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ABSTRACT. For clinical trials that compare two or more competing tmeents,
the literature proposes several randomization rules thatifavouring, at each
stage of the trial, the treatment that appears to be besivdmecent papers the
present authors have suggested criteria of optimal altotétat combine infer-
ential precision and ethical gain by means of flexible wesigint order to achieve
a good trade-off between efficiency and ethical concerng éffsuing optimal
allocation of the treatments can be targeted by a suitabfgmrese-adaptive ran-
domization rule. The purpose of this paper is to illustratd axtend the re-
sults previously obtained by the authors to a wider rangéatissical models for
comparative trials. Methods for implementing these desiye given. Several
numerical examples and some simulations are included ierdodenhance the

applicability.

1. INTRODUCTION

Most clinical trials are carried out to compare differenigh or therapies. Phar-
maceutical industries in particular invest very large ketddor research and devel-
opment of new drugs but recently the increased spendingoimdailical research
has not reflected in a corresponding increase in benefitthéfamore, in a clinical
trial the ethical concern of assigning treatments to ptien as to care for each
of them individually often conflicts with the experimentadrdands. To overcome
this impasse, the FDA Ciritical Path initiative of 2004 supgpand encourages
innovative approaches in the design of the trial, in paldicthe use of adaptive
designs. Adaptive designs are sequential procedures skahe available infor-
mation at each stage to modify aspects of the trial withodeuamining its validity

and integrity. Special cases are
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i) group sequential designs for early termination of thal wiue to efficacy
or futility through interim analyses;

ii) sample size re-estimation designs;

iii) adaptive dose-finding designs to minimize toxicity \ehacquiring in-
formation on the maximum tolerated dose;

iv) covariate-adjusted designs;

V) adaptive randomization designs for treatment compangith the eth-
ical aim of skewing allocations towards the best treatmendropping the less
successful treatment arms.

The past decade has witnessed an outburst of books and eptrs topic of
adaptive designs in clinical trias, see for instance [5]iclwipertain mainly to the
medical and pharmaceutical literature. At the same timetdpic has aroused a
wide interest among statisticians with a more attentiveteyithe methodological
implications, see for instance the book by Hu and Rosenb@je

In two recent papers [2, 3] the present authors have lookeesitins of type
v) approaching the ethical design problem of individual eflective ethics via
the optimization of specific compromise criteria given by eighted average of a
design optimality measure and a measure of the subjedtsTie relative weights
in the compound criterion have been allowed to depend orrtieestate of nature,
since it is reasonable to suppose that the more the effetie dfeatments differ,
the more important for the patients are the chances of riecgilie best treatment.
The purpose of the present paper is to extend the theoreéisalts obtained in
[2, 3] and enhance their applicability by including some euical examples. For
simplicity we consider just two treatments, as is usualeydhse in Phase Il trials,
where the aim may be either to estimate the treatment effegtsrately or, more
commonly, to estimate or test their difference.

We shall first of all find thearget allocation that optimizes a given compound
criterion for different response models and different chsiof the optimality mea-
sures. This target in general depends on the unknown pagesneind we will
present adaptive randomization methods that make theimgrconverge to the
desired target, whatever the true value of the parametersnaing the doubly-

adaptive biased coin design of Hu and Zhang [7]. Their ptiggeare discussed
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theoretically and illustrated by means of simulations. Tdst part of the paper
discusses a special case of adaptive randomization whecabegorical covariate
is also observed.

We end this introduction by pointing out that for binary respes, a popular
design with an ethical slant is the so-called Play-the-\&fnproposed by Zelen
[12] and later extended to include randomization [10, 11gyRhe-Winner is a
sequential experiment in which the treatment allocatiorefeated for the next
patient in case of success, or switched to the other arm i ch&ilure. It is
widely believed to be “an optimal model that minimizes thentwer of failures”
[5], but this claim is not justified by the theory. It can be simchowever that when
the number of observations goes to infinity the limit allomatof each treatment is
inversely proportional to the treatment risk, which clgalways favours the better

treatment.

2. THE COMPOUND CRITERION AND THE OPTIMAL ALLOCATION

2.1. The model. Given two treatmentg§; andT5, with n subjects recruited into
the trial, letY;; be the response of patien{: = 1,...,n) to treatmentl}, (k =
1,2). Conditionally on the treatment assignment, the respoase usually taken

to be independent. Put
1) E(Yik) = pr,  Var(Yip) = o

and assume a “the-larger-thethe better” scenario. Special cases are

1) homoscedastic responses, ir¢.= o3;
2) when the responses are binary, withp, being the relative success prob-

abilities:
(2) E(Yik) = Pr(Yir = 1) = pr, Var(Yix) = prqs

andg, =1 — pg.
We may further assume the dependencey,0br p, on some patient-related
covariates.
After n; subjects are assigned 1@ andns = n — ny to Ty, letm and1 — &

be the proportions of allocations I andT; respectively. The ML estimators of
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u1 and o in general are the sample means and their variance-couariaatrix

(exact or asymptotic) is proportional to

2
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2.2. The treatment allocation. We shall refer to all the desirable treatment al-
locations as “targets”. In Optimal Design Theory, the degigoblem consists in
minimizing a suitably chosen optimality criterioh;, which measures the loss of
potential information ensuing from the experimental desitn particular, theD-
optimality criteriondet(V') measures the global variance and the trace criterion
tr(V') measures the variance of the estimated differgnce- uo; under suitable
assumptions it also measures the power of Wald's test ofgheligy of treatment
effects. In this setting, popular treatment allocationesohs are the balanced one,
7 = 1/2, which minimizesdet(V'), and the well-known Neyman allocation

01

3 7T* = )
() N o1+ 09

which minimizes t(V).
From an ethical viewpoint one possible “optimality criter? is the proportion
[Ty of patients who receive the worse treatment,

1

1
Iy =3 +3 (1 —2m)sgnip — p2)

which would be minimized, trivially, by assigning all the tigmts to the better
treatment, if we knew which one this is. This choice howeveuld make the
treatment comparison impossible.

In practice, we would most likely wish to simultaneously miize both the
ethical cost and the inferential loss. Note that both aretfans ofr. A possibility
is to measure the trade-off by means of some compromiseidumdor instance a
weighted average of ; andIlyy, suitably standardized to make them comparable.

One way is to set

b1 ()

so that both functionalBly, and¥; range in[0, 1), with 0 being their best value.

We can look at the combination

(4) ®, = wlly + (1 —w) ¥y



SOME RECENT DEVELOPMENTS IN THE DESIGN OF ADAPTIVE CLINICATRIALS 5
as the compound criterion to be minimized. We can attempntbtfie optimum
allocationr, = arg min, ®, by differentiation of®,, wrt 7, i.e. look for a solution
in (0,1) of

w o osgnps—p2) 0 (1Y
©) RO ‘%<\E>‘°

where¥; = min ¥;. The targetr, will in general depend on the following:

e the inferential criterionl;. As already pointed out, eithép-optimality or
trace-optimality will in general be chosen &g;

e the weightsv, 1 — w chosen by the experimenter, with< w < 1. They
may be fixed or functions of some or all the unknown parametéise
choice of the best weight functian(-) in a given applied context is open
to discussion, but here are some general remarks:

(1) the functionw should deal witil; andT; symmetrically;

(2) w should be non-decreasing in the absolute difference ofdélagnent
effects, to make the ethical impact more crucial the moreeffexts
differ, whereas, on the other hand, a small difference isenddficult
to detect correctly, so more emphasis is needed on prec¢issosmall
w).

e The unknown parameters. The dependence of the target omkimewn
parameters may appear like an unsolvable puzzle, in thighswin other
cases, as for instance the classical Neyman allocationV{g)shall deal

with this problem in Section 5.

3. OPTIMAL TARGETS

3.1. Thecompound target when ¥; is D-optimality. We assume model (1) and
U; = det(V'). Equation (5) becomes

w  sgnp —p2) O (w(l—m)
© w4l =5 o%a%)

and

(7) WZ:%‘FSQT(M—M)miH{% <L> ) %}

1—w
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is the optimum target. The expression fdris independent of«?, 03). If w < 4/5

then

® = g o — g (1) € (0.1

otherwise, ifw > 4/5, =, will assign all the subjects to the better treatment.

For binary responses, the optimum target will clearly be

R Jin {1 (¥ 1
Ty = 5 TSQMp1 —pa)min g o {7~ 5 -

It is evident that the target allocation (7) will always ggsimore than half the

subjects to the better treatment.

3.1.1. The choice of the weightdMe can define the “ethical gain” in terms of
relative percentage of fewer subjects assigned byo the worse treatment than
by the balanced design, namely wher= 0. Assuming (wlog):; > us, it is easy

to find the expression of the ethical gain:

1

8 1 w
9 = - '
®) 1 -7y} 1/2 4(1—w>
We can measure the inferential loss by

- mindet (V) 1 w \?

10 UVp=1-———7 - [—=—) |
(10) b det (V) 16 (1—w>

The ethical gain and the inferential loss for the optimal poond target defined in
(8) are compared in Table 1.

The percentual ethical gain of the compound target is alvgagater than the
percentual inferential loss, with maximum differencevat 1/2.

Another possibility is to let the weight depend on the parameters.

Example 1 (Normal case) For normal responses we could choose

_ |M1 - M2|

4 2 2
(11) W= l—e V01103

so thatr, € (0,1) is satisfied. Letting:; > pe (wlog), Table 2 shows possible
values of(u; — pa)/+\/oi + o3 and the corresponding values of the compound

target:
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2
w | 7 | % ethical gain(ﬁ) % inferential Ioss((ﬁ) )
0.00 | 0.50 0.00 0.00
0.10 | 0.51 2.78 0.08
0.20 | 0.53 6.25 0.39
0.30 | 0.55 10.71 1.15
0.40 | 0.58 16.67 2.78
0.50 | 0.63 25.00 6.25
0.60 | 0.69 37.50 14.06
0.70 | 0.79 58.33 30.03
0.75 ] 0.88 75.00 56.26

TABLE 1. The relative ethical gain and the relative inferentiaklo

for targetr in (8) asw varies whenu; > po.

—0 — 0 ]0.500
0.25 0.18 | 0.527
0.50 0.31 | 0.557
0.75 0.42 | 0.591
1.00 0.51 | 0.628
1.50 0.62 | 0.705
3.00 0.76 | 0.896
— oo | — 0.8 1.000

TABLE 2. Values of the optimum compound target allocatign
in (8) with ethical weighty = 2 (1 — exp (

_ lpi—pal )
\/0’%-‘1-0'%

7

Example 2 (Binary case) For binary responses a possible choice of the weight

function is the one suggested[B], namelyw(p1, p2) = {(p1 — p2)? + 1}/2, but

the conditionw < 4/5 is not always satisfied. Another choice is

(12)

4
w(p1,p2) = 5\1)1 — pal.
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Table 3 gives the target allocation to the better treatmenadunction of the dif-

ference in success probabilities.

*
pP1—Pp2 w Tw

—0 | = 0] 0.500
0.1 0.08 | 0.511
0.2 0.16 | 0.524
0.3 0.24 | 0.539
0.4 0.32 | 0.559
0.5 0.40 | 0.583
0.6 0.48 | 0.615
0.7 0.56 | 0.659
0.8 0.64 | 0.722
0.9 0.72 | 0.821
1.0 0.80 | 1.00

TABLE 3. Values of the target, as a function of the difference

in success probabilities when= %|p1 — pal.

3.2. Thecompound target when ¥ istrace-optimality. Since t{V) = o7 /7 +

03/(1 —«) andmintr(V) = (o1 + 02)?, equation (5) becomes

(13) w  sgnpu1 —p2) 0 <(J7T(1——7T)> —0

T1-w (014092 O \(0Z—oD)r+1

Wheno? = o3, equation (6) is identical to (13), so that all the resultSobsection
3.1 apply. Let now? # o3; (13) can be rewritten as a quadratic equation:in
W 2
1w sgn(p1 — p2) [(03 — of)m +1] " +
(14)

(o1 + 02)2 [(03 — a%)wQ + 20%71 — a%] =0.

If the solution

1 72

—  |-14+ 91
0’2 —
Bl e son - ) B 1

lies in (0,1), it will give the optimum allocation td; as a function ofv, o9/0

(15)

and sgiiu; — p2). The LHS of (14) is monotonic ifD, 1], so the existence of a
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unique solution in(0,1) is ensured if the LHS is negative @tand positive afl,

namely if

2 2
—<1+2> <_1w Sgr(ul—/l2)<<1+@> ;

09 —w 01
which holds if and only if

w (o1 4 02)?
l1-w max(c},o3)

(16)

We may be able to use some previous knowledgejoanda3 to choose a weight
function that satisfies (16). Sinde< % < 2, againw < 4/5 will have to
hold true. The conditiow < 1/2, which means that the ethical impact should not
prevail over the inferential goal, is enough to guaranté® fdr all o2 ando3, but

at times may be too restrictive.

Table 4 shows the optimal target$ given by (15) for different values of the
ratio o /o1 and different choices ab/(1 — w), compared with the Neyman allo-
cation.

The top and the bottom parts of Table 4 showuhéavourablecases, i.eu; >
o With o1 < o9 Or uy < us with o1 > o5, in which Neyman'’s allocation is
unethical, namely it assigns more patients to the worsentesst. The optimal
compound target counteracts this effect, especially witrgew. This points to
the need for adaptive weights, for instance by choosingd4ihe weight function.
However, Table 4 seems to suggest that the weigpérhaps should depend also

OnO'Q/O'l.

Remark 3. In this case, whether or not the optimal compound targetgassimore
than half the subjects to the better treatment depends owdlights and the true
values of the parameters. However, there is always an dth&a, in terms of more
subjects assigned by the target to the better treatment than by the inferentially

optimum Neyman targety,. To show this, it is sufficient to check that §gn—

p2) = sgn(w), — my), replacingr;; by (15).

Assumingu; > peo (wlog), the ethical gain is given by

* *
T, — TN

*k
1—7rN
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_w
1—w

22 10.20{0.33] 0.50 | 1.00 | 1.50 | 2.00 | 3.00 | 7y

o1

m1 > pe 5.000 0.18|0.19] 0.21]| 0.32| 1.00| 1.00| 1.00| 0.17
4.00| 0.22| 0.23| 0.25| 0.35| 0.78| 1.00| 1.00| 0.20
2.00| 0.36| 0.37| 0.40| 0.48| 0.61| 0.82| 1.00| 0.33
1.50| 0.42| 0.44| 0.46| 0.54| 0.63| 0.75| 1.00| 0.40
1.33| 0.45| 0.47| 0.49| 0.57| 0.65| 0.74| 0.98]| 0.43
1.00| 0.52| 0.54| 0.56| 0.63| 0.69| 0.75| 0.88| 0.50
0.80| 0.58| 0.60| 0.61| 0.67| 0.72| 0.77| 0.85]| 0.56
0.50| 0.69| 0.70| 0.72] 0.76| 0.79| 0.82| 0.86 | 0.67
0.33| 0.79| 0.80| 0.81| 0.83| 0.85| 0.87| 0.90| 0.77
0.25|/ 0.81| 0.82| 0.83| 0.86| 0.87| 0.89| 0.91| 0.80
0.20| 0.85]|0.85| 0.86| 0.88| 0.89| 0.91| 0.92| 0.83

#1 < p2 5.0000.15|0.15| 0.14| 0.12| 0.11| 0.09| 0.08| 0.17
4.00| 0.19|0.18| 0.17| 0.14| 0.13| 0.11| 0.09] 0.20
2.00| 0.31| 0.30| 0.28| 0.24| 0.21| 0.18| 0.14| 0.33
1.50| 0.38| 0.36| 0.34| 0.30| 0.25| 0.21| 0.15| 0.40
1.33| 0.41| 0.39| 0.37| 0.32| 0.27| 0.23| 0.15| 0.43
1.00| 0.48| 0.46| 0.44| 0.37| 0.31| 0.25| 0.12]| 0.50
0.80| 0.53| 0.51| 0.49| 0.42| 0.34| 0.26| 0.06 | 0.56
0.50| 0.64| 0.63| 0.60| 0.52| 0.39| 0.18| 0.00| 0.67
0.33| 0.75| 0.74] 0.71| 0.61| 0.35| 0.00| 0.00| 0.77
0.25| 0.78| 0.77| 0.75] 0.65| 0.22| 0.00| 0.00| 0.80
0.20| 0.82| 0.81| 0.79| 0.68| 0.00| 0.00| 0.00| 0.83

TABLE 4. Optimal targetr, for different values ofo, /07 and

w/(1 —w) when¥; is the trace, compared with Neyman'y.

and the loss of efficiency is

mintr(V) 9 mh(l—m7))
il QAP R
tr(V) (o1 +02) 7=

Uy =1-— .
v (05 — of)m + of

The comparisons are shown in Figure 1, for different valuethe ratio o5 /0
equal to 4, 1.5, 0.75 and 0.25 (clockwise).
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FIGURE 1

For the binary model (2), equation (14) becomes

2
w DP2G2
— S — —1)7m+1| +
l-w orip p2){<p1q1 > ]

2
< p2q2+1> Kpm —1>w2+2w—1]=o
P19, P1q,

and condition (16) translates to

17)

<
1—w max(p1q1, p2q2)

(18) w (\/pl(h + \/p2Q2)2'

Whenp; > po, the unfavourable case occurify; < pago. In Table 5 we show
the optimum compound targets that correspond to differeaices of the weight

ratiow/(1 —w) and different values gy, p2, and compare them with the Neyman
q2

Q1+ q
Although 7%y, always assigns more than half the subjects to the better trea

allocationry; and the Play-the-Winner targef;,, =

ment, the PW target assignment would perform very badlyrftarence.
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1—w
p1 p» | 005 011 025 1.00 150 2.00 250 3.007% | Thy
0.10 0.05/0.586 0.593 0.609 0.688 0.735 0.777 0.816 0.881579| 0.514
0.20 0.05/ 0.653 0.660 0.674 0.741 0.777 0.808 0.834 0.88847|0.543
0.20 0.10/ 0.578 0.585 0.601 0.682 0.730 0.774 0.814 0.881571| 0.529
0.40 0.05/0.698 0.704 0.717 0.775 0.805 0.830 0.851 0.86%92| 0.613
0.40 0.20| 0.557 0.564 0.581 0.666 0.717 0.766 0.811 0.88451| 0.571
040 0.35/0.513 0.521 0.538 0.630 0.691 0.752 0.812 0.801507| 0.520
0.65 0.40| 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.880493| 0.632
0.65 0.60| 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.880493| 0.533
0.95 0.65/0.319 0.326 0.343 0.465 0.606 0.881 1.000 1.p0B14|0.875
0.95 0.85/0.385 0.392 0.410 0.524 0.625 0.760 0.954 1.00B79|0.750

TABLE 5. Optimal targetr; for different values ofp;, p, and

w/(1—w)whenV, is the trace, compared with Neyman§ and

the Play-the-Winner targety,; .

4. DIFFERENT CRITERIA FOR THE BINARY MODEL

4.1. Changing the measure of ethical loss. For binary responses, another possi-

ble measure of ethical loss is the expected proportion frés:

which is related tdlyy by a linear transformation:

Ep(mi,m) = mq1 + m2q2,

Er —quin _mq + (1 =71)¢2 — Gmin

Gmax — Gmin

Ip1 — D2l

L, (!
7T\~ ™

If we minimize the compound criterion

)

V= wEp+ (1 - w) 0,

w

> sgn(p1 — p2) = M.
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this is equivalent to minimizing criterion (4) with diffeme weights. More pre-
cisely,
arg min |wEp+ (1 —w) \111] = arg min_|@Ily + (1 — @) ¥;
m€[0,1] 7€[0,1]

w - [p1 — p2|
welpt —p2|+1—w

wherew =

Basically, we are re-scaling the weight ratio, namfl%j—w |p1—p2| = % The
results of Sections 3.1 and 3.2 can be applied after suitdialeges. In particular,
¢ for the determinant: the choice < 4/5 ensuresv < 4/5 and in this case
the optimal target is

L 1 1 w
(19) 7Tw—§+(p1—p2)§m,

o for the trace: replace1 v by v |p1 — p2| in equation (14) and
—w — W

1
replace condition (18) by

2
w-lp1 —pa|  (VP1@a + /D232)

< .
1—w max(p1q1,p2q2)

4.2. Changing thecompound criterion. Now we want to deal with an altogether

different compound criterion, the one that was assumed]jmginely:

20) % (r1,m) = w <M> (1= w) <M> .

min Er min ¥y
Since the minimum value oFr is simply gnin, Dy differentiation the defining

equation of this new compound target is

(1) _Pmp) gy L9
Gmin \IJ[ on

4.3. The targets wrt criterion (20). If ¥; = D-optimality, equation (21) be-

comes
w  p1— D2 0 ([ p1q1p2q2
- 4 — | ———== ] =0,

- % o D141P292 + o (W(l — 7T)>

i.e.
w  4(p1 — p2) 27r—1

22 — =0
(22) 1—W  Guin + m2(1 —m)? ’

and the optimal target is obtained by solving (22)0n1). Since the LHS of (22)
is monotonic and as — 0 andl1, the limits are—oco and+oo, respectively, there

is a unique solution irf0, 1). The important difference from considering criterion
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(4) is that in this case the optimal solution depends on thwahealues ofpy, po

and not just on the sign of their difference.

Remark 4. Itis evident from (22) that this target will always assignmathan half

the subjects to the better treatment, since(8gn- 1) = sgn(p; — p2).

If U'; = trace-optimality, the defining equation is

w - 0
(1_w)p1 p2(\/m+\/m)2_a_ﬂ<@+ p2Q2>:0

Gmin 7T 1—m
namely
P2q2

_ 2 _
(23) W p1—p2 ( P22 1>2 B (p1q1 1) ™ 42r—1 .
(1-w) gmin \V 2101 m2(1 —m)?

Remark 5. It is shown in[2] that with this target allocation, the majority of

subjects will receive the better treatment if the weightcfiom is chosen so that

w(z,y) > 1/2whenz +y > 1.

Table 6 shows the values of the compound targets that salea(’l (23), cor-
responding to fixed weight = 1/2 (7rj]:1/2 and w:j‘:m, respectively) and to

w = (lp1 —p2| +1)/2 (7, and 7", respectively) for several choices pf and
p2.
The targetsr™® | /2 andr* assign more patients to the better treatment, whereas
w= P
the bottom part of Table 6 (outlined) shows the valuegyaf p2) for which the
Neyman target penalizes the better treatment. Clearly ahees ofr”_, /2 and
,» and ofw:;*:l/2 andn; are very close whefp; — p,| is small.
5. CONVERGENCE TO THE OPTIMAL ALLOCATION RESPONSEADAPTIVE

EXPERIMENTS

As shown previously, the target allocation depends in gérer some or all the
unknown parameters of the model, exg. = 7 (8) with @ C {1, 03; 2, 05}, and
when this function is continuougsponse-adaptivprocedures may be called for.
These designs, also calledsponse-driveror data-dependentuse the observed
responses as well as past allocations to modify the expetiaswe go along in

order to gradually approach the desired target allocation.
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D-optimality | trace-optimality

* * kK kK * *
p1 D2 | To—12| Twp | Tw=1/2 | Twp ™ | Tpw

0.10 0.05] 0.507 | 0.508| 0.586 | 0.587 | 0.579| 0.514
0.20 0.05] 0.523 | 0.531| 0.668 | 0.675 | 0.647| 0.543
0.20 0.10] 0.516 | 0.519| 0.587 | 0.590 | 0.571| 0.529
0.40 0.05 0.570 | 0.631| 0.744 | 0.782 | 0.692| 0.613
0.40 0.20] 0.541 | 0.561| 0.590 | 0.609 | 0.551| 0.571
0.40 0.35 0.510 | 0.512| 0.517 | 0.518 | 0.507| 0.520

0.65 0.40[ 0.584 | 0.630| 0.578 | 0.624 | 0.493| 0.632
0.65 0.60] 0.518 | 0.520| 0.511 | 0.513 | 0.493| 0.533
0.95 0.65 0.802 | 0.852| 0.724 | 0.796 | 0.314| 0.875
0.95 0.85 0.686 | 0.709| 0.599 | 0.629 | 0.379| 0.750

TABLE 6. Values of the compound targets fér— and trace-
optimality, corresponding to = 1/2 andw, = (|p1 — p2|+1)/2,

for different choices of; andp,.

Now we briefly describe the general framework of these sdtemethods.
Starting withny observations on each treatment, usually assigned by using r
stricted randomization, e.g. permuted block designs, iialinon-trivial parame-
ter estimatiord, is derived. Then, at each stefn > 2n,) letd(n) be a consistent
parameter estimator dfbased on the first observations, so that the optimal target
will be estimated by all the data up to that step. &&tn) = 7*(d(n)). Moreover,
let N1(n) andN2(n) be the number of patients assignedicandT5, respectively,
with N1 (n) + Na(n) = n; additionally,7(n) = n~tNj(n) is the random propor-
tion of allocation tol; and, symmetricallyl — 7(n) to T>. When patieni + 1 is
ready to be randomized, s/he will be assigneditavith probability P,,, 1 (conse-
quently, toT» with probability1 — P,,;1) and the problem consists in choosing the
allocation probabilitie P,,,» > 1} so that, as tends to infinity,=(n) converges
to 7 (#) in some sense.

One of the most effective family of randomization procedui® the Doubly
Adaptive Biased Coin Design (D-BCD) analyzed by Hu and Zh@idsee also

references therein). The rationale behind this procedomsists in favouring the
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allocation of a given treatment, the more so the more itseciirallocation pro-
portion is smaller than the current estimate of the targéie D-BCD consists in
assigning treatmerif; to subjectn + 1 with probability P, 1 = g(mw(n); 75 (n))
for all n > 2ng, where the allocation functiog(- ; -) is chosen by the experimenter
so as to force the treatment assignments on the basis of seamume of the “dis-
similarity” between their actual allocation proportiarand the current estimate of

the optimal targey. The functiong needs to satisfy the following conditions:

) g(x;y) is continuous orf0; 1)?;
i) g(zz) =
iii) g(x;y)is decreasmg in and increasing iny;
(r;9) =1—g(1 —x;1 —y) forall z,y € (0;1)%.

;T

iv) glx;y
Observe that the D-BCD will force the allocation proportimnthe target, since
from conditions ii) and iii), when: > y theng(z,y) < y, whereas ifr < y,
theng(z,y) > y. However, condition i) is quite restrictive since does mufude
several widely-known procedures based on discontinudosadion functions such
as Efron’s Biased coin design and its extensions [8], whiledd@ion iv) simply
guarantees thaf, andT; are treated symmetrically.

The following result ensures the convergence of the D-BCibéachosen com-

pound optimal target allocatioxy’(#) (see for instance [7]):

Proposition 6. If the compound optimal target® (6) € (0,1) and is continuous
in 6, adopting the D-BCD

lim 7(n) =7(0) and  lim 0(n) =0 a.s.

n—oo n—oo

Now we give some examples belonging to the D-BCD family:
Method 1. The most “intuitive” allocation rule consists in lettindz; y) = y; this

means that treatmefit will be assigned to subjeet + 1 with probability
(24) Py =75 (n).

When estimation is made by ML, this procedure is called thguSetial Maxi-
mum Likelihood (SML) or recursive Maximum Likelihood derig See [1] and

references therein.
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Method 2. Hu and Zhang [7] suggest the following family of allocatiam€tions

y(y/x)7
y/x) + (1 =yl -y)/A—z)]7’

where the non-negative parametercontrols the degree of randomness of each

(25) gy(x3y) = o

allocation: ify — 0 the randomization function does not dependent on the cur-
rent allocation proportion and this procedure correspdodie SML design in
(24), whereas as grows the allocation tends to be forced deterministicallyhie
estimated target.
Method 3. A new proposal of allocation function is:

FIG (%) F'()
F[G (L) F(y)] +F [G (}:—g) F1(1— y)] ’
where F'(z),G(z) : RT — R* are continuous and increasing functions and
G(1) = 1. Note that if (z) = z andG(z) = 2" one obtaingy, (z;y) in (25).

(26) g(z;y) =

Example7. SetG(z) = z. We let
F(4F(y))
F(LFP1(y) + F (FELF-1(1- )

(27) g(xsy) =

9

whereF'(z) = % Iy et dt (this F is called the error function).

Figure 2 shows the behaviour of the functig@im (27). Table 7 shows the com-
Lo
osf
0.6k
0af

0.2

I I I I )
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Plots ofg(x;y) asz varies in(0; 1). The values of;
from the bottom curve to the top curve afe2, 0.4, 0.6 and0.8,

respectively.

parisons between the above mentioned randomization @nsti.e. Method 1,

Method 2 and Method 3, in order to stress the different impéathiese procedures
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in terms of treatment allocations when both the target edérand the allocation

proportion vary.

Ty |go(SML) | ¢ 92 g
-0 01 0.1 | 1.000| 1.000| 0.537
-0 0.3 0.3 | 1.000| 1.000| 0.653
-0 05 0.5 | 1.000| 1.000| 0.792
—0 07| 0.7 |1.000(1.000|0.916
-0 09 0.9 | 1.000| 1.000| 0.990
02 0.1 0.1 |0.047| 0.022| 0.051
02 03 0.3 | 0.424| 0.557| 0.407
02 05 0.5 |0.800| 0.941| 0.735
02 07| 07 |0.956|0.995|0.897
02 0.9 0.9 |0.997| 0.999| 0.988
0.4 0.1 0.1 | 0.018| 0.003| 0.025
04 03 0.3 |0.216] 0.151| 0.227
04 05 0.5 | 0.600| 0.692| 0.585
04 07| 07 |0.891|0.966|0.859
04 0.9 0.9 |0.992| 0.999| 0.984
0.6 0.1 0.1 | 0.008| 0.001| 0.016
0.6 0.3 0.3 | 0.109| 0.034| 0.141
0.6 0.5 0.5 | 0.400| 0.308| 0.415
06 07| 07 |0.784|0.850|0.773
0.6 0.9 0.9 |0.982|0.997| 0.975
0.8 0.1 0.1 |0.003] ~0 |0.012
0.8 0.3 0.3 | 0.044| 0.005| 0.103
0.8 0.5 0.5 | 0.200| 0.059| 0.265
08 07| 0.7 |0.577|0.443|0.593
0.8 0.9 0.9 |0.953| 0.979| 0.949

TABLE 7. Values of the randomization functigp, in (25) with

~v = 0, namely the SML designy = 1, v = 2 andg in (27).

The SML design (Method 1) is not affected by the current alfimn propor-

tions but depends only on the current estimate of the tafggean example, when
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y = 0.7 the SML design favours the allocation @f by assignindgl; with prob-
ability 0.7, both in case oft = 0.05 andz = 0.8. Method 2, however, strongly
depends on the current allocation proportion. Indeed,dhgart of Table 7 shows
that if treatmenfl; has (almost) never been assigned, then it will be allocatdd w
probability 1 even if the target allocation is extremely #nfe.g. y = 0.1 or

y = 0.3). Furthermore, starting fromy = 2 Method 2 tends to be highly deter-
ministic. On the contrary, the proposédn (27) has an interesting behaviour as
regards the drawbacks of Methods 1 and 2, since it forcedltiwmaton decisively
onto the target, when needed, guaranteeing at the same suitable degree of

randomness.

5.1. Simulations. In order to carry out some finite sample comparisons between
the three above-mentioned allocation rules, namely Meth@de. the SML de-
sign), Metho2 (Hu and Zhang'sy, in (25) withy = 1) and Method3 (rule g in
(27)), we have performed a simulation study where we take astount normal
and binary responses and also the two different compounetieri(4) and (20).
Figures 3-7 below show the behaviour of the allocation pridqo of treatmenfl;
as it approaches the compound target. Each figure showsdteqghll0 simula-
tions withn = 1000 subjects anay = 4. As regards the normal model (Fig. 3),
we setu; = 1, us = 0 and three different scenarios for the standard deviations,
i.e. o1 = landoy = 5,01 = 5andoy = 1, 0y = 1 andoy = 1.1, where the
chosen optimum compound target is (8) with weight functian (11). Moreover,
in the binary case we have considered both compound cr{riérig. 4-5) and
(20) (Fig. 6-7) assuming the trace-optimality criterioredarding criterion (4), we
have taken into account = %|p1 — po| (Fig. 4) andw = £ (Fig. 5), while for cri-
terion (20) we have assumed= % (Fig. 6) andw = 1 (Fig. 7). We have
taken into account three different parameter settings,eham = 0.3,ps = 0.2
(top panel of the figuresy; = 0.65,ps = 0.4 (middle panel of the figures) and
p1 = 0.95, po = 0.65 (bottom panel of the figures).

In general, Methodg and3 perform better than Methotl Indeed, as theoreti-
cally shown in [7], the SML design is characterized by sloa@mvergence, since it

is based only on the current estimate of the target (indegp@hdof the allocation
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proportion) and the MLE are characterized by strong vditgtfor small n. More-
over, graphical evidence points to the fact that Methd@sd 3 guarantee stable
behaviour around the target starting frama= 300 units, whereas all the procedures
have strong variability for small sample trials (in partamuwhenn < 200).

As regards normal responses (Fig. 3), simulations showthieatonvergence is
not affected by the values of the standard deviations antiddis2 and3 guarantee
a better convergence to the target. Whereas, for binanpnssgptrials (Fig. 4-7)
the variability of the procedures is limited when the reg@mare approximately
homoscedastic (i.e2; = 0.65 andps = 0.4).

Furthermore, as regards the comparison between the tweratitf compound
criteria, there seem to be no significant differences in $esfrconvergence to the

corresponding targets.
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FIGURE 3. Convergence to the optimum compound targein (8) for methods 1 (first column), 2 (second column) and Bdth

ity 4 |1 —pa| _ _ _ _ _
column) for normal responses with= ¢ [1 — exp (—ﬁ)] andu; =1, uo = 0for oy = 1 andoy = 5 (top), o1 = 5

andoy = 1 (middle),o; = 1 andoy = 1.1 (bottom).
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FIGURE 4. Convergence to the optimum compound targesolving (17) for methods 1 (first column), 2 (second colummg a
3 (third column) for binary responses wiith = %|p1 — po| andp; = 0.3, p2 = 0.2 (top), p1 = 0.65, p2 = 0.4 (middle) and
p1 = 0.95, p2 = 0.65 (bottom).
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FIGURE 5. Convergence to the optimum compound targesolving (17) for methods 1 (first column), 2 (second columm] a
3 (third column) for binary responses with= % andp; = 0.3, po = 0.2 (top), p1 = 0.65, p, = 0.4 (middle) andp; = 0.95,
p2 = 0.65 (bottom).
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FIGURE 6. Convergence to the optimum compound targesolving (23) for methods 1 (first column), 2 (second columm] a
3 (third column), for binary responses with= W andp; = 0.3, p2 = 0.2 (top), p1 = 0.65, po = 0.4 (middle) and
p1 = 0.95, p2 = 0.65 (bottom).
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FIGURE 7. Convergence to the optimum compound targesolving (23) for methods 1 (first column), 2 (second columm] a
3 (third column), for binary responses with= % andp; = 0.3, po = 0.2 (top), p1 = 0.65, po = 0.4 (middle) andp; = 0.95,
po = 0.65 (bottom).
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6. THE HOMOSCEDASTIC MODEL WITH ONE CATEGORICAL COVARIATE
We now further specify (1) as follows
(28) E(}/;k):Tk+ZfIB> V(Y:L):UQ 22172777‘

namely the observations are homoscedastic and the resgepsads on the treat-
ment and on one random categorical covariateith J fixed levels. The subjects
will be subdivided into strata (blocks) according to theelesf Z. This case was
dealt with in [3]. The covariate distribution in the popidstt is assumed to be
known: p; = Pr(Z = z;) for j = 1,...,J; B is the vector of block effects
andz; is the indicator function of the block for thi#h observation. Conditionally
on the covariate and the treatment allocations, patieagganses are assumed to
be independent. In the statistical literature (28) is dbedras a 2-factor mixed
model without treatment-block interaction; in other wqrtte superiority of one
treatment over the other (meanipg > puo Or vice-versa) isuniformly constant
over the blocks. The inferential interest typically liest@sting or estimating the
differencer; — m as precisely as possible afds usually a nuisance parameter.
LetN; (j =1,...,J) with Z;]:l N; = n be the random size of blockaftern

observations and let = (71, ..., ) denote the vector of allocation proportions
to Ty in each block. LetZ = (Z1,..., Z,)! be the vector of covariates for the
subjects.

From block design theory we obtain

-1
J

Var(f —#|2) =0*{n—>Y (2m; —1°N; » |
j=1

so the inferential loss depends on the design through theadibn vectorr and the
block sizes. The loss is a minimum if the treatments are égueplicated within
each block (for arecent discussion see [4]). The loss isormandince it depends on
the block sizes which are not under the experimental cqritnetefore one must
average over the covariate distribution. After some sigtaimplifications and

approximations we can let our criterion be
) J J
(29) Uy(m)=Ez [n ') (2m — 1)’N;| =D (2m; —1)°
Jj=1 j=1

ranging in[0, 1].
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The percentage of patients assigned to the worse treatment i

J
1 1
(30) Hw(ﬁ):§+ 5— Elﬂ'jpj Sgl’(Tl—Tg).
j:

We choose the compound criterion of Section 2, i.e.

(31) Oy () =wlly(w) + (1 —w) Uy (m).

Setting the partial derivatives with respectitpequal to0 we find the set of equa-

tions
—wsgnm — ) +4(1 —w)(2m; —1) =0 forallj =1,...,J.

Thus the same result as (7) applies to each block so that theadgargetn, =
(7, ... ;) is given by

w

1 1 1
(32) ﬂ-:j = §+Sgr(7'1—7'2)min{§ <E> y 5} fora”j: ].,...,J.

Observe that the optimal compound target does not deperteaovariate proba-
bilities p;'s and if the weight function is chosen so that 4/5, thenr,; € (0;1).

WhenJ = 1 (nho covariates), ther, — 5 = u1 — uo and (32) reduces to expression

(7).

Remark 8. This allocation is always “ethical”, i.e. more subjects aassigned
to the better treatment, whatever their covariate valuac8ithe compound opti-
mal allocations in all the blocks are the same as (7), thenredsieed for further

examples.

The optimumm}, can be targeted by a suitable implementation of the above
mentioned sequential methods adjusted for covariates plyiag the same ran-
domization function for each block. However, in [3] a ditet method was em-

ployed namely the randomization function

y(y /)7
33 (@5 y) = : :
49 ) = T+ (-l = /=2
with ~; o< p;l forall j = 1,...,J, so the allocations for the profiles which may

be potentially under-represented will be forced towar@saptimal target.
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