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Abstract

We study Halphen’s confluent systems corresponding to Whittaker,
Bessel, Weber and Airy functions. We show that Halphen’s confluent
systems are represented by Monodromy evolving deformation found by
Chakravarty and Ablowitz.

1 Introduction

In this note, we represent quadratic differential systems of the Halphen type as
monodromy evolving deformations (MED). We explain quadratic systems of the
Halphen type at first. In 1881, G. Halphen [10] [14] found a quadratic system
of differential equations

X ′ + Y ′ = 2XY,

Y ′ + Z ′ = 2Y Z,

Z ′ +X ′ = 2ZX.

This equation can be solved by theta constants:

X = 2
d

dτ
log θ2(0, τ), Y = 2

d

dτ
log θ3(0, τ), Z = 2

d

dτ
log θ4(0, τ).

In these thirty years, (1) becomes popular in many mathematical fields. It is a
reduction from the Bianchi IX cosmological models or the self-dual Yang-Mills
equation [5] [6] and gives a special self-dual Einstein metric [9] [3]. If we set
y = 2(X + Y + Z), y satisfies Chazy’s equation

y′′′ = 2yy′′ − 3(y′)2. (1)
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Chazy’s equation appeared in his classification of the third order Painlevé type
equation [7], but (1) does not have the Painlevé property because generic solu-
tions has a natural boundary.

In the same year Halphen found another system, called Halphen’s second
equation [11]

x′
1 = x2

1 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2,

x′
2 = x2

2 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2, (2)

x′
3 = x2

3 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2,

which is less familiar. Halphen’s second equation (2) appears in the study on
hypercomplex structure [12]. Halphen’s second equation is also studies in [2] as
the DH-IX system (the Darboux-Halphen system of ninth order)

dM

dt
= t(adjM) + tMM − (TrM)M,

for a 3× 3 matrix M = M(t).
In case a = b = c = − 1

8 , (2) is equivalent to (1) by the transform 2X =
x2 + x3, 2Y = x3 + x1, 2Z = x1 + x2. Since solutions of (2) may have a natural
boundary or moving branch points, (2) does not have the Painlevé property
neither.

We may consider confluent case of the Halphen’s equation [15]. The system

x′
1 = x2

1 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1) +
1

4
(x3 − x1)

2,

x′
2 = x2

2 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1) +
1

4
(x3 − x1)

2,(3)

x′
3 = x2

3 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1)−
3

4
(x3 − x1)

2,

is solved by the confluent hypergeometric functionsWk,m(z). We can construct a
system of Halphen’s type from any second order linear equation [15]. The Bessel
type was studied also in [1] and the Airy type was studied in [8] independently.
These confluent systems also do not have the Painlevé property in general.

In order to study such non-Painlevé type equations, we may use mon-
odromy evolving deformations, which do not preserve monodromy data. In
1996, Chakravarty and Ablowitz [4] showed that a fifth-order equation

ω′
1 = ω2ω3 − ω1(ω2 + ω3) + ϕ2,

ω′
2 = ω3ω1 − ω2(ω3 + ω1) + θ2,

ω′
3 = ω1ω2 − ω3(ω1 + ω2)− ϕθ, (4)

ϕ′ = ω1(θ − ϕ)− ω3(θ + ϕ),

θ′ = −ω2(θ − ϕ)− ω3(θ + ϕ),
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can be represented by MED. The above system, called the Darboux-Halphen
fifth equation (DH-V), arises in complex Bianchi IX cosmological models. The
DH-V has two first integrals and is reduced to the third order equation, which
is a special case of Halphen’s second equation.

The author has generalized the result of [4] and has shown that all of
Halphen’s second equation can be represented by MED. In this paper, we show
that Halphen’s confluent systems are also represented by MED.

This work was supported by the Mitsubishi foundation and JSPS Grant-in-
Aid for Scientific Research (C) 21540217. The author also gives thanks to the
Newton Institute for their hospitality on September 2011.

2 Quadratic systems and non-associative alge-
bras

We take a homogeneous quadratic system

dXi

dt
=

n∑
j,k=1

aijkXjXk, (5)

where i = 1, 2, ..., n and ajk = akj . For (5), we define a commutative and
non-associative algebra generated by x1, x2, ..., xn with a multiplication table

xj · xk =
n∑

i=1

aijkxi.

Theorem 1 [16] We take a quadratic system with rank three. If and only if the
associated algebra has a unit and its automorphism group is finite, the quadratic
system is corresponding to one of hypergeometric type HG(a, b, c), Whittaker
type W (k,m), Bessel type B(ν), Hermite-Weber type HW (n) or Airy type Ai.

If the associated algebra has a unit and its automorphism group is infinite,
the algebra is isomorphic to J (Jordan algebra), X(t), Y1, Y2, Y3 or Y4 defined
below. For these cases the corresponding quadratic systems can be solved by
elementary functions.

HG(0, 0, 0), X(0), Y1 and Y2 are associative. J and Y3 are not associative
but power-associative. X(t), Y1, Y2, Y3 and Y4 has a non-trivial ideal.

We list up three-dimensional commutative algebras with a unit e. We assume
that the algebra is Ce + Cf + Cg as a C-vector space. We may take any base
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field, whose characteristic is not two.

HG(a, b, c) : e = x+ y + z and

x · x = x+ (b+ c)(x+ y + z), x · y = −c(x+ y + z),

y · y = y + (c+ a)(x+ y + z), y · z = −a(x+ y + z),

z · z = z + (a+ b)(x+ y + z), z · x = −b(x+ y + z).

W (k,m) : g · g = m2e, f · f = e, f · g = −f

2
− ke

B(ν) : g · g =
ν2

4
e, f · f = 0, f · g = −f

2
+ e

HW (n) : g · g =
n2

4
e, f · f = 0, f · g = −f

2
+ e

Ai : w · w = v, v · v = 0, w · v = e

J : f · f = e, g · g = e, f · g = 0

X(t) : f · f = 0, g · g = te, f · g = f

Yj (j = 1, 2, 3, 4) : f · f = 0, f · g = 0, g · g = 0, f, e or f + e

Here, a, b, c; k,m; ν;n; t are complex parameters.
We call quadratic systems with the rank three associated with the algebras

W (k,m), B(ν), HW (n) and Ai Halphen’s confluent system. A quadratic system
associated with HG(a, b, c) is Halphen’s second equation (2):

x′
1 = x2

1 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2,

x′
2 = x2

2 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2,

x′
3 = x2

3 + a(x1 − x2)
2 + b(x2 − x3)

2 + c(x3 − x1)
2.

Halphen’s confluent system of type W (k,m) is (3):

x′
1 = x2

1 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1) +
1

4
(x3 − x1)

2,

x′
2 = x2

2 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1) +
1

4
(x3 − x1)

2,

x′
3 = x2

3 +

(
m2 − 1

4

)
(x2 − x1)

2 − k(x2 − x1)(x3 − x1)−
3

4
(x3 − x1)

2.

Halphen’s confluent system of type B(ν):

x′
1 = x2

1 + (ν2 − 1)(x2 − x1)
2 − 2(x2 − x1)(x3 − x1),

x′
2 = x2

2 + (ν2 − 1)(x2 − x1)
2 − 2(x2 − x1)(x3 − x1),

x′
3 = x2

3 + (ν2 − 1)(x2 − x1)
2 − 2(x2 − x1)(x3 − x1)− (x3 − x1)

2,

which is solved by the Bessel function Jν(2
√
2x).
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Halphen’s confluent system of type W (n):

x′
1 = x2

1 + (n2 − 1)(x2 − x1)
2 − 1

4
(x2 − x1)(x3 − x1),

x′
2 = x2

2 + (n2 − 1)(x2 − x1)
2 − 1

4
(x2 − x1)(x3 − x1)− (x2 − x1)

2,

x′
3 = x2

3 + (n2 + 1)(x2 − x1)
2 − 1

4
(x2 − x1)(x3 − x1)− (x3 − x1)

2,

which is solved by the parabolic cylinder function Dn(x).
Halphen’s confluent system of type Ai:

x′
1 = x2

1 + (x2 − x1)(x3 − x1),

x′
2 = x2

2 + (x2 − x1)(x3 − x2), (6)

x′
3 = x2

3 + (x2 − x3)(x3 − x1) + (x2 − x1)
2,

which is solved by the Airy function Ai(x). The system (6) is written as a single
equation

x1
′′′ − 12x1x1

′′ + 48x1
2x1

′ − 6(x1
′)2 − 24x1

4 = 0,

which is known by Clarskon and Olver [8]. The author does not know a condition
when a Halphen-type system can be written as a single equation.

3 Monodromy evolving deformations

We give a basic theory of monodromy evolving deformation (MED). In [4],
Chakravarty and Ablowitz have shown DH-V is given by MED. The author has
shown that Halphen’s second equation is given by MED [17]. As the same as
monodromy preserving deformation, we consider

∂Y

∂x
= A(x, t)Y,

∂Y

∂t
= B(x, t)Y (7)

where A(x, t), B(x, t) are m ×m matrices and A(x, t) is a rational function on
x. When B(x, t) is also rational on x, the monodromy data of the first equation
in (7) is invariant for any t. When B(x, t) is not rational, the monodromy data
may be changed.

Assume that A(x, t) has a singularity at x = a. Then Y can be developed
as

Y ∼ Y0(x) exp

[
r∑

k=1

Tk(x− a)−k

]
(x− a)L.

Here Y0(x) is a (formal) power series around x = a, r is the Poincaré rank at
x = a (when x = a is regular singular, r = 0), Tk (k = 1, 2, ..., r) and L are
commutative. We consider the following monodromy evolving deformation:

∂L

∂t
= fI,
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where I is a unit matrix. This deformation changes only the trace part of local
exponent matrix and preserves projective monodromy [13]. In this case the
deformation equation is given by

∂Y

∂t
= [B0(x, t) + f log(x− a)]Y.

We review the result in [17]. We set Q(x) = x2+a(x1−x2)
2+ b(x2−x3)

2+
c(x3 − x1)

2, P (x) = (x− x1)(x− x2)(x− x3) and R(x) = −(x+ x1 + x2 + x3).
Halphen’s second equation is nothing but x′

j = Q(xj) (j = 1, 2, 3). We take the
following 2 × 2 linear system

∂Y

∂x
=

 µ

P
+

3∑
j=1

cjS

x− xj

Y,
∂Y

∂t
=

ν +

3∑
j=1

cjxjS

Y −Q(x)
∂Y

∂x
. (8)

Here µ and cj ’s are constants with c1 + c2 + c3 = 0, and S is any traceless
constant matrix. We assume

∂ν

∂x
=

R

P
µ.

Theorem 2 [17] The compatibility condition of (8) gives the Halphen’s second
equation.

This theorem contains the result in [4].
We assume the local monodromy of Yj(x) around x = xj is e2πiLj . This

deformation does not preserve monodromy data. The local exponent Lj at
x = xj evolves as

dLj

dt
= − R(xj)∏

m ̸=j(xj − xm)
µ.

We can eliminate the variables µ and ν in (8) by the rescaling Y = fZ for
a scalar function f = f(x, t). f satisfies the linear equations

∂f

∂x
=

µ

P (x)
f,

∂f

∂t
= νf −Q(x)

∂f

∂x
,

∂ν

∂x
=

R(x)

P (x)
µ. (9)

Here R(x) = −(x+ x1 + x2 + x3).
The integrability condition for f is

∂P

∂t
+Q

∂P

∂x
− P

∂Q

∂x
+RP = 0, (10)

which gives the Halphen’s equation. Therefore MED is essentially deformations
of a scalar equation (10). Our problem is to find P,Q and R in (9) which gives
Halphen’s confluent equation.
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4 Halphen’s confluent systems and monodromy
evolving deformations

We list up P,Q and R in (9) which gives Halphen’s confluent systems:

1) The Whittaker type

P (x) = (x− x1)
2(x− x2), R(x) = −x− 2x1 − x2,

Q(x) = x2 +

(
m2 − 1

4

)
(x1 − x2)

2 − 1

4
(x3 − x1)

2 − k(x2 − x1)(x3 − x1).

2) The Bessel type

P (x) = (x− x1)
2(x− x2)

2, R(x) = −2(x+ x1 + x2),

Q(x) = x2 +

(
ν2 − 1

4

)
(x− x2)

2 − 2(x3 − x1)(x2 − x1).

3) The Weber type

P (x) = (x− x1)
3, R(x) = −x− 3x1,

Q(x) = x2 −
(
n+

1

2

)
(x2 − x1)

2 +
1

4
(x3 − x1)

2.

4) The Airy type

P (x) = (x− x1)
3, R(x) = −x− 3x1,

Q(x) = x2 + (x3 − x1)(x2 − x1).
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