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CNRS/Université de Nice-Sophia Antipolis

Bât Euclide, Les Algorithmes, 2000 route des lucioles, BP 121
06903 Sophia Antipolis cedex, France

September 14, 2011

Abstract

We provide adaptive designs for the sequential allocation of treat-

ments to patients in a clinical trial when the responses are approxi-

mately normally distributed. The skewing of the allocations towards

the better treatments depends on target proportions for the ranked

treatment effects. In addition we combine balance across prognostic

factors with a controllable amount of randomization. The asymptotic

properties of our rule are established. Examples are given of the design

of two- and three-treatment trials and the importance of regulariza-

tion in avoiding extreme allocations is stressed. We use simulation to

illustrate the properties of our procedure which compares favorably

with other rules. Redesign of an adaptive trial shows an appreciable

increase in allocation of patients to the better treatment combined

with a negligible loss in power.

Keywords: asymptotic normality; biased-coin design, CARAB design,
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ethical allocation, limiting allocation proportion, pseudo-null distri-

bution, selection bias, randomization, regularisation

1 Introduction

We provide adaptive designs for the sequential allocation of treatments to
patients in a clinical trial with continuous responses, typically normal. Such
adaptive designs are intended to provide information about treatment com-
parisons whilst keeping low the number of patients receiving inferior treat-
ments. We develop designs that target specified allocation proportions for
the ranked treatments and derive asymptotic properties. For efficient estima-
tion of the treatment effects the allocation is approximately balanced over the
prognostic factors and covariates of the individual patients. In order to avoid
bias there is also a controllable amount of randomization in the allocation.

Early papers on adaptive design include Robbins (1952) and Zelen (1969).
The emphasis thereafter was on binary responses, with continuous responses
virtually excluded. The historical summary at the beginning of Hu and
Zhang (2004) further indicates the extent to which prognostic factors have
been ignored. The more recent references in Zhang and Rosenberger (2007)
support this impression.

Books on randomization and adaptive design in clinical trials include
Rosenberger and Lachin (2002) and Matthews (2006), where the empha-
sis again is on binary responses in the absence of prognostic factors, with
designs generated from urn models. The coverage of Hu and Rosenberger
(2006) is more general, as is that of Chow and Chang (2007). Gallo et al.

(2006) stress the growing importance of adaptive designs. Rosenberger and
Sverdlov (2008) discuss the handling of prognostic factors in clinical trials
and Dumville et al. (2006) survey the use of unequal randomization ratios.

We base our designs on randomized versions of the sequential construction
of optimum designs for linear models, so that we include prognostic factors
in a natural way. Our model is introduced in §2.1 and applied in §2.2 to
non-adaptive designs targeting specified unequal allocations of treatments
whilst providing some covariate balance and randomization. Our adaptive
design criterion applies these target allocations to the ranked treatments.
The criterion is presented in §2.3. In §3 we use results of Lai and Wei
(1982) to prove the convergence of our designs to the targets. We show that
the parameter estimates have an asymptotically normal distribution with
covariance matrix that for least squares. One criterion for the comparison of
designs with randomization, loss, is described in §4. Section 5 stresses the
importance of regularization in the avoidance of very unbalanced designs.
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Since our designs are adaptive, they will vary from trial to trial due to the
random nature of the responses. In §6 we find the average properties of
our method by simulations of a three-treatment design. However, in any
trial, only one design will be used. The clinically important properties of
that individual design are explored in §7. The inferential properties of our
adaptive design procedure are presented in §8 through the use of “pseudo-
null” distributions.

The cost of an adaptive design in which fewer patients receive inferior
treatments is that power will be lost for treatment comparisons. Accordingly,
in §9 we compare our allocation rule with four others in terms of loss, selection
bias, allocation proportion and power for a test of treatment differences. To
illustrate the ethical imperative for the use of adaptive designs, we devote
§10 to redesigning an 88 patient adaptive trial. Use of our design leads,
on average, to a further 18.5 patients receiving the better treatment at a
negligible cost in power. We close in §11 with comments on extension to
other generalized linear models, including binomial responses.

2 An Adaptive Allocation Rule

2.1 Models

There are t treatments, one of which may be the control. The vector of
unknown treatment effects is α and the patient presents with a vector xi

of covariates. We assume that the results of the trial, perhaps after data
transformation, will be analysed using the regression model

E(yi) = fT
i β = hT

i α + zT
i θ, (1)

with additive independent errors of constant variance. Here hi is a vector of
t indicator variables, the one non-zero element indicating which treatment
the patient received. The v× 1 vector zi contains those covariates, including
any powers or interactions of the elements of xi, which will be used to adjust
the responses when estimating α.

The model (1) for n patients in matrix form is

E(Y n) = F nβ = Hnα + Znθ (2)

where Y n is the n × 1 vector of responses for the n patients. Because of
the way we have parameterized the treatment effects, Zn does not include a
constant column. The effects of the variables zi are usually not of interest
in themselves, although we do want the potential to adjust for them in the
analysis of the trial.
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In order to reduce selection bias Atkinson (1982) introduced a randomised
version of the sequential construction of optimum designs for estimation of
linear combinations of the parameters in (2). It is sufficient to consider a
single linear combination

aT β = lT α + wTθ. (3)

If the values of θ are not of interest, the v elements of w are zero. The
elements of l are chosen to give the required frequency of allocation of the
various treatments.

The variance of the estimated combination of coefficients is

var {aT β̂n} = σ2aT (F nT F n)−1a, (4)

where β̂n is the least squares estimate of β after the results of all n patients
have been analysed and σ2 is the variance of the errors, assumed additive in
(2). Minimization of this variance is central to our adaptive design of clinical
trials.

We design to minimise the variance of a single linear combination of the
t + v parameters. There is then a space of nuisance parameters of dimension
q = t + v − 1; the v parameters θ and the space of dimension t − 1 of
linear combinations of the α that are not of interest. We see in §4 that the
properties of the design depend on the value of q.

For example, when there are two treatments and lT = (0.5 − 0.5), the
design minimizing (4) provides balance over the covariates and equal alloca-
tion to the two treatments, so that the variance of the treatment difference
is minimized. In a comparative study the estimate of the mean treatment
effect (α1 + α2)/2 is not of direct interest. To generate response adaptive
designs we require vectors l that lead to unequal allocation.

2.2 Skewed Allocations

To obtain skewed allocation combined with efficient parameter estimation
Atkinson and Biswas (2005) introduced designs for estimation of the linear
combination

lT α = ±p1α1 ∓ . . . ± ptαt, (5)

where the coefficients pj , j = 1, . . . , t are such that 0 < pj < 1 and
∑

pj = 1.
It is straightforward to show that the variance of lT α̂, in the absence of covari-
ates, is minimized when rj, the proportion of patients receiving treatment j,
is pj, as it is when the design is balanced across treatments. We discuss bal-
ance further in §3. The signs in (5) are a generalization to t treatments of the
weights 0.5 and −0.5 that give efficient designs for the treatment difference.
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In our designs the allocation weights pj depend on the ranking of the
treatments. Let the target proportion of patients receiving treatment ranked
j be p∗j . Then we require that

p∗1 ≥ p∗2 ≥ . . . ≥ p∗j ≥ . . . ≥ p∗t , (6)

with, to avoid uniform allocation, at least one inequality. With p∗1 = 1 (and
all other p∗j = 0) we obtain a form of play the winner rule that includes all
past history. Less extreme rules have the p∗j a decreasing function of j. For
two treatments a generalization of the rule of Efron (1971) would be to have
a target allocation of 2/3 for the better treatment.

Let the ranking of treatment j be R(j). Then in (5) we take

pj = p∗R(j). (7)

Of course, in practice the ranking of the treatments is not known but is that
of the estimated treatment effects α̂j , so that in (7) pj = p∗

R̂n
j

, where R̂n
j

is the estimated rank of treatment j after n patients. The difference from
Efron’s rule is that we rank the treatments by the values of the α̂ whereas in
his rule, which does not include covariates, ranking is by inverse frequency
of allocation to the treatments.

2.3 Adaptive Design: Rule G

In the theory of optimum experimental design, designs that minimize the
variance of linear combinations of parameter estimates are called c-optimum,
a special case of DA-optimality (see, for example, Atkinson, Donev, and
Tobias, 2007, §10.2). In sequential trials the extended design matrix F n

in (2) is known. Patient n + 1 arrives with a vector of covariates xn+1, a
function of which forms the last row of Zn+1. In the sequential construction
of c-optimum designs minimizing (4) we allocate the treatment for which

dc(j, n, zn+1) = {fT
n+1,j(F

nTF n)−1a}2 (j = 1, . . . , t) (8)

is a maximum. The quantity dc(.) is related to the decrease in the variance
of the estimated combination aT α when treatment j is allocated to patient
n + 1 with covariate vector xn+1.

There is no randomness in such an allocation rule. Atkinson and Biswas
(2005) use the utility given by Ball, Smith, and Verdinelli (1993) to extend
the allocation rules of Atkinson (2002) to the skewed allocation of (5). These
designs introduce a balance between the variance of parameter estimation and
randomness that is controlled by a single parameter γ. This rule can be gen-
eralized, using methods similar to those in §3 of Atkinson and Biswas (2005),
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to maximization of the gain Gj resulting from the allocation of treatment j.
We take Gj = p∗

R̂nj
. The resulting generalised biased-coin rule G combines

this randomness with c-optimality; the probability of allocation of treatment
j for rule G is

π(j|xn+1) =
{1 + dc(j, n, zn+1)}1/γp∗

R̂n(j)∑t
s=1{1 + dc(s, n, zn+1)}1/γp∗

R̂n(s)

, (9)

for γ > 0. In §3 we show, under mild conditions, that for all j the allocation
proportion for treatment j converge to the target p∗j . In an extension of
the usage of Chapter 9 of Hu and Rosenberger (2006), this rule provides
covariate-adjusted and balanced response-adaptive (CARAB) randomization
procedures.

It is important that the variances dc(j, n, zn+1) are not normalized by n.
Consequently they tend to zero as n → ∞ and the effect of the parameter
γ vanishes, the rule becoming random allocation with probabilities p∗j . For
small n the rule forces balance over the covariates, the effect being larger
for small γ. Figure 1 shows an example for four values of γ from 0.01 to 1.
Atkinson (2002) gives numerous simulation results for the effect of different
values of γ for non-adaptive designs.

It is a characteristic of this scheme that the probability of allocating
the treatments depends on p∗ and on the ordering of the αj , but not on
the differences between them. Suppose there are two treatments. Then,
if α1 > α2, treatment 1 will eventually be allocated in a proportion p∗1 of
the trials regardless of the value of ∆ = α1 − α2. Of course, if ∆ is small
relative to the measurement error, in many of the initial trials, α̂1 < α̂2 and
it will seem that treatment 2 is better. Then some individual allocations
will be skewed in favour of treatment 2 with target p∗1, that is pR̂n(2). When
â1 > α̂2, treatment 1 will be preferred. If the trial is terminated before a clear
difference between the treatments has been established, each treatment may
have been be allocated to around half the patients. Under such conditions a
predetermined allocation of p∗1 far from 0.5 does little ethical harm.

The purpose of Rule G is to ensure a specified ethical gain without going
through possible extreme designs even if, for a two treatment design, α1 ≫
α2. By using ranks, we ensure both a prefixed allocation which is ethically
skewed and sufficient allocation to each treatment to ensure that the design
is not too inefficient for estimation of the treatment difference.
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3 Asymptotic Properties

Inference for effects in adaptive designs requires care. See, for example, the
discussion of the ECMO trial in Begg (1990). In our model (1) the errors are
independent and we use least squares to estimate the parameters. However,
the allocation depends on the earlier responses and so the observations are not
independent. We use results of Lai and Wei (1982) on stochastic regression
models to give an asymptotic justification for least squares and to prove the
convergence of the allocation probabilities to the targets π∗

j .
The choice of π(j|xn+1) in (9) guarantees that

π(j|xn+1) > c for all n, j

with c some positive constant. Therefore, from Borel-Cantelli arguments, the
number nn,j of individuals having received treatment j after n allocations sat-
isfies nn,j → ∞ for all j. To obtain limiting results for the constructed designs
and estimators, we need to make some assumptions on the covariates zi in
(1). We suppose that they are distributed among trials independently of the
treatments and that (1/n)

∑n
i=1 zi

a.s.→ µ, (1/n)
∑n

i=1 ziz
T
i

a.s.→ MZ , with the
asymptotic variance-covariance matrix MZ −µµT having full rank. Now, ar-
ranging the covariates according to treatments and denoting by zij the vector
of covariates for the i-th trial with treatment j and µj = (1/nj,n)

∑nj,n

i=1 zij ,
we can write

1

n
F nTF n =

(
Dn DnHn

HnTDn Mn
Z

)
,

where Dn = diag{nj,n/n, j = 1, . . . , t}, Hn = (µ1, . . . , µt)
T , Mn

Z = (1/n)
∑n

i=1 ziz
T
i

and Mn
Z

a.s.→ MZ , Hn a.s.→ uµT when n → ∞, with u the t-dimensional vector
of ones. Therefore, det[(1/n)F nTF n] = det(Dn) det(Mn

Z − HnT DnHn) with

Mn
Z − HnT DnHn =

1

n

n∑

j=1

nj,n∑

i=1

(zij − µj)(zij − µj)
T a.s.→ MZ − µµT , n → ∞ .

Since MZ −µµT has full rank, the sufficient conditions of Lai and Wei (1982,
Corollary 3) for the strong consistency of β̂n are satisfied: with λmin and λmax

denoting minimum and maximum eigenvalues,

{
λmin(F

nT F n)
a.s.→ ∞

[log λmax(F
nTF n)]1+ρ = o[λmin(F

nT F n)] , a.s.

for some ρ > 0. In particular, α̂n a.s.→ α, n → ∞ and, if αj < αj+1 for all
j = 1, . . . , t − 1, then there exists n0 such that, for all n > n0, we have
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R̂n
(j) = R(j). The asymptotic allocation rule thus coincides with that using

the true ordering or treatments and nj,n/n → p∗j for all j. Notice, moreover,
that the conditions Lai and Wei (1982, Th. 3) for asymptotic normality of
β̂n are satisfied, so that

(F nTF n)1/2(β̂n − β)
d→ N (0, σ2I) ,

where
d→ denotes convergence in distribution and I is the (t+v)-dimensional

identity matrix.
The asymptotics of our model are simpler to analyse than those for the

large class of allocation rules analysed by Zhang et al. (2007) which includes
generalized linear models. Because our rule is asymptomatically independent
of the values of the zi the information matrix is that for ordinary least squares;
equation (3.4) of Zhang et al. (2007) rather than equation(3.3). In §8 we see
how good this information matrix is for n as small as 50.

4 Loss and the Assessment of Designs

Our adaptive designs favour the best treatment. At the same time they
provide estimates of the treatment parameters and some randomness in allo-
cation. To compare designs we need small-sample measures of performance.

Let the treatments be correctly ordered. Then the linear combination of
the parameters corresponding to the proportions p∗j is aT

∗
β. From (4) the

variance of the estimated linear combination has a minimum value of

var {aT
∗
β̂∗} = σ2/n, (10)

where β̂∗ is the estimate from the optimum design with treatment proportions
p∗j .

For other designs we find the variance of the same linear combination from
(4). Comparisons can use either the ratio of variances, that is the efficiency
En, or the loss (Burman, 1996), calculated by Atkinson (2002) for eleven
rules for unskewed treatment allocation. The efficiency of any design is then

En = 1/
{
naT

∗
(F nT F n)−1a∗

}
. (11)

The loss Ln is defined by writing the variance (4) as

var {aT
∗
β̂} =

σ2

n − Ln

, (12)

so that
Ln = n(1 − En). (13)
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With a random element in treatment allocation, the loss Ln is a random
variable, the value of which depends upon the particular trial and pattern of
covariates. Let E(Ln) = Ln. For random allocation of two treatments in the
unskewed case ignoring balance, Ln → q, the number of nuisance parameters,
as n increases, a result that goes back at least to Cox (1957). Designs that
force more balance have lower values of Ln. The loss can be interpreted
as the number of patients on whom information is lost due to the lack of
optimality of the design.

To monitor the effectiveness of the adaptive nature of the designs we
supplement study of Ln by also looking at the evolution with n of rj,n, the
proportion of patients receiving treatment j.

5 Regularized Designs

We begin the study of the properties of our allocation rule with a simulation
study of a three-treatment design. We only report the results of employing
regularized designs, in which we set a lower bound, depending on n, on
the minimum number of allocations of each treatment. The purpose is to
avoid extreme designs in which an appreciable number of patients receive
poor treatments. In our analysis, such designs would have high losses. An
example is the two-treatment Michigan ECMO trial in which only one out
of 12 children was given the standard therapy (Bartlett et al., 1985).

Regularization ensures that each treatment is allocated throughout the
trial, although with a decreasing frequency if the treatments differ. For three-
treatment trials we allocate three of the first nine patients to each treatment.
Thereafter, if the number allocated to either treatment is below

√
n, the

under-represented treatment is allocated when n is an integer squared. For
an 800 trial design the first regularization could occur when n = 16, when
one treatment had only been allocated three times. The last regularization
would be when n = 784(= 282) and one treatment had been allocated 27
times. The regularization ensures that the treatment estimates and their
linear combinations such as (5) at least have root n consistency (Neyman,
1959). There is nothing special about

√
n: we only require a bounding

sequence that avoids very extreme allocations.

6 Three Treatments

This section gives the results of a small part of our numerical assessment of
the properties of Rule G (9) for three treatments. To use this rule we need
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to specify three values of p∗j . If interest is solely in the best treatment, both
p∗2 and p∗3 could be put equal to zero. We however assume decreasing interest
in worse treatments.

To start the numerical investigation of designs we take the treatment ef-
fects as α = (6.0, 2.65, 2.0)T . It is therefore relatively easy to identify the
best treatment, but the performance of treatments 2 and 3 is not so easily
ranked. The responses are normally distributed with error standard deviation
σ = 1.0; there are three covariates, independently normally distributed with
zero mean and unit variance; the dimension of the space of nuisance parame-
ters q is therefore 5. We take p∗ = (0.8, 0.15, 0.05)T . For numerical stability
in the sequential calculation of designs we take pR(1) = p∗1, pR(2) = −p∗2 and
pR(3) = p∗3; the negative sign does not affect the limiting proportions of treat-
ments in the design.
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Figure 1: Rule G: regularized designs for three treatments. Left-hand panel:
average losses L̄n for four values of γ: reading downwards 1, 0.1, 0.03 and
0.01. Right-hand panel: average proportion r̄j,n receiving each treatment
when γ = 0.01. Averages of 10,000 simulations, α = (6.0, 2.65, 2.0)T , p∗

= (0.8, 0.15, 0.05)T , σ = 1.0, q = 5. The zig-zag effects are caused by
regularization.

We only consider regularized designs. The left-hand panel of Figure 1
gives the average losses L̄n from 10,000 simulations for sequential allocation
using rule G for up to 800 patients for four values of γ: 1, 0.1, 0.03 and 0.01.

For known ordering of the treatments and large n the rule becomes ran-
dom allocation with probabilities p∗j . The asymptotic loss for this non-
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adaptive design is L∞ = q, here 5. Small values of γ initially give rules
with greater emphasis on balance and so lower loss, although the effect of
γ decreases as n grows. The left-hand panel of Figure 1 shows some of this
structure, although the adaptivity of the design increases the value of loss
since, initially, identification of the order of the treatments is uncertain. For
all values of γ the loss for rule G decreases after its maximum, around n = 150
because, once the best treatment has been identified this is allocated with
probability p∗1 = 0.8; this allocation dominates in the calculation of loss.

The right-hand panel of the figure, for n up to 200 when γ = 0.01, shows
the design approaching the target value of 0.8 (r̄1,100 = 0.735). The pro-
portions for treatment 2, and particularly treatment 3, approach the target
values more slowly; r̄3,100 = 0.110, although the target os 0.05. Particularly
for treatment 3, the effect of any early over allocation due to misranking of
the treatments is slow to die out when only 5% of the patients are expected
to have this treatment.

The fine structure of zig-zags in the figures is caused by the operation
of our regularization rule. The jumps in the lowest curve in the right-hand
panel, that for r̄3,n, occur because of a forced allocation to treatment three in
some designs to ensure that the allocation is at least

√
n for n = 16, 25, ... .

The initial values for r̄2,n also show evidence of regularization. When the
allocations n3,n or n2,n are increased by the regularization rule, the value of
n1,n must decrease. This effect is also evident in the figure.

The left-hand panel of the figure also shows the effect of regularization,
but on loss. This increases slightly at each regularization as the allocation
proportions are, on average, forced slightly away from p∗.

A final point about the overall effect of regularization is that, by increasing
the allocations to treatments 2 and 3, the rate of convergence of the r̄j,n to
p∗ is reduced. Above, for the regularized design we had r̄100 = 0.735, 0.155
and 0.110. For an unregularized design the numbers were 0.788, 0.146 and
0.066. The benefit from this slower convergence is the avoidance of extremely
unbalanced designs.

7 Properties of Individual Designs

So far we have only considered the average properties of designs. But we
require to use design methods which are not only good on average, but also
have good properties for the one design that will actually be used in a clinical
trial. We therefore look briefly at the results of 1,000 simulations of individual
regularized trials that form part of the averages in Figure 1.

Figure 2 gives boxplots showing the distribution of loss and allocation
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Figure 2: Three treatments: 1,000 individual regularized adaptive designs
for rule G when q = 5, σ = 1 and γ = 0.03. Left-hand panel: boxplots
of loss Ln. Right-hand panel: proportion r3 of patients receiving the third
treatment

proportion for eight values of n from 100 to 800. The losses in the left-hand
panel of the figure show a steady central pattern that gradually decreases, as
would be expected from the average losses in the left-hand panel of Figure 1,
but with a few trials giving high losses. The right-hand panel gives the
proportional allocations to treatment three. The effect of regularization is
clear by the absence of low allocations for small values of n. For these
regularized designs the minimum proportion when n = 100 is 0.1, which
does not fall to the target value of 0.05 until n = 400. The right-hand panel
also shows that, for several trials, treatment 3 around n = 400 has a value of
r3 of at least 0.10; treatments 2 and 3 have been misordered in some trials
over an appreciable range of n, with a consequent inflation of loss.

The maximum value of loss in the left-hand panel of Figure 2 is 71.4 at
n = 500. A similar plot for the unregularized design has a value of 140.5 at
n = 400. For both rules there are a few trials that give high values, but, for
the regularized design, the distribution is much less dispersed. For example,
for n = 100, there are no losses above 20 for the regularized design. For the
unregularized design there are 22 such values out of 1,000 in our simulations,
with a maximum of 39.3.

The effect of regularization is to increase the proportion of patients re-
ceiving treatment 3 when n is small. This is achieved at a slight increase in
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average loss. However, this increase depends on the way in which the target
proportions p∗j have been chosen. If we take p∗1 = 0.8, but with p∗2 = p∗3 = 0.1
we will have a sophisticated play the winner rule in which the loss will be
unaffected if treatment 3 is preferred to treatment 2.

8 Inference
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Figure 3: Rule G, pseudo-null distribution of the t-test for treatment equality:
1,000 individual regularized adaptive designs with two treatments when q =
5, γ = 0.03, µ = 0.65 and σ = 2 (p∗1 = 0, 75). Left-hand panel: boxplots of
empirical distribution. Right-hand panel: normal QQ-plot when n = 50

The asymptotic results of §3 show that, for large n, the parmammteres
β̂n have a normal distribution with covariance matrix σ2(F nTF n)−1. We now
empirically investigate how rapidly this convergence occurs by simulating the
distribution of the t statistic for equality of means in a two-treatment trial
for a series of values of n.

Since we are investigating adaptive designs, we require the design to be
skewing the allocation and so the null distribution of the statistic is not of
interest. Instead we investigate the “pseudo-null” distribution by subtracting
off the known value of α1 − α2. We take p∗1 = 0.75, so that at balance 3n/4
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patients will receive treatment 1. With µ = 0.65 and σ = 2,

E(tµ) ≃
α1 − α2

σ
√

4/n + 4/(3n)
= 0.141

√
n. (14)

When n = 200, E(tµ) = 1.99.
Figure 3 shows boxplots of 1,000 simulated values of the pseudo-null dis-

tribution of t, that is the sampling version of (14) with numerator (α̂1 −
α̂2)− (α1 −α2). We used rule G with γ = 0.3 as n goes from 25 to 200. Even
with 25 patients, the statistics in the left-hand panel are centred close to
zero with a symmetrical distribution. The normal QQ plot in the right-hand
panel confirms the impression that the distribution is close to normal when
n = 50. In particular, observed values between 2 and −2 occur with near
to correct frequency, although the lower tail of the distribution beyond this
range is slightly long. As n increases the boxplots show that the lower tail
shrinks and that the distribution approaches normality with unit variance.
The adaptive nature of the design seems to have a negligible effect on infer-
ence, even for small n, and standard normal, or t, tests can be used without
modification in line with the asymptotic results of §3.

9 Comparisons

This section compares our new allocation rule with four others in the litera-
ture. In two rules (F and B) the specified allocation targets of our rule are
replaced by targets calculated from a link function operating on treatment
differences. The five rules, for two treatments, are:

1. Rule G given by (9) with γ = 0.03

2. “Doubly-adaptive” Rule H. Hu and Zhang (2004) investigate the
properties of a doubly-adaptive allocation rule that ignores covariates. With
r1,n the proportion of allocations to treatment 1 let

b = r1,n and c = p∗
R̂(1)

.

Then the probability of allocating treatment 1 is

πH(1, n + 1) =
c(c/b)ν

c(c/b)ν + (1 − c){(1 − c)/(1 − b)}ν
. (15)

When the treatments are correctly ordered and r1,n equals the target value
p∗R(1) the allocation probability πH(1, n + 1) = p∗R(1). In (15) ν is a non-
negative constant which determines the strength of forcing balance. Our
comparisons are not sensitive to its value and we take ν = 1.
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In the applications presented by Hu and Zhang (2004) c is also estimated
sequentially from the data, for example a function of the standard deviations
of samples from two normal populations, hence the “double” adaptivity.

3. Random Allocation Rule R. Treatment 1 is allocated with proba-
bility p∗

R̂(1)
.

4. Link-function Rule F. In this rule the target probabilities depend
on the estimated difference in treatment means ∆̂ = α̂1 − α̂2. Atkinson and
Biswas (2005) use a link function to relate ∆̂ to the pj. As do Bandyopadhyay

and Biswas (2001) they take p1 = Φ(∆̂/T ), where Φ(.) is the standard normal
c.d.f. The value of p1 may be greater or less than 0.5, with the parameter T
controlling the degree of skewing of the allocation. Randomness and covariate
adaptation are achieved by taking the probabilities as in (9) but with the p∗

R̂(j)

replaced by p1 and 1 − p1.

5. Link-function Rule B. The probability p1 is found, as in Rule F,
using the link function of Bandyopadhyay and Biswas (2001). Treatment 1
is then allocated with probability p1. There is no attempt to balance over
covariates.

Some general properties of these rules are clear. Rules B, H and R do not
respond to the covariate pattern and so do not correct any over-allocation of
one treatment to a particular set of covariates. Rules B and F increasingly
skew the allocation as the treatment difference ∆ increases; the remaining
rules all target an allocation determined by the p∗j . Only Rule G both re-
sponds to the covariate pattern and targets a given probability.

We compare the five rules for two values of ∆ = α1 − α2, 0.5 and 1. For
those rules that target a fixed proportion - G, H and R - we take p∗1 = 0.8.
For the link-based rules F and B we take T such that Φ(∆/T ) = 0.8 when
∆ = 0.5. With this value of T these rules target p1 = 0.954 when ∆ =
1. In all comparisons we adjust the treatment estimates for the covariate
pattern. In general the best parameter estimates and so the highest power
come from equal allocation to the two treatments. As Table 1 in §10 shows
for a redesigned trial, there is a trade-off between power and the proportion
of allocations to the better treatment.

The left-hand panel of Figure 4 shows the average losses for 10,000 sim-
ulations of a trial with up to 200 patients. Rules H and G have the lowest
values of L̄200, 5.87 and 4.77. The value for Rule G is appreciably less than
that in Figure 1 as there the average allocation probabilities have greater
variability due to treatments 2 and 3 sometimes being incorrectly ranked
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Figure 4: Average loss L̄n, five rules: q = 5, 10,000 simulations. Left-hand
panel: ∆ = 0.5. Right-hand panel: ∆ = 1.0.

and allocated with the wrong probabilities. As n increases the losses for
Rules G and R in Figure 4 both tend to five. The losses for the link-based
rules B and F are large and increasing since the link estimate of p1 can be
greater than 0.8, although the treatments are correctly ranked. The effect of
regularization is also evident for these two rules as the value of n1 may be
too close to n. All simulations start with ten observations equally allocated
between the two treatments.

The right-hand panel of Figure 4 shows the losses when ∆ = 1.0. With
the clearer difference between the treatments Rule G has a lower loss than
before, which is gradually increasing as the allocation becomes more random
as n increases. The losses for Rules H and R are similar, with that for Rule
R close to five: L̄200 = 5.23. With ∆ = 1.0, the target allocation for the link-
based rules is 0.9538 and the values of loss for these rules were calculated
using this value. With such strong evidence in favour of the first treatment,
the rules allocate close to the target proportion and the losses are around 8
and 10. The effect of regularization is plainly visible.

The purpose of including randomization in these rules is to prevent var-
ious kinds of bias. Selection bias occurs when the clinician is able correctly
to guess the next treatment to be allocated. For two treatments it can be
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Figure 5: Smoothed bias B̄n, five rules: q = 5, 10,000 simulations. Left-hand
panel: ∆ = 0.5. Right-hand panel: ∆ = 1.0.

estimated from nsim simulations by

Bn = (number of correct guesses of allocation to patient n

−number of incorrect guesses)/nsim. (16)

In calculating the bias we assume that the clinician has access to the allo-
cation probabilities πV (j|xn+1), for any rule V, and chooses the treatment
with the highest allocation probability. For the non-randomized sequential
construction of optimum designs treatment allocation is deterministic once
xn+1 is known so the value of Bn is one. For random allocation with two
treatments p∗1 = 0.5 and the value is zero. For skewed random allocation the
value for Rule R when guessing the treatment more likely to be allocated is
2p∗1 − 1. With p∗1 = 0.8, this value is 0.6.

Figure 5 shows the values of B̄n for the five rules. For ∆ = 0.5 all rules
tend to a value of 0.6 as n increases. Rule R has this value for all n, as
does B almost from the beginning. The rule with the highest initial bias is
G. Rule F has almost the same value. For both rules, which have the same
value of γ, allocation is virtually deterministic in the early stages of the trial.
When ∆ = 1.0 (the right-hand panel) rules F and B have an asymptote of
0.9076 - with extreme skewing it is possible to guess with virtual certainty
which treatment will be allocated. The comparison of the other three rules
is similar to that in the left-hand panel. In both panels the ordering in terms
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of bias for Rules G, H and R is the reverse of that for loss. The same is
true when comparing the two. link-function rules B and F. The same reverse
ordering holds for the non-adaptive rules compared in Atkinson (2002).
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Figure 6: Smoothed allocation proportion r̄1,n, five rules: q = 5, 10,000
simulations. Left-hand panel: ∆ = 0.5. Right-hand panel: ∆ = 1.0.

The average proportion of patients allocated treatment 1, r̄1,n, is plotted
in Figure 6. All proportions for ∆ = 0.5 in the left-hand panel converge to
0.8 from below, that for Rule H converging most rapidly; as (15) shows, this
rule increases the probability of allocating treatment 1 when r̄1,n < p∗1. Rule
R converges most slowly with Rule G in between. The same conclusion is
true for Rules H, G and R for ∆ = 1.0 shown in the right-hand panel of
the figure. Now, however, the proportions for Rules F and B are targeting
0.9538. The effect of regularization on the proportions for these two rules is
visible in the figure.

To provide an indication of the variability of the allocation proportions
from trial to trial, we give in Figure 7 the standard deviations of the values
of r1,n, the averages of which are in Figure 6. The results for ∆ = 0.5 are in
the left-hand panel. Rules R, G and H have similar standard deviations at
n = 200, although that for H is highest around n = 40. Rules B and F are
appreciably more variable, as would be expected from Figure 4. The situation
in the right-hand panel, for the larger value of ∆, is similar. Rules R, G and
H are again in decreasing order of standard deviation when n = 200. Rule B
again shows more variability than Rule F, but the values are much reduced
with the increase in ∆.
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Figure 7: Smoothed standard deviation of allocation proportion, five rules:
q = 5, 10,000 simulations. Left-hand panel: ∆ = 0.5. Right-hand panel:
∆ = 1.0.

Many comparisons of allocation rules focus on power. The comparisons in
this section serve to stress the importance of considering in addition several
other properties of any rule. In Figure 8 we show the results of our power
calculations as the proportion of t-statistics significant at the 1% level. In
the left-hand panel the ordering of the non-link rules is R, G and H as it is
for ∆ = 1, with Rule R having higher power and, from Figure 6 the average
allocation closest to 0.5. Rules F and B have good power when ∆ = 0.5, but
perform less well when ∆ = 1.0. The power of Rule G could be improved up
to that of Rule R by using larger values of γ, with a consequent increase in
loss and decrease in the proportion of patients allocated the better treatment.

10 Redesigning a Trial: Fluoxetine Hydrochlo-

ride

We close with an example in which we redesign an existing trial, using part of
the data from Tamura et al. (1994) on the treatment of depressive patients,
for which there is a speedily available surrogate response. There are two
treatments, fluoxetine and control, and two covariates. One covariate, sleep
disfunction before the trial, is binary. The second gives the initial values
of HAMD17, a measure of depression, for each patient. The response is the
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Figure 8: Power: smoothed proportion of t-statistics significant at the 1%
level, five rules: q = 5, 10,000 simulations. Left-hand panel: ∆ = 0.5.
Right-hand panel: ∆ = 1.0.

negative of the change in HAMD17. Since HAMD17 is measured on a 53-point
scale, we treat it as a continuous variable. Large values are desired. Because
of the surrogate response we can assume, as did Tamura et al. (1994), that
all responses up to that of patient n are available when the allocation is made
for patient n + 1.

We code the binary covariate with values −1 and 1, although Tamura
et al. (1994) used 0 and 1. Analysis of the data shows that the probability
of each value is 0.5. We subtract the mean value of 21.7045 from the initial
value of HAMD17, which we take as normally distributed with a standard
deviation of 3.514. Surprisingly, the two covariates are uncorrelated, so we
model them as independent random variables. In addition, neither covariate
has a significant effect on the response.

There are 88 observations since one observation in the original data set
does not have a response. After adjustment for the covariates the residual
mean square estimate of the standard deviation is s = 6.97 and the esti-
mated treatment difference α̂1 − α̂2 = 3.795; the treatment does seem to
have decreased depression, since large values of the surrogate are good. The
t value for this effect is 2.55, with a nominal significance level of 1.6% when
any effect of the sequential design is ignored.

Tamura et al. (1994) used a form of randomized play the winner rule
which resulted in 43 allocations of treatment 2, the control. The adaptive
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Table 1: Data on fluoxetine hydrochloride from Tamura et al. (1994). Av-
erage proportion of allocations to treatment 1 (fluoxetine) and average t-
statistic from 1,000 simulations of 88 patient clinical trial.

Target Average Average
p∗2 proportion r̄2 statistic t̄

0.5 0.500 2.563
0.55 0.546 2.549
0.6 0.592 2.512
0.65 0.637 2.450
0.7 0.681 2.371
0.75 0.722 2.266
0.8 0.760 2.140
0.85 0.796 1.970
0.9 0.820 1.810
0.95 0.833 1.712

scheme should preferentially allocate treatment 1. We take p∗1 over the range
0.5 (unskewed allocation) to 0.95. Interest then is in the linear combination
of parameters given by a = (p∗1 1 − p∗1 0 0)T .

We simulated 1,000 trials with 88 patients for p∗1 in the range 0.5 to 0.95.
The results are in Table 1. They show that as the target increases from 0.5, so
does the average proportion allocated to treatment 1, although more slowly
than the target. We also give the average values of the simulated t-statistic.
These enable us to quantify the relationship between increasingly ethical
allocation from skewing and the decrease in power. The average statistic is
still just greater than 1.96 when p∗1 = 0.85.

To check the distribution of the statistic we took p∗1 = 0.75. The QQ-plot
of the 1,000 values of the statistic, which we do not display, is similar to that
in the right-hand panel of Figure 3, but with less curvature since n = 88
rather than 50. Standard inferences can be used to analyse this trial.

For p∗1 = 0.75 the average values of the statistic is 2.27, compared with
the value of 2.55 of Tamura et al. (1994). This slight decrease in power is
in line with the results of Pocock (1983) on the effects of imbalance. Our
rule however allocates an average of 63.5 patients to treatment 1, that is 18.5
more than received the better treatment in the original trial.
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11 Discussion

Our rule G requires only that the treatments be ordered by desirability.
Many factors, such as efficacy, cost, toxicity and long-term side-effects could
be included in such a ranking. In exploring the numerical properties of
our designs we have looked at only two or three treatments and five nuisance
parameters. However, the results of Atkinson (1999) for non-adaptive designs
show that results for q = 10 are similar in structure to those for q = 5.
Related calculations for rule G, not reported here, suggest the same is true
for this adaptive rule. Atkinson (2002) also shows that the effect of non-
normal covariates on the aggregate properties of biased-coin designs is slight.

Although the ordering of the treatments does not depend on the assump-
tion of normality, the variance d(·) used in calculating the probabilities in (8)
does assume that the linear model (2) is appropriate for analysis with errors
of constant variance. Our analysis therefore also extends to data which can
be made approximately normal by transformation (Box and Cox, 1964; Yeo
and Johnson, 2000). For generalized linear models the main application has
been binomial responses (Tymofyeyev, Rosenberger, and Hu, 2007). To use
the methods of optimum design the expressions for variances need extending
to include the iterative weights used in parameter estimation. Exceptions
are where the treatment effects are sufficiently small that the effect on the
design of the iterative weights can be ignored (Cox, 1988) and gamma models
with the log link. In neither case is a modification required. If responses are
delayed, information on those responses that are available is used to order
the treatments, with the calculation of dc(·) using information on all n + 1
vectors of prognostic factors.

Related forms of rule are possible. For example, we could extend Rule
G by introducing a tolerance region into the calculation of the p∗j . If the
α̂j suggest that the differences in some αj are not technically significant, we
could take those values of p∗j equal, so ensuring equal target allocation prob-

abilities. Decreasing the size of this tolerance region as n−1/2 would relate
the targets p∗j to statistical significance.
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