, F), consisting of commutative diagrams,

Nux[=1] —F (66)

J )

NH/X[—l] HF,

where ¢ is an isomorphism. Hence by (65), ¢ must be an identity. O

As another corollary, we can explicitly describe the HN filtrations of objects of the
form (Ng/x[-1] = F).

Corollary 3.11. For an object = (Ny, [-1] = F)) € A(u, d), we have the following.
(i) If a < p, then the HN filtration of E is either 0 = Ey C Ey = E or the exact
sequence,

0—=(0—=F)—=FE— (Nygx[-1] —=0)—=0.

(i1) If « = p, then the HN filtration of E is 0 = Ey C F; = F.
(1ii) If o« > p, then the HN filtration of E is either 0 = Ey C Ey = E or an ezact
sequence of the form,

0= (Np/x[=1] 5 F') = E = (0 > F") - 0,

where (Ny/x[—1] EN F') is determined by a parabolic stable pair (F',s').

Proof. The result is obvious from Lemma 3.8 and Proposition 3.9. U

3.4 Stack of objects in A(pu,d)

In this subsection, we study stack of objects in the category A(u, d). For the introduction
to stacks, see [11].
Let </ (p, d) be the 2-functor,

o (p,d): Sch/C — groupoid,
sending an C-scheme T to the groupoid of pairs,

N[-1] = F, (67)
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where A/ and F are T-flat coherent sheaves on X x T, such that for any closed point
t € T, there is a commutative diagram,

M[_l] —F
b
Nijx[=1—F.

H/X

Here the bottom pair is an object in A(u, d), and v, h are isomorphisms of sheaves on X.
The morphisms in the groupoid <7 (u,d)(T) are given by the commutative diagrams,

M[-1]—=F (68)
|
No[-1]—= 7,

where ¢ and ¢ are isomorphisms of sheaves on X x T'.

The stack .7 (1, d) can be easily shown to be a global quotient stack of some scheme
locally of finite type over C, in particular, it is an Artin stack of finite type over C. In
order to see this, we decompose &/ (f, d) into components,

A (p, d) = H Ay B

(r,8,n)€l (1),
r>0, 0<w-B<d

where 7.5, is the stack of pairs N7\ [~1] — F with [F] = 8 and x(F) = n, and I'(x)
is the abelian group defined by
() :={(r,8,n) EZ® Hy(X,Z)®Z:n = p(w-B)}. (69)

Below we use the notation in Subsection 2.5. For fixed § and n as above, we take m > 0
and the Quot scheme @ as in (30). Let U C @ be the open subscheme as in (31). We
have the following coherent sheaf on U,

R := Extl (N B Oy, Fy), (70)

where Extl (%, %) is the i-th derived functor with respect to the functor my, Hom(x, x).

By Lemma 2.5, the sheaf Rg) is a vector bundle and we have the canonical isomorphism,
Ry = my.(Fy © OFp).

In particular RS) coincides with Ry given in (32). We also denote the total space of the
vector bundle (70) as Rg).
The space Rg) parameterizes data,

V ® Ox(~m) — F « N7 [-1],

where the left arrow represents a point in U. The groups GL(V'), GL(r,C) act on V &
Ox(—m), NS;X[—I] respectively. Hence we obtain the action of GL(V) x GL(r,C) on

Rg). The stack 7 g, is constructed to be the quotient stack,

D= | R/ (GL(V) x GL(r,©))| . (71)
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3.5 Hall algebra

In this subsection, we recall the Hall type algebra of the category A(r, d) based on the
work [5], using the Artin stack .o (u, d).
The Q-vector space H (j,d) is spanned by the isomorphism classes of pairs,

(2, p), (72)

where 2" is an Artin stack of finite type over C with affine stabilizers, and p is a 1-
morphism,

p: X — A (p,d).

Two pairs (%, p;) for i = 1,2 are isomorphic if there is an 1-isomorphism f: 2] — 25
which 2-commutes with p;. The Q-vector space H (u,d) is decomposed as

H(M, d) == @ Hr,ﬁ,n;

(r,B8,n)€T (1)
r>0, 0<w-B<d

where H, 3, is the subvector space of H(u, d), spanned by (72) such that p factors through
the substack 7.5, C &7 (1, d).
Let &z (u,d) be the stack of exact sequences in A(pu, d),

0— E — Ey = E3 — 0. (73)

As in the previous subsection, it is not difficult to show that &z (u,d) is an Artin stack
locally of finite type over C, and we omit the detail. We have the 1-morphisms,

Dbi: éal‘(/'ba d) - 'Qf(/l’a d)a

sending an exact sequence (73) to the object E;.
For two elements «o; = (25, pi) € H(u,d) with i = 1,2, its x-product a; * ay is defined
in the following way. We have the diagram,

p

X —" ol (p,d),
(p1,p3)

2, % %MQW(M, d)*2.

8

Here the left diagram is a Cartesian square. The product a; * a is given by
Qp * Qg = [(@7p2 o p)] S H(/'La d)
We have the following proposition.

Proposition 3.12. The -product on H(u,d) is an associative product on H(u,d), with
unit given by [Spec C — o7 (u, d)], corresponding to 0 € A(pu, d).
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Proof. Although the category A(u, d) is not an abelian category, the same proof as in [5,
Theorem 5.2] works. The only thing to notice is that, for a; € H,, g, ,, with i = 1,2,3
and

w- (B + B2+ Bs) > d,
we have the equalities,

ap * (ag x ag) = (ag x ) x ag = 0.

3.6 Elements 0.5, €5,

For a € Q, we have the substack,

r

‘%ofﬁ,n C M,ﬁ,n )

parameterizing Ji,-semistable objects (Ngx[—l] — F) € A(p,d) with [F] = 3, x(F) = n.
It is not difficult to check that the stack .Z; , is an open finite type substack of <7 5 »,
hence it is an Artin stack of finite type over C. We will only need this fact for r = 0,1,
the cases which follow from Proposition 3.9 and Theorem 2.10 immediately. For instance,
suppose that » =1 and « > p. Then in the notation of the previous section, we have

M = By (€ x GL(V))] (74)

by (71) and Proposition 3.9 (iii). By Proposition 2.12, the RHS of (74) is an open substack
of 4, s,, and we have

’%lojﬁ,n = [M}z)ar(Xa B)/C*] . (75)
Here C* acts on MP* (X, ) trivially.

Remark 3.13. (i) For any a, the C-valued point of the stack .4, , consists of(Ng;X[—l] —
0), hence

Moo = [Spec C/ GL(r, C)] . (76)

In particular the stack (76) does not depend on c.

(ii) For any «, the C-valued points of the stack M, consist of the objects of the
form (0 — F). In particular the stack My, does not depend on «, and isomorphic
to the moduli stack of one dimensional p,-semistable sheaves F on X with [F| = (3,

X(F) =n.
Following [6, Definition 3.1.8], we define ;5 , and €75 € H, 5, to be

?iﬁ,n = [%(fﬁ,n — Mﬁﬂ]’ (77)

r

o (_l)lil a @
€8 = Z I 5T1,51,n1 Kok 67%5!#%' (78)

I>1,(ri,Bi,mq ) €T (1), 1 <<,
(7‘1 7ﬁ17n1)+“'+(rl aﬁl:nl):(r7ﬁan)a
ﬁa (riaﬁiani):ﬁa (T‘,ﬁ,’ﬂ).
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Here i, (r, B,n) is defined to be « if r # 0 and p if » = 0. In other words, the element
€ 5, 18 given by

Z egﬂﬂﬂz - IOg 1+ Z g,ﬁ,n ’

ﬁa (r,ﬁ,n):u’ ﬁa (Tyﬁaln‘):”,

for 1/ € {a, p}. Or equivalently,

1+ Z rgm = €Xp Z €rpm | - (79)

ﬁa (Tyﬁ’,n‘):#, ﬁa (T,ﬁ,n):ﬂ,

Note that, by Remark 3.13, the elements 67, 05 5.,,, €55, do not depend on a. Below
we omit « in the notation for these elements. Also for the convention, we set dg 90 = 1.
Using the results of Corollary 3.11, the following lemma obviously follows.

Proposition 3.14. Take o > i and (0, 3,n) € T'(u). Then we have the following identity
in H(p,d),

© —
61,ﬁ,’ﬂ - 50,67”‘ * 51,070

= Z 5?,61,77.1 * 50,62,”2'

(ﬁl ,n1)+(627n2):(ﬁan)a
ni=p(w-Bs)

Proof. The result obviously follows from Corollary 3.11 and the arguments given in [6,
Theorem 5.11]. O

3.7 Lie algebra homomorphism

Following [7], we can construct a Lie algebra homomorphism from a certain Lie subalgebra
of H(u,d) to a Lie algebra defined by the Euler pairing on A(u,d). Applying the Lie
algebra homomorphism to the formula in Proposition 3.14, we obtain a formula relating
invariants counting parabolic stable pairs to generalized DT invariants introduced in [7],
[10].

First by [5, Definition 5.13], there is a Lie subalgebra,

HY (4, d) € H(p, d),

consisting of elements [p: 2~ — &7 (u, d)], supported on ‘virtual indecomposable objects’.
The definition of the virtual indecomposable objects is very complicated and we omit its
detail. The only property we need is that,

Gg,ﬁ,n € HLie(:U’ﬂ d)?

for any element €5, constructed in the previous subsection.
i
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Next we define the Lie algebra C(u, d). Let I'(u) be the abelian group given by (69).
We have the map,

cl: A(p, d) = T'(n),
defined by
(N [=1] = F) = (r, [F], x(F)).
Let x: I'(u) x T'(i) — Z be a bilinear anti-symmetric pairing given by
X((r1, Br,m), (r2, B2, m2)) = ra(Br - H) — (B2 - H).
We have the following lemma.
Lemma 3.15. For E; € A(u,d) with i = 1,2 satisfying
cl(E;) = (ri, Biymi),  w- (B + B2) < d,
we have
X(E1, Ey) = dim Hom(Ey, Ey) — dim Ext'(E), Es)
— dim Hom(FEy, E}) + dim Ext' (E,, E}). (80)
Proof. By Lemma 3.5, we have
dim Hom(E,, F,) — dim Ext' (F;, E))
= dim Hom(F, Fy) — dim Ext' (Fy, Fy) +riro — r1(B2 - H). (81)
On the other hand, by the Serre duality and Riemann-Roch theorem on X, we have
dim Hom(Fy, Fy) — dim Ext'(F, F3)
+ dim Ext'(Fy, F;) — dim Hom(F, Fy) = 0. (82)
The formula (80) follows from (81) and (82). O

Let us consider the following Q-vector space,
Clw)i= D Qusn: (83)
(r,B8,n)€T (1)
There is the Lie algebra structure on the Q-vector space C'(u) by
[C’U17 Cvz] = (_1)X(U1’U2)X(Ula U2)0U1+U27

for vi, vy € T'(p). Let Iy C C'(p) be the ideal of C'(u1), generated by c(y ) With w- 3 > d.
The Lie algebra C'(u, d) is defined to be the quotient,

Clp,d) = C(p)/ 1.

Finally we recall that the Behrend function [1] on C-schemes are naturally generalized to
those on Artin stacks over C. (cf. [7, Theorem 5.12].) Let

Ve A (p,d) = Z,

be the Behrend function on 7 (p,d). The argument of Joyce-Song [7] is applied in our
situation, and the following result holds.
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Theorem 3.16. There is a Lie algebra homomorphism,
T: HY(p, d) — C(p,d),
such that for an element
w=|M/C] D ] € HY(1,d),

where M is a C-scheme with a trivial C*-action, we have

1) = ([ o) e (34)

Proof. Although o7 (11, d) is not an abelian category, the same proof of [7, Theorem 5.12]
works. We only have to notice the following two things.
First for v; = (r;, B;,n;) € T'(p) with i = 1,2 and w - (1 + fB2) > d, we have

[ulﬂ U’?] = 07 [C’U17 CUQ] = 07

for w; € H,, g, n;- Therefore we only need to consider the Lie brackets in the case of
w- (B + P2) < d. In that case, we can discuss as if A(u, d) were an abelian category, and
use the argument in [7, Theorem 5.12].

The next thing is to show the version of [7, Theorem 5.3] in our situation. Namely we
need to check that the moduli stack & (p,d) is analytically locally written as a critical
locus of some holomorphic function, up to some group action.

It is enough to check this for the substack <7 3, C &7 (p,d). Let .43, be the moduli
stack of one dimensional semistable sheaves F' on X with [F| = 8, x(F) = n. We have
the forgetting 1-morphism,

f: JZf,«ygm — %ﬁ,na

sending (N%’X[—l] — F) to F. On the other hand, in the notation of Subsection 2.5,
Subsection 3.4, the stack .#p, is written as the quotient stack,

M = (U] GLV)].

Combined with the description (71) of 4, 5, the 1-morphism f is induced from the natural
projection R(Ur) — U,

f: |R/(GL(V) x GL(r,C)) | — [U/ GL(V)).

The morphism R(U’") — U is a Zariski-locally trivial fibration with fiber (C°#)*". Thus
the morphism f is also a Zariski locally trivial fibration with fiber the quotient stack

[(C)*"/ GL(r, O)].

By [7, Theorem 5.3], the stack .#3, is analytically locally written as a critical locus of
some holomorphic function up to some group action. Hence the same property holds for
the stack 475, by the above argument. O
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3.8 Product expansion formula

Let T be the Lie algebra homomorphism discussed in Theorem 3.16. If o € Q satisfies
« > p, then we have 6f'5, = €5, and

Y(ef5,,) = —DTp5¢0,8m); (85)

by Definition 3.1, the isomorphism (75) and the formula (84). Here we need to change
the sign since the Behrend function on a scheme M and that on [M/C*] differ by a sign.
By applying T to the element €y, € H“(u,d), we obtain the invariant N, 5 € Q.

Definition 3.17. For (0,3,n) € I'(x) with w - 5 < d, the invariant N, g € Q is defined
by

T(€0,6,n) = —Nn,5¢(0,8,n)- (86)

The invariant N, g € Q is nothing but a generalized DT invariant introduced in [7],
[10], counting w-semistable one dimensional sheaves F' satisfying [F] = 3, x(F) = n.
In fact, by Remark 3.13 (ii), the stack defining dg g,, is the moduli stack of the above w-
semistable sheaves, and it is obvious that the invariant N, s defined via (86) coincides with
the invariant given in [7]. Also see [21, Section 4] for the explanation of the construction
of Nn,g e Q.

Remark 3.18. The restriction w - f < d is not necessary in defining N, g in [7]. The
restriction w - 8 < d is put in Definition 3.17 since g, =0 if w- 3 >0 so N, g cannot
be defined via (86) without the above restriction.

Remark 3.19. As explained in [7, Theorem 6.16], the invariant N,, 3 does not depend
on a choice of w. Of course it also does not depend on H, as we do not use H to define
w-semistable sheaves.

Remark 3.20. Suppose that n and B are coprime. Then there is a Q-ample divisor w
such that the moduli space of w-stable one dimensional sheaves F with [F] = (3, x(F) =n
is a projective scheme. (i.e. there is no strictly w-semistable sheaves.) If M, (X, [3) is
such a moduli space, then N, g is given by

Npp = / vpdyx,

where vy is the Behrend function on M, (X, [3).

Recall that we defined the series DTP* (1, d) as an element in A<4 in Subsection 3.1.
Applying the Lie algebra homomorphism Y in Theorem 3.16, we obtain a formula relating
DT}'; and N, . The following result follows from the same arguments as in [7, Theo-
rem 5.24], [23, Theorem 4.7], [22, Theorem 5.8]. For the reader’s convenience, we provide
the argument.
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Theorem 3.21. We have the following formula in A<g,

DTpar(M, d) — H exp ((—1)6'H_1Nn,5qnt’8)ﬁ'H . (87)
6>07
n/w-B=p

Here > 0 means that 3 is a homology class of an effective one cycle on X.

Proof. Let us take o € Q satisfying o > p. We set §* € HY¢(u, d) to be
Z D= D om
n=p(-5) n=p(-f)

Note that 6?@” = €lpn = dosn = €080 = 0if w- 3 > d. By Proposition 3.14, we have

Il

the identity in H (p, d),

Z (Sgﬁ n | * (51’070 = 0% % Z 50,/3 nl - (88)

n=p(w-B) n=p(w-B)

We set € € HY®(y, d) to be

¢ = Z €0,8,n-

n=p(w-p)
Then by (79) and (88), we have
6 = exp((’i) % 01,00 * exp(€)~!
= Z . (Ade)*(610,0). (89)

k>0

Here we have used the Baker- Campbell—Hausdorff formula in (89). Applying T to (89),
using (85), (86) and setting DT(y = 1, we have the following identities in C'(y, d),

> DT%csm)

S—
DI -
- k! H Nn“ﬁi ’ AdC(O,ﬂl,nl) -0 AdC(Oﬁk=”k) (6(1’0’0))
kZU ) ﬁlf":ﬁkeH?(X’Z)’i:l
nl)"')nkeZ)
n;=p(w-B;)

1
:Zk_ Z H 61H lﬁz ) ni,Bi ° (12_1[312_17“) (90)

k>0 " By, Br€Ho(X,Z),
nl,',nkEZ

n;=p(w-B:)

The formula (87) obviously follows from (90). O
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4 Multiple cover formula

In this section, we discuss relationship between Theorem 3.21 and the conjectural multiple
cover formula of the generalized DT invariants N, 3.

4.1 Conjectural multiple cover formula

In this subsection, we recall a conjectural multiple cover formula of the invariants N, g.
The statement of the conjecture is as follows.

Conjecture 4.1. [7, Conjecture 6.20], [21, Conjecture 6.3] We have the following
formula,

1
Nug = Z le,,B/k- (91)
k>1,k|(n,B)

The conjecture is motivated by the strong rationality conjecture of the generating
series of PT invariants [16]. As we recalled in Subsection 2.3, a PT stable pair consists of
data,

(F,s), s:O0x —F, (92)

where F' is a pure one dimensional sheaf and s is surjective in dimension one. For 3 €
Hy(X,Z) and n € Z, The moduli space of PT stable pairs (92) with [F| = fand x(F) =n
is denoted by P,(X, ). The PT invariant is defined by

Pmﬁ = / Vde € 7.

Here vp is the Behrend function on P, (X, f3).
Let PTg(X) and PT(X) be the generating series,

PTy(X) := Y Papd",
neZ

PT(X):= Y  PTaX) (93)
BEH>(X,Z)

The main conjecture by Pandharipande-Thomas [16] is an equivalence between the gener-
ating series of Gromov-Witten invariants and the generating series of PT invariants PT(X)
after a suitable variable change. In order to make the variable change well-defined, the
series PT3(X) should satisfy a (weak) rationality property: i.e. PTz(X) should be the
Laurent expansion of a rational function of ¢, invariant under ¢ <+ 1/q.

On the other hand, if we believe GW/PT correspondence, then the series PT(X) is
expected to be written as a certain infinite product expansion, called Gopakumar-Vafa
form. The conjecture is formulated in the following way. (cf. [8, Equation (18)], [21,
Conjecture 6.2].)
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Conjecture 4.2. There are integers
ng €Z, forg>0, 8 € Hy(X,Z),

such that we have

_ H H(l B (_ ]tﬁ jnb H 1__[ (1 B (_q)gflfktﬁ)(—l)kﬁqng(291;2). (94)

B>0j=1 g=1 k=0

The above conjecture also implies the weak rationality of PTs(X), and in fact it is
nothing but Pandharipande-Thomas’s strong rationality conjecture [16, Conjecture 3.14].

Now in [23], [3], the weak rationality of PTz(X) is solved. The idea is to relate the
invariants P, 3 with NV, 3 and other invariants L,, g, and use some properties of the latter
invariants. More precisely we have the following theorem.

Theorem 4.3. [23] (Euler characteristic version), [3] There are invariants L, 3 € Q
satisfying

L,s=1L_,p, Ln,z=0, for|n|>0,

such that the following formula holds:

PT(X)= [ exp((-1)""'Nopq"t?)" (ZLﬁqnt’B> (95)

n>0,>0

The above theorem implies the weak rationality of PTg(X). (cf. [23, Corollary 4.8].)
The formula (95) is weaker than the formula (94), but it reduces Conjecture 4.2 to Con-
jecture 4.1. Namely we have the following corollary.

Corollary 4.4. [3, Theorem 1.1], [21, Theorem 6.4]

(i) The series PT3(X) is the Laurent expansion of a rational function of q, invariant
under q < 1/q.

(ii) Conjecture 4.2 holds if and only if Conjecture 4.1 holds. In this case, we have

n07ﬁ = NLﬁ

4.2 Multiple cover formula via parabolic stable pairs

Recall that we have given a formula relating invariants counting parabolic stable pairs to
the invariants V, g. In this subsection, we see that conjecture 4.1 is also equivalent to
a conjectural product expansion formula of the series DT (u, d). Namely we have the
following proposition.

Proposition 4.5. The formula (91) holds for any (n, ) with f-w <d and n/f-w=p
if and only if the following formula holds in A<q,

DTpar(M, d) _ H (1 B (_1)ﬁ.ant,8)(ﬁ-H)N1,B (96)

B8>0,
n/w-B=p
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Proof. By taking the logarithm of both sides of (87), we have

log DT? (1,d) = S (=1)7 (8- H)N, pq"t". (97)
B>0,
n/w-B=p

On the other hand, the logarithm of the RHS of (96) is

Z (8- H)N,plog (1 — (—1)ﬁ'Hq"t5)
B8>0,
n/w-B=p

—1)8-H-1
= > X %(ﬁ'H)Nl,ﬁ/kqntﬁ- (98)

B>0, k>1,k|(n,B)
n/w-B=p

Comparing (97) with (98), we obtain the result. O

Remark 4.6. The proof of Proposition 4.5 shows that, in order to check the formula
(91) for a specific (B,n), it is enough to check the equality of the coefficients of ¢"t° of
log DT (p, d) and the logarithm of the RHS of (96).

By the above proposition, the following conjecture is equivalent to both of Conjec-
ture 4.1 and Conjecture 4.2.

Conjecture 4.7. We have the following formula in A<q,
DTP&F(M, d) = H (1 — (_1)5ant5)(5H)N1B .
>0,

njw-B=p

By Remark 4.6, the above conjecture is equivalent to the following: if we set ﬁza; €cQ
by

log DT (1, d) = Y DT, 5q"t”, (99)
B
then we have the formula,
——par T 1
DT, 5 = (-1 =16 H) Z ﬁNI,ﬁ/k-
k>1,k|(n,B)

4.3 Local parabolic stable pair invariants

In the following subsections, we study the local version of parabolic stable pairs and
relevant results. All the arguments are similar to the global case, and we omit several
details.

In what follows, we fix a reduced subscheme,

10 C C X,
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with dim C' = 1. We also fix a divisor in X,
H € |Ox(h)|, h>0, (100)

which intersects with C' transversally. Of course, any one cycle on X supported on C'
intersects with H transversally. On the other hand, we do not assume the transversality
for the intersection of H with curves of bounded degree other than C'. In this sense, the
way we choose for (100) is different from the way for H C X in Lemma 2.9. The former
one depends on the curve C, while the latter one depends on the degree d € Z-,.

Let MP* (X, ) be the moduli space of parabolic stable pairs with respect to the
above choice of H. Since H may not satisfy the condition in Lemma 2.9, the moduli
space MP*" (X, 3) may not be projective, but it is at least a quasi-projective scheme as
we mentioned in Remark 2.13. Let Chowg(X) be the Chow variety parameterizing one
cycles C' C X with [C'] = 8. There is a Hilbert-Chow type morphism,

mg: MP*(X, ) — Chowg(X),

sending a parabolic stable pair (F, s) to the one cycle [F].
Let C1,---,Cy be the set of irreducible components of C. We have

m(0,2) = @),

and we can identify Hy(C,Z) with the group of one cycles on X supported on C. The
effective cone is defined by,

N

Hy(C, 7)o := {Z a;[C)] = a; > 0} \ {0} C Hy(C,Z).

i=1
For each v € Hy(C,Z)~0, we can regard it as

v € Chow, (X).
We define the local parabolic stable pair invariant in the following way.

Definition 4.8. For each v € Hy(C,Z)+o, we define DT} € Z to be

DT = / vardyx.
—1

TI'i*,Y(’Y)

Here we note that vy is a Behrend function on MP*'(X,i,v), not on the fiber w;}r(fy).

4.4 Local generalized DT invariants

We can also define the local version of generalized DT invariants in a way similar to
Definition 3.17. Namely we replace the category A(u, d) by the category of pairs,

Nyx[=1] = F, (101)
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where F' is an w-semistable sheaf supported on C| satisfying pu,(F) = p. The category
consisting of the above pairs is denoted by A(u,C). The moduli stack of objects in
A(p, C) can be constructed as in Subsection 3.4. Namely let .o/ (1) be the stack of pairs

NE;X[—l] — F, where F is j,-semistable with pu,(F) = u, but not necessary supported

on C. By the arguments in Subsection 3.4 and Remark 2.13, the stack </ (u) can be
shown to be an Artin stack locally of finite type over C. The desired stack of objects in

A(p, C) is the closed substack,
A (1, C) C A ().

The stack <7 (u, C') decomposes as
d(/j,, O) = H Mra')/an’

where 4, ., ,, is the stack of pairs (101) with [F] = v as a one cycle supported on C, and
['(p, C) is defined similarly to (69), by replacing Hy(X,Z) by H(C,Z).

Hence we have the Hall type algebra H(u,C) and the Lie subalgebra of virtual inde-
composable objects,

H"(,C) € H(p, O).

The Lie algebra C'(u,C') is also defined similarly to (83), just by replacing Hy(X,Z) by
H2(O; Z)a
O(Ma O) = @ Qc(r,'y,n) .

(ry7,m)€r(1,C)

Here we do not take a quotient as in defining C'(u, d).
The Lie algebra homomorphism

T: HY(u,C) = C(u, 0),

can be similarly constructed as in Theorem 3.16. The only point we have to notice is that
we use the Behrend function on &7 (), not on &/ (u, C'). As in the proof of Theorem 3.16,
the stack .o/ (p) is analytic locally written as a critical locus of some holomorphic function,
hence the same argument in Theorem 3.16 can be applied. Also for an element

u= [[M/c*] LA mﬁ,n] e HYe(u, 0),

where M is a C-scheme with a trivial C*-action, we have

T(u) = </ p*l@ﬂl}() Clryn)-
M

Here v, is the Behrend function on o/ (u) restricted to < ,, which may be different
from that on <7, , .
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The elements,

6% € H(u,C), €, € H"®(u,C),

ra’Ya,n‘ ra’Ya,n‘

can be defined similarly to (77), (78), using similar fi,-semistability on A(u,C') and the
moduli stack of [i,-semistable pairs (101). The local generalized DT invariant is defined
as follows.

Definition 4.9. For (0,7v,n) € I'(n, C), the invariant N, , € Q is defined by

T(€0,7,n) = —NoyC(03,m)-
Remark 4.10. Similarly to Remark 3.19, the invariant N, . does not depend on w.

Remark 4.11. Suppose that n and v are coprime. Then there is an ample Q-divisor w
such that the moduli space of w-stable sheaves F' with x(F) = n and [F] = 7 as a one
cycle is a closed subscheme,

M, (C,v) C M, (X,i.7).

As in Remark 3.20, the invariant N, is given by

Noy = / vardyx, (102)
M"(C"V)

where vy is the Behrend function on M, (X,i.7y), not on M,(C,~).

4.5 Generating series of local invariants

Let DTP*(u, C) be the generating series,

DT (u,C) :=1+ Z DT)%¢"t" € Ac.
n€Z, yEHs(C,Z) >0,
n/wy=p
Here A¢ is defined by
Ao = H Q¢ t".
n€Z,yeHo(C,Z)>0

As an analogy of Theorem 3.21, the following result holds.

Theorem 4.12. We have the following formula in Ac,

DTPar(M, C) — H exp ((_I)V.H—anﬁqnt’y)’%H . (103)
n€Z,7€H2(C,Z)>0,
njwy=p
Proof. The same proof of Theorem 3.21 is applied. O
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As an analogy of Conjecture 4.1 and Conjecture 4.7, we propose the following conjec-
ture.

Conjecture 4.13. For (n,v) € Z ® Hy(C,Z), we have the following formula,

1
Noy= Y. 5 N (104)
k> 1| (n,)

Or equivalently, we have the following formula for any p € Q,

DTpa‘r(M, C) _ H (1 _ (_1)7-ant'y)(7'H)le .
’YEHQ(C,Z)>0,
n/w-y=p

Example 4.14. Let f: X — Y and C C X be as in Frample 2.3, Example 3.3. As in
Example 2.3, suppose that there is a divisor H € |Ox(1)| which intersects with C' at one
point p € C'. Then by Example 3.3, we have

1+ ¢#t, W E 7,
1, otherwise.

DTP (1, C) = {

Hence Conjecture 4.13 holds in this case with Nyjc) = 1 and Nyyc) = 0 form > 2. In
particular for (m,n) € Z%* with m > 1, we have N, 01 # 0 only if m|n, and in this
case, we have

1

m2’

Nomic] = (105)

Remark 4.15. In Ezample 4.14, there may not exist a divisor H C X which intersects
with C' at a one point in general. However such a divisor always exists on an analytic
neighborhood of C C U C X, and we can deduce (105) by the arguments on U.

Remark 4.16. The formula (105) is well-known, c.f. [7, Example 6.2]. However the
argument in Example 4.1/ seems to be the easiest argument to deduce (105).

4.6 From local theory to global theory

Finally in this section, we show that Conjecture 4.13 implies Conjecture 4.1 using parabolic
stable pair invariants.

Proposition 4.17. For given n € Z and € Hy(X,Z), suppose that the formula (104)

holds for any reduced curve C < X and v € Hy(C,Z) with i,y = B. Then N, g satisfies
the formula (91).

Proof. We take d > w- 8 and a divisor H C X as in Lemma 2.9. We set = n/w- 3, and
consider the invariant DTZ’; € Q as in (99). Also we set N, 3 € Q to be

~ 1
N 1= Z ﬁNI,ﬁ/k (106)
k>1,k|(n,B)
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By Remark 4.6, it is enough to show the formula,

———par

DT, , = (~1)*"="(3 - H)N,z. (107)

Let v € Chowg(X) be a one cycle on X and C, C X the reduced curve defined by
C, = Supp(7y). By our choice of H, the curve C, intersects with H transversally. Let
us ¢ Consider the generating series DTP*" (1, C) and its logarithm. We can similarly define

DT 6 Q by the ¢"t"-coefficient of log DT?*(u, C,). Also by replacing 5 by v in (106),
we can similarly define Nn -

Let us consider the assignments v +— DTn 9 N . They determine constructible func-
tions on Chowg(X),

B Chows(X) 3 4 ﬁgﬂ; co
Np.: Chowg(X) 3 v N, 4 €Q

We consider the integrations of these constructible functions over Chows(X). First note
that, by the definition of local parabolic stable pair invariant in Definition 4.8, we have

DT — / DT2dy. (108)
' vEChow(X)

Therefore we have

——~par
/ DT, .dx
vEChow(X) ’

S Si= =D SR |
v€Chowg(X) l

X I>1 (’Yhni)eH?(Cﬁ"Z)@Z:lSiSl i=1
(y1,m1)+ -+ (v,m)=(7,m),
ni=p(w-;)

-1 -1
-y > HDT%

\/{:Y }l leHz IChOWﬂ

121 (Bisni)€Ha (X, 2)DZ,1<i<l,
(B1,m1)++(Br,n)=(B,n),
ni=p(w-Bi)

l
> [P,

21 (Biyni)EH2 (X, 2) BTN <0<, i=1
(B1m1)+-+(Brmi)=(8,n),
ni=p(w-B;)
——par

Here we have used (108) in the third equation.

Next, we consider the integration of the function Nn* Fora € Z>,, we set Chow/(ga) (X) C
Chowg(X) to be

Chowga) (X) :={y € Chowg(X) : div(y,n) = a},
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where div(x) is the divisibility of the vector x. By setting e = div(3,n), we have

/ N, ~dx
1
3 / e X N
a>1 7 7EChow;(X) 451 kia
= S [ N
k>1]~c|e a>1,k|ale 7€Chow '
- / Ny oy (110)
k>1 k|e 7' E€Chows /i
1
= 72 NLs/m (111)
k>1,kle
= N5 (112)

Here (110) follows from the set theoretic bijection for ke,

Chowg/e(X) 3+ — ky' € U Chow/(ga) (X).

a>1,klale

Also (111) follows from (102).
Now we use the assumption for the local theory. It just implies the equality,

———par ~

DT, = (=1)""" (- H)N,,, (113)

for any v € Chowg(X). By (113), (109), (112) and noting v - H = (- H, the equality
(107) follows. O

As a corollary, we have the following.

Corollary 4.18. Suppose that Conjecture /.13 s true for any reduced curve C C X.
Then Congecture 4.1 holds.

Remark 4.19. For v € Chowg(X), let us take the curve C,, = Supp(y) and its normal-
1zation,

c, — C,.

As discussed in [20, Lemma 2.11], the invariant N, , vanishes unless 57 1s a disjoint
union of P'. The idea for the proof is as follows: suppose for simplicity that C is a
smooth curve of positive genus, C., C U C X be a sufficiently small analytic neighborhood
of C, in X, and PicO(U) the group of line bundles on U which restricts to degree zero line
bundles on C.,. The group PiCO(U) acts on the moduli space which defines the invariant
N,,.. We can also find a subgroup S* C Pic’(U) whose induced action on the above moduli
space s free. Hence N, ., = 0 follows by the localization argument.
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Now suppose that 57 is a union of P', C., has at worst nodal singularities, and the
arithmetic genus of C is positive. In this case, the group Pic’(U) contains C*, so we may
try to localize by this action. In this case, there may be C*-fized sheaves supported on C..
However it is not easy to investigate the contribution of €y, at the C*-fized sheaf, and
the above localization arqgument is not obvious in this case.

In [20], instead of the invariant N, ., we apply the C*-localization to the parabolic
stable pair invariant DT}, The moduli space MP*(C,,~) also admits the C*-action,
(while the moduli space of PT or JS stable pairs do not,) and the definition of DT} does
not require the technique on Hall algebras. There is no technical difficulty in applying
the localization on MP*(X,~), and can investigate the contribution of C*-fized parabolic
stable pairs to the invariant DT . It will turn out that these localization argument is
relevant to show Conjecture 4.13 in some cases, and these details will be pursued in [20)].
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