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ABSTRACT. For clinical trials that compare two or more competing treatments,

the literature proposes several randomization rules that aim at favouring, at each

stage of the trial, the treatment that appears to be best. In two recent papers the

present authors have suggested criteria of optimal allocation that combine infer-

ential precision and ethical gain by means of flexible weights, in order to achieve

a good trade-off between efficiency and ethical concerns. The ensuing optimal

allocation of the treatments can be targeted by a suitable response-adaptive ran-

domization rule. The purpose of this paper is to illustrate and extend the re-

sults previously obtained by the authors to a wider range of statistical models for

comparative trials. Methods for implementing these designs are given. Several

numerical examples and some simulations are included in order to enhance the

applicability.

1. INTRODUCTION

Most clinical trials are carried out to compare different drugs or therapies. Phar-

maceutical industries in particular invest very large budgets for research and devel-

opment of new drugs but recently the increased spending in biomedical research

has not reflected in a corresponding increase in benefits. Furthermore, in a clinical

trial the ethical concern of assigning treatments to patients so as to care for each

of them individually often conflicts with the experimental demands. To overcome

this impasse, the FDA Critical Path initiative of 2004 supports and encourages

innovative approaches in the design of the trial, in particular the use of adaptive

designs. Adaptive designs are sequential procedures that use the available infor-

mation at each stage to modify aspects of the trial without undermining its validity

and integrity. Special cases are
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i) group sequential designs for early termination of the trial due to efficacy

or futility through interim analyses;

ii) sample size re-estimation designs;

iii) adaptive dose-finding designs to minimize toxicity while acquiring in-

formation on the maximum tolerated dose;

iv) covariate-adjusted designs;

v) adaptive randomization designs for treatment comparison with the eth-

ical aim of skewing allocations towards the best treatment or dropping the less

successful treatment arms.

The past decade has witnessed an outburst of books and paperson the topic of

adaptive designs in clinical trias, see for instance [5], which pertain mainly to the

medical and pharmaceutical literature. At the same time, the topic has aroused a

wide interest among statisticians with a more attentive eyeto the methodological

implications, see for instance the book by Hu and Rosenberger [9].

In two recent papers [2, 3] the present authors have looked atdesigns of type

v) approaching the ethical design problem of individual vs collective ethics via

the optimization of specific compromise criteria given by a weighted average of a

design optimality measure and a measure of the subjects’ risk. The relative weights

in the compound criterion have been allowed to depend on the true state of nature,

since it is reasonable to suppose that the more the effects ofthe treatments differ,

the more important for the patients are the chances of receiving the best treatment.

The purpose of the present paper is to extend the theoreticalresults obtained in

[2, 3] and enhance their applicability by including some numerical examples. For

simplicity we consider just two treatments, as is usually the case in Phase III trials,

where the aim may be either to estimate the treatment effectsseparately or, more

commonly, to estimate or test their difference.

We shall first of all find thetarget allocation that optimizes a given compound

criterion for different response models and different choices of the optimality mea-

sures. This target in general depends on the unknown parameters, and we will

present adaptive randomization methods that make the experiment converge to the

desired target, whatever the true value of the parameters, extending the doubly-

adaptive biased coin design of Hu and Zhang [7]. Their properties are discussed
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theoretically and illustrated by means of simulations. Thelast part of the paper

discusses a special case of adaptive randomization when onecategorical covariate

is also observed.

We end this introduction by pointing out that for binary responses, a popular

design with an ethical slant is the so-called Play-the-Winner proposed by Zelen

[12] and later extended to include randomization [10, 11]. Play-the-Winner is a

sequential experiment in which the treatment allocation isrepeated for the next

patient in case of success, or switched to the other arm in case of failure. It is

widely believed to be “an optimal model that minimizes the number of failures”

[5], but this claim is not justified by the theory. It can be shown however that when

the number of observations goes to infinity the limit allocation of each treatment is

inversely proportional to the treatment risk, which clearly always favours the better

treatment.

2. THE COMPOUND CRITERION AND THE OPTIMAL ALLOCATION

2.1. The model. Given two treatmentsT1 andT2, with n subjects recruited into

the trial, letYik be the response of patienti (i = 1, . . . , n) to treatmentTk (k =

1, 2). Conditionally on the treatment assignment, the responses are usually taken

to be independent. Put

(1) E(Yik) = µk, Var(Yik) = σ2
k

and assume a “the-larger-the-µ-the better” scenario. Special cases are

1) homoscedastic responses, i.e.σ2
1 = σ2

2;

2) when the responses are binary, withp1, p2 being the relative success prob-

abilities:

(2) E(Yik) = Pr(Yik = 1) = pk, Var(Yik) = pkqk

andqk = 1− pk.

We may further assume the dependence ofpk or µk on some patient-related

covariates.

After n1 subjects are assigned toT1 andn2 = n − n1 to T2, let π and1 − π

be the proportions of allocations toT1 andT2 respectively. The ML estimators of
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µ1 andµ2 in general are the sample means and their variance-covariance matrix

(exact or asymptotic) is proportional to

V =







σ2
1

π
0

0
σ2
2

1− π






.

2.2. The treatment allocation. We shall refer to all the desirable treatment al-

locations as “targets”. In Optimal Design Theory, the design problem consists in

minimizing a suitably chosen optimality criterionΨI , which measures the loss of

potential information ensuing from the experimental design. In particular, theD-

optimality criteriondet(V ) measures the global variance and the trace criterion

tr(V ) measures the variance of the estimated differenceµ1 − µ2; under suitable

assumptions it also measures the power of Wald’s test of the equality of treatment

effects. In this setting, popular treatment allocation schemes are the balanced one,

π∗
B = 1/2, which minimizesdet(V ), and the well-known Neyman allocation

(3) π∗
N =

σ1
σ1 + σ2

,

which minimizes tr(V ).

From an ethical viewpoint one possible “optimality criterion” is the proportion

ΠW of patients who receive the worse treatment,

ΠW =
1

2
+

1

2
(1− 2π) sgn(µ1 − µ2)

which would be minimized, trivially, by assigning all the patients to the better

treatment, if we knew which one this is. This choice however would make the

treatment comparison impossible.

In practice, we would most likely wish to simultaneously minimize both the

ethical cost and the inferential loss. Note that both are functions ofπ. A possibility

is to measure the trade-off by means of some compromise function, for instance a

weighted average ofΨI andΠW , suitably standardized to make them comparable.

One way is to set

Ψ̃I(π) = 1−
(

minΨI

ΨI(π)

)

so that both functionalsΠW andΨ̃I range in[0, 1), with 0 being their best value.

We can look at the combination

(4) Φω = ωΠW + (1− ω) Ψ̃I
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as the compound criterion to be minimized. We can attempt to find the optimum

allocationπ∗
ω = argminπ Φω by differentiation ofΦω wrt π, i.e. look for a solution

in (0, 1) of

(5) − ω

(1− ω)

sgn(µ1 − µ2)

Ψ∗
I

− ∂

∂π

(

1

ΨI

)

= 0

whereΨ∗
I = minΨI . The targetπ∗

ω will in general depend on the following:

• the inferential criterionΨI . As already pointed out, eitherD-optimality or

trace-optimality will in general be chosen asΨI ;

• the weightsω, 1 − ω chosen by the experimenter, with0 ≤ ω < 1. They

may be fixed or functions of some or all the unknown parameters. The

choice of the best weight functionω(·) in a given applied context is open

to discussion, but here are some general remarks:

(1) the functionω should deal withT1 andT2 symmetrically;

(2) ω should be non-decreasing in the absolute difference of the treatment

effects, to make the ethical impact more crucial the more theeffects

differ, whereas, on the other hand, a small difference is more difficult

to detect correctly, so more emphasis is needed on precision(i.e. small

ω).

• The unknown parameters. The dependence of the target on the unknown

parameters may appear like an unsolvable puzzle, in this as well as in other

cases, as for instance the classical Neyman allocation (3).We shall deal

with this problem in Section 5.

3. OPTIMAL TARGETS

3.1. The compound target when ΨI is D-optimality. We assume model (1) and

ΨI = det(V ). Equation (5) becomes

(6) − ω

(1− ω)

sgn(µ1 − µ2)

4σ2
1σ

2
2

=
∂

∂π

(

π(1− π)

σ2
1σ

2
2

)

and

(7) π∗
ω =

1

2
+ sgn(µ1 − µ2)min

{

1

8

(

ω

1− ω

)

,
1

2

}

.
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is the optimum target. The expression forπ∗
ω is independent of (σ2

1 , σ
2
2). If ω < 4/5

then

(8) π∗
ω =

1

2
+ sgn(µ1 − µ2)

1

8

(

ω

1− ω

)

∈ (0, 1);

otherwise, ifω ≥ 4/5, π∗
ω will assign all the subjects to the better treatment.

For binary responses, the optimum target will clearly be

π∗
ω =

1

2
+ sgn(p1 − p2)min

{

1

8

(

ω

1− ω

)

,
1

2

}

.

It is evident that the target allocation (7) will always assign more than half the

subjects to the better treatment.

3.1.1. The choice of the weights.We can define the “ethical gain” in terms of

relative percentage of fewer subjects assigned byπ∗
ω to the worse treatment than

by the balanced design, namely whenω = 0. Assuming (wlog)µ1 > µ2, it is easy

to find the expression of the ethical gain:

(9)
(1− π∗

B)− (1− π∗
ω)

1− π∗
B

=

1
8

(

ω
1−ω

)

1/2
=

1

4

(

ω

1− ω

)

.

We can measure the inferential loss by

(10) Ψ̃D = 1− min det (V )

det (V )
=

1

16

(

ω

1− ω

)2

.

The ethical gain and the inferential loss for the optimal compound target defined in

(8) are compared in Table 1.

The percentual ethical gain of the compound target is alwaysgreater than the

percentual inferential loss, with maximum difference atω = 1/2.

Another possibility is to let the weightω depend on the parameters.

Example 1 (Normal case). For normal responses we could choose

(11) ω =
4

5









1− e
−
|µ1 − µ2|
√

σ2
1 + σ2

2









,

so thatπ∗
ω ∈ (0, 1) is satisfied. Lettingµ1 > µ2 (wlog), Table 2 shows possible

values of(µ1 − µ2)/
√

σ2
1 + σ2

2 and the corresponding values of the compound

target:
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ω π∗
ω % ethical gain

(

ω
4(1−ω)

)

% inferential loss

(

(

ω
4(1−ω)

)2
)

0.00 0.50 0.00 0.00

0.10 0.51 2.78 0.08

0.20 0.53 6.25 0.39

0.30 0.55 10.71 1.15

0.40 0.58 16.67 2.78

0.50 0.63 25.00 6.25

0.60 0.69 37.50 14.06

0.70 0.79 58.33 30.03

0.75 0.88 75.00 56.26

TABLE 1. The relative ethical gain and the relative inferential loss

for targetπ∗
ω in (8) asω varies whenµ1 > µ2.

µ1−µ2√
σ2
1+σ2

2

ω π∗
ω

→ 0 → 0 0.500

0.25 0.18 0.527

0.50 0.31 0.557

0.75 0.42 0.591

1.00 0.51 0.628

1.50 0.62 0.705

3.00 0.76 0.896

→ ∞ → 0.8 1.000

TABLE 2. Values of the optimum compound target allocationπ∗
ω

in (8) with ethical weightω = 4
5

(

1− exp

(

− |µ1−µ2|√
σ2
1+σ2

2

))

.

Example 2 (Binary case). For binary responses a possible choice of the weight

function is the one suggested in[2], namelyω(p1, p2) = {(p1 − p2)
2 + 1}/2, but

the conditionω < 4/5 is not always satisfied. Another choice is

(12) ω(p1, p2) =
4

5
|p1 − p2|.
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Table 3 gives the target allocation to the better treatment as a function of the dif-

ference in success probabilities.

p1 − p2 ω π∗
ω

→ 0 → 0 0.500

0.1 0.08 0.511

0.2 0.16 0.524

0.3 0.24 0.539

0.4 0.32 0.559

0.5 0.40 0.583

0.6 0.48 0.615

0.7 0.56 0.659

0.8 0.64 0.722

0.9 0.72 0.821

1.0 0.80 1.00

TABLE 3. Values of the targetπ∗
ω as a function of the difference

in success probabilities whenω = 4
5 |p1 − p2|.

3.2. The compound target when ΨI is trace-optimality. Since tr(V ) = σ2
1/π+

σ2
2/(1− π) andmin tr(V ) = (σ1 + σ2)

2, equation (5) becomes

(13) − ω

1− ω

sgn(µ1 − µ2)

(σ1 + σ2)2
− ∂

∂π

(

π(1− π)

(σ2
2 − σ2

1)π + 1

)

= 0.

Whenσ2
1 = σ2

2 , equation (6) is identical to (13), so that all the results ofSubsection

3.1 apply. Let nowσ2
1 6= σ2

2 ; (13) can be rewritten as a quadratic equation inπ:

− ω

1− ω
sgn(µ1 − µ2)

[

(σ2
2 − σ2

1)π + 1
]2

+

(σ1 + σ2)
2
[

(σ2
2 − σ2

1)π
2 + 2σ2

1π − σ2
1

]

= 0.
(14)

If the solution

(15)
1

σ2
2

σ2
1
− 1



−1 +
σ2
σ1

√

− ω
1−ω sgn(µ1 − µ2)

σ2−σ1
σ1+σ2

+ 1





lies in (0, 1), it will give the optimum allocation toT1 as a function ofω, σ2/σ1

and sgn(µ1 − µ2). The LHS of (14) is monotonic in[0, 1], so the existence of a
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unique solution in(0, 1) is ensured if the LHS is negative at0 and positive at1,

namely if

−
(

1 +
σ1
σ2

)2

< − ω

1− ω
sgn(µ1 − µ2) <

(

1 +
σ2
σ1

)2

,

which holds if and only if

(16)
ω

1− ω
<

(σ1 + σ2)
2

max(σ2
1 , σ

2
2)
.

We may be able to use some previous knowledge onσ2
1 andσ2

2 to choose a weight

function that satisfies (16). Since1 < σ1+σ2
max(σ1,σ2)

≤ 2, againω < 4/5 will have to

hold true. The conditionω < 1/2, which means that the ethical impact should not

prevail over the inferential goal, is enough to guarantee (16) for all σ2
1 andσ2

2, but

at times may be too restrictive.

Table 4 shows the optimal targetsπ∗
ω given by (15) for different values of the

ratio σ2/σ1 and different choices ofω/(1 − ω), compared with the Neyman allo-

cation.

The top and the bottom parts of Table 4 show theunfavourablecases, i.e.µ1 >

µ2 with σ1 < σ2 or µ1 < µ2 with σ1 > σ2, in which Neyman’s allocation is

unethical, namely it assigns more patients to the worse treatment. The optimal

compound target counteracts this effect, especially with alargeω. This points to

the need for adaptive weights, for instance by choosing (11)as the weight function.

However, Table 4 seems to suggest that the weightω perhaps should depend also

onσ2/σ1.

Remark 3. In this case, whether or not the optimal compound target assigns more

than half the subjects to the better treatment depends on theweights and the true

values of the parameters. However, there is always an ethical gain, in terms of more

subjects assigned by the targetπ∗
ω to the better treatment than by the inferentially

optimum Neyman targetπ∗
N . To show this, it is sufficient to check that sgn(µ1 −

µ2) = sgn(π∗
ω − π∗

N ), replacingπ∗
ω by (15).

Assumingµ1 > µ2 (wlog), the ethical gain is given by

π∗
ω − π∗

N

1− π∗
N
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ω

1−ω

σ2

σ1

0.20 0.33 0.50 1.00 1.50 2.00 3.00 π∗

N

µ1 > µ2 5.00 0.18 0.19 0.21 0.32 1.00 1.00 1.00 0.17

4.00 0.22 0.23 0.25 0.35 0.78 1.00 1.00 0.20

2.00 0.36 0.37 0.40 0.48 0.61 0.82 1.00 0.33

1.50 0.42 0.44 0.46 0.54 0.63 0.75 1.00 0.40

1.33 0.45 0.47 0.49 0.57 0.65 0.74 0.98 0.43

1.00 0.52 0.54 0.56 0.63 0.69 0.75 0.88 0.50

0.80 0.58 0.60 0.61 0.67 0.72 0.77 0.85 0.56

0.50 0.69 0.70 0.72 0.76 0.79 0.82 0.86 0.67

0.33 0.79 0.80 0.81 0.83 0.85 0.87 0.90 0.77

0.25 0.81 0.82 0.83 0.86 0.87 0.89 0.91 0.80

0.20 0.85 0.85 0.86 0.88 0.89 0.91 0.92 0.83

µ1 < µ2 5.00 0.15 0.15 0.14 0.12 0.11 0.09 0.08 0.17

4.00 0.19 0.18 0.17 0.14 0.13 0.11 0.09 0.20

2.00 0.31 0.30 0.28 0.24 0.21 0.18 0.14 0.33

1.50 0.38 0.36 0.34 0.30 0.25 0.21 0.15 0.40

1.33 0.41 0.39 0.37 0.32 0.27 0.23 0.15 0.43

1.00 0.48 0.46 0.44 0.37 0.31 0.25 0.12 0.50

0.80 0.53 0.51 0.49 0.42 0.34 0.26 0.06 0.56

0.50 0.64 0.63 0.60 0.52 0.39 0.18 0.00 0.67

0.33 0.75 0.74 0.71 0.61 0.35 0.00 0.00 0.77

0.25 0.78 0.77 0.75 0.65 0.22 0.00 0.00 0.80

0.20 0.82 0.81 0.79 0.68 0.00 0.00 0.00 0.83

TABLE 4. Optimal targetπ∗
ω for different values ofσ2/σ1 and

ω/(1− ω) whenΨI is the trace, compared with Neyman’sπ∗
N .

and the loss of efficiency is

Ψ̃tr = 1− min tr(V )

tr(V )
= 1− (σ1 + σ2)

2 π∗
ω (1− π∗

ω)

(σ2
2 − σ2

1)π
∗
ω + σ2

1

.

The comparisons are shown in Figure 1, for different values of the ratioσ2/σ1

equal to 4, 1.5, 0.75 and 0.25 (clockwise).
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FIGURE 1

For the binary model (2), equation (14) becomes

− ω

1− ω
sgn(p1 − p2)

[(

p2q2
p1q1

− 1

)

π + 1

]2

+

(
√

p2q2
p1q1

+ 1

)2 [( p2q2
p1q1

− 1

)

π2 + 2π − 1

]

= 0

(17)

and condition (16) translates to

(18)
ω

1− ω
<

(√
p1q1 +

√
p2q2

)2

max(p1q1, p2q2)
.

Whenp1 > p2, the unfavourable case occurs ifp1q1 ≤ p2q2. In Table 5 we show

the optimum compound targets that correspond to different choices of the weight

ratioω/(1−ω) and different values ofp1, p2, and compare them with the Neyman

allocationπ∗
N and the Play-the-Winner targetπ∗

PW =
q2

q1 + q2
.

Although π∗
PW always assigns more than half the subjects to the better treat-

ment, the PW target assignment would perform very badly for inference.
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ω

1−ω

p1 p2 0.05 0.11 0.25 1.00 1.50 2.00 2.50 3.00π∗

N
π∗

PW

0.10 0.05 0.586 0.593 0.609 0.688 0.735 0.777 0.816 0.8510.579 0.514

0.20 0.05 0.653 0.660 0.674 0.741 0.777 0.808 0.834 0.8580.647 0.543

0.20 0.10 0.578 0.585 0.601 0.682 0.730 0.774 0.814 0.8510.571 0.529

0.40 0.05 0.698 0.704 0.717 0.775 0.805 0.830 0.851 0.8690.692 0.613

0.40 0.20 0.557 0.564 0.581 0.666 0.717 0.766 0.811 0.8540.551 0.571

0.40 0.35 0.513 0.521 0.538 0.630 0.691 0.752 0.812 0.8710.507 0.520

0.65 0.40 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.8800.493 0.632

0.65 0.60 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.8800.493 0.533

0.95 0.65 0.319 0.326 0.343 0.465 0.606 0.881 1.000 1.0000.314 0.875

0.95 0.85 0.385 0.392 0.410 0.524 0.625 0.760 0.954 1.0000.379 0.750

TABLE 5. Optimal targetπ∗
ω for different values ofp1, p2 and

ω/(1−ω) whenΨI is the trace, compared with Neyman’sπ∗
N and

the Play-the-Winner targetπ∗
PW .

4. DIFFERENT CRITERIA FOR THE BINARY MODEL

4.1. Changing the measure of ethical loss. For binary responses, another possi-

ble measure of ethical loss is the expected proportion of failures:

EF (π1, π2) = π1q1 + π2q2,

which is related toΠW by a linear transformation:

EF − qmin

qmax − qmin
=
π1q1 + (1− π1)q2 − qmin

|p1 − p2|

=
1

2
+

(

1

2
− π1

)

sgn(p1 − p2) = ΠW .

If we minimize the compound criterion

Φ
(1)

ω = ωEF + (1− ω) Ψ̃I ,
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this is equivalent to minimizing criterion (4) with different weights. More pre-

cisely,

arg min
π∈[0,1]

[

ωEF + (1− ω) Ψ̃I

]

= arg min
π∈[0,1]

[

ω̄ΠW + (1− ω̄) Ψ̃I

]

whereω̄ =
ω · |p1 − p2|

ω · |p1 − p2|+ 1− ω

Basically, we are re-scaling the weight ratio, namely
ω

1− ω
|p1−p2| =

$

1−$
. The

results of Sections 3.1 and 3.2 can be applied after suitablechanges. In particular,

• for the determinant: the choiceω < 4/5 ensures̄ω < 4/5 and in this case

the optimal target is

(19) π∗
ω =

1

2
+ (p1 − p2)

1

8

ω

1− ω
;

• for the trace: replace
ω

1− ω
by

ω

1− ω
· |p1 − p2| in equation (14) and

replace condition (18) by

ω · |p1 − p2|
1− ω

<

(√
p1q1 +

√
p2q2

)2

max(p1q1, p2q2)
.

4.2. Changing the compound criterion. Now we want to deal with an altogether

different compound criterion, the one that was assumed in [2], namely:

(20) Φ
(2)

ω (π1, π2) = ω

(

EF (π1, π2)

minEF

)

+ (1− ω)

(

ΨI(π1, π2)

minΨI

)

.

Since the minimum value ofEF is simply qmin, by differentiation the defining

equation of this new compound target is

(21) −ω
(p1 − p2)

qmin
+ (1− ω)

1

Ψ∗
I

∂ΨI

∂π
= 0.

4.3. The targets wrt criterion (20). If ΨI = D-optimality, equation (21) be-

comes

− ω

1− ω

p1 − p2
qmin

4p1q1p2q2 +
∂

∂π

(

p1q1p2q2
π(1− π)

)

= 0,

i.e.

(22) − ω

1− ω

4(p1 − p2)

qmin
+

2π−1

π2(1− π)2
= 0,

and the optimal target is obtained by solving (22) in(0, 1). Since the LHS of (22)

is monotonic and asπ → 0 and1, the limits are−∞ and+∞, respectively, there

is a unique solution in(0, 1). The important difference from considering criterion
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(4) is that in this case the optimal solution depends on the actual values ofp1, p2

and not just on the sign of their difference.

Remark 4. It is evident from (22) that this target will always assign more than half

the subjects to the better treatment, since sgn(2π − 1) = sgn(p1 − p2).

If ΨI = trace-optimality, the defining equation is

ω

(1− ω)

p1 − p2
qmin

(
√
p1q1 +

√
p2q2)

2 − ∂

∂π

(

p1q1
π

+
p2q2
1− π

)

= 0

namely

(23)
ω

(1− ω)

p1 − p2
qmin

(√

p2q2
p1q1

+ 1

)2

−

(

p2q2
p1q1

− 1
)

π2 + 2π − 1

π2(1− π)2
= 0 .

Remark 5. It is shown in [2] that with this target allocation, the majority of

subjects will receive the better treatment if the weight function is chosen so that

ω(x, y) ≥ 1/2 whenx+ y > 1.

Table 6 shows the values of the compound targets that solve (22) and (23), cor-

responding to fixed weightω = 1/2 (π∗
ω=1/2 andπ∗∗

ω=1/2, respectively) and to

ω = (|p1 − p2| + 1)/2 (π∗
ωp

andπ∗∗
ωp

, respectively) for several choices ofp1 and

p2.

The targetsπ∗∗
ω=1/2 andπ∗∗

ωp
assign more patients to the better treatment, whereas

the bottom part of Table 6 (outlined) shows the values of(p1, p2) for which the

Neyman target penalizes the better treatment. Clearly the values ofπ∗
ω=1/2 and

π∗
ωp

, and ofπ∗∗
ω=1/2 andπ∗∗

ωp
are very close when|p1 − p2| is small.

5. CONVERGENCE TO THE OPTIMAL ALLOCATION: RESPONSE-ADAPTIVE

EXPERIMENTS

As shown previously, the target allocation depends in general on some or all the

unknown parameters of the model, e.g.π∗
ω = π∗

ω(θ) with θ ⊆ {µ1, σ
2
1 ;µ2, σ

2
2}, and

when this function is continuousresponse-adaptiveprocedures may be called for.

These designs, also calledresponse-drivenor data-dependent, use the observed

responses as well as past allocations to modify the experiment as we go along in

order to gradually approach the desired target allocation.
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D-optimality trace-optimality

p1 p2 π∗
ω=1/2 π∗

ωp
π∗∗
ω=1/2 π∗∗

ωp
π∗
N π∗

PW

0.10 0.05 0.507 0.508 0.586 0.587 0.579 0.514

0.20 0.05 0.523 0.531 0.668 0.675 0.647 0.543

0.20 0.10 0.516 0.519 0.587 0.590 0.571 0.529

0.40 0.05 0.570 0.631 0.744 0.782 0.692 0.613

0.40 0.20 0.541 0.561 0.590 0.609 0.551 0.571

0.40 0.35 0.510 0.512 0.517 0.518 0.507 0.520

0.65 0.40 0.584 0.630 0.578 0.624 0.493 0.632

0.65 0.60 0.518 0.520 0.511 0.513 0.493 0.533

0.95 0.65 0.802 0.852 0.724 0.796 0.314 0.875

0.95 0.85 0.686 0.709 0.599 0.629 0.379 0.750

TABLE 6. Values of the compound targets forD− and trace-

optimality, corresponding toω = 1/2 andωp = (|p1 − p2|+1)/2,

for different choices ofp1 andp2.

Now we briefly describe the general framework of these sequential methods.

Starting withn0 observations on each treatment, usually assigned by using re-

stricted randomization, e.g. permuted block designs, an initial non-trivial parame-

ter estimation̂θ0 is derived. Then, at each stepn (n > 2n0) let θ̂(n) be a consistent

parameter estimator ofθ based on the firstn observations, so that the optimal target

will be estimated by all the data up to that step. Letπ̂∗
ω(n) = π∗

ω(θ̂(n)). Moreover,

letN1(n) andN2(n) be the number of patients assigned toT1 andT2, respectively,

with N1(n) +N2(n) = n; additionally,π(n) = n−1N1(n) is the random propor-

tion of allocation toT1 and, symmetrically,1− π(n) to T2. When patientn+ 1 is

ready to be randomized, s/he will be assigned toT1 with probabilityPn+1 (conse-

quently, toT2 with probability1−Pn+1) and the problem consists in choosing the

allocation probabilities{Pn, n ≥ 1} so that, asn tends to infinity,π(n) converges

to π∗
ω(θ) in some sense.

One of the most effective family of randomization procedures is the Doubly

Adaptive Biased Coin Design (D-BCD) analyzed by Hu and Zhang[7] (see also

references therein). The rationale behind this procedure consists in favouring the
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allocation of a given treatment, the more so the more its current allocation pro-

portion is smaller than the current estimate of the target. The D-BCD consists in

assigning treatmentT1 to subjectn + 1 with probabilityPn+1 = g(π(n); π̂∗
ω(n))

for all n > 2n0, where the allocation functiong(· ; ·) is chosen by the experimenter

so as to force the treatment assignments on the basis of some measure of the “dis-

similarity” between their actual allocation proportionx and the current estimate of

the optimal targety. The functiong needs to satisfy the following conditions:

i) g(x; y) is continuous on(0; 1)2;

ii) g(x;x) = x;

iii) g(x; y) is decreasing inx and increasing iny;

iv) g(x; y) = 1− g(1 − x; 1− y) for all x, y ∈ (0; 1)2.

Observe that the D-BCD will force the allocation proportionto the target, since

from conditions ii) and iii), whenx > y then g(x, y) < y, whereas ifx < y,

theng(x, y) > y. However, condition i) is quite restrictive since does not include

several widely-known procedures based on discontinuous allocation functions such

as Efron’s Biased coin design and its extensions [8], while condition iv) simply

guarantees thatT1 andT2 are treated symmetrically.

The following result ensures the convergence of the D-BCD tothe chosen com-

pound optimal target allocationπ∗
ω(θ) (see for instance [7]):

Proposition 6. If the compound optimal targetπ∗
ω(θ) ∈ (0, 1) and is continuous

in θ, adopting the D-BCD

lim
n→∞

π(n) = π∗
ω(θ) and lim

n→∞
θ̂(n) = θ a.s.

Now we give some examples belonging to the D-BCD family:

Method 1. The most “intuitive” allocation rule consists in lettingg(x; y) = y; this

means that treatmentT1 will be assigned to subjectn+ 1 with probability

(24) Pn+1 = π̂∗
ω(n) .

When estimation is made by ML, this procedure is called the Sequential Maxi-

mum Likelihood (SML) or recursive Maximum Likelihood design. See [1] and

references therein.
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Method 2. Hu and Zhang [7] suggest the following family of allocation functions

(25) gγ(x; y) =
y(y/x)γ

y(y/x)γ + (1− y)[(1− y)/(1 − x)]γ
,

where the non-negative parameterγ controls the degree of randomness of each

allocation: if γ → 0 the randomization function does not dependent on the cur-

rent allocation proportion and this procedure correspondsto the SML design in

(24), whereas asγ grows the allocation tends to be forced deterministically to the

estimated target.

Method 3. A new proposal of allocation function is:

(26) g(x; y) =
F
[

G
( y
x

)

F−1(y)
]

F
[

G
( y
x

)

F−1(y)
]

+ F
[

G
(

1−y
1−x

)

F−1(1− y)
] ,

whereF (z), G(z) : R
+ → R

+ are continuous and increasing functions and

G(1) = 1. Note that ifF (z) = z andG(z) = zγ one obtainsgγ(x; y) in (25).

Example 7. SetG(z) = z. We let

(27) g̃(x; y) =
F
( y
xF

−1(y)
)

F
(y
xF

−1(y)
)

+ F
(

1−y
1−xF

−1(1− y)
) ,

whereF (z) = 2√
π

∫ z
0 e−t2dt (thisF is called the error function).

Figure 2 shows the behaviour of the functiong̃ in (27). Table 7 shows the com-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 2. Plots ofg̃(x; y) asx varies in(0; 1). The values ofy

from the bottom curve to the top curve are:0.2, 0.4, 0.6 and0.8,

respectively.

parisons between the above mentioned randomization functions, i.e. Method 1,

Method 2 and Method 3, in order to stress the different impactof these procedures
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in terms of treatment allocations when both the target estimate and the allocation

proportion vary.

x y g0 (SML) g1 g2 g̃

→ 0 0.1 0.1 1.000 1.000 0.537

→ 0 0.3 0.3 1.000 1.000 0.653

→ 0 0.5 0.5 1.000 1.000 0.792

→ 0 0.7 0.7 1.000 1.000 0.916

→ 0 0.9 0.9 1.000 1.000 0.990

0.2 0.1 0.1 0.047 0.022 0.051

0.2 0.3 0.3 0.424 0.557 0.407

0.2 0.5 0.5 0.800 0.941 0.735

0.2 0.7 0.7 0.956 0.995 0.897

0.2 0.9 0.9 0.997 0.999 0.988

0.4 0.1 0.1 0.018 0.003 0.025

0.4 0.3 0.3 0.216 0.151 0.227

0.4 0.5 0.5 0.600 0.692 0.585

0.4 0.7 0.7 0.891 0.966 0.859

0.4 0.9 0.9 0.992 0.999 0.984

0.6 0.1 0.1 0.008 0.001 0.016

0.6 0.3 0.3 0.109 0.034 0.141

0.6 0.5 0.5 0.400 0.308 0.415

0.6 0.7 0.7 0.784 0.850 0.773

0.6 0.9 0.9 0.982 0.997 0.975

0.8 0.1 0.1 0.003 ' 0 0.012

0.8 0.3 0.3 0.044 0.005 0.103

0.8 0.5 0.5 0.200 0.059 0.265

0.8 0.7 0.7 0.577 0.443 0.593

0.8 0.9 0.9 0.953 0.979 0.949

TABLE 7. Values of the randomization functiongγ in (25) with

γ = 0, namely the SML design,γ = 1, γ = 2 andg̃ in (27).

The SML design (Method 1) is not affected by the current allocation propor-

tions but depends only on the current estimate of the target.As an example, when
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y = 0.7 the SML design favours the allocation ofT1 by assigningT1 with prob-

ability 0.7, both in case ofx = 0.05 andx = 0.8. Method 2, however, strongly

depends on the current allocation proportion. Indeed, the top part of Table 7 shows

that if treatmentT1 has (almost) never been assigned, then it will be allocated with

probability 1 even if the target allocation is extremely small (e.g. y = 0.1 or

y = 0.3). Furthermore, starting fromγ = 2 Method 2 tends to be highly deter-

ministic. On the contrary, the proposedg̃ in (27) has an interesting behaviour as

regards the drawbacks of Methods 1 and 2, since it forces the allocation decisively

onto the target, when needed, guaranteeing at the same time asuitable degree of

randomness.

5.1. Simulations. In order to carry out some finite sample comparisons between

the three above-mentioned allocation rules, namely Method1 (i.e. the SML de-

sign), Method2 (Hu and Zhang’sgγ in (25) with γ = 1) and Method3 (rule g̃ in

(27)), we have performed a simulation study where we take into account normal

and binary responses and also the two different compound criteria (4) and (20).

Figures 3-7 below show the behaviour of the allocation proportion of treatmentT1

as it approaches the compound target. Each figure shows the plots of10 simula-

tions withn = 1000 subjects andn0 = 4. As regards the normal model (Fig. 3),

we setµ1 = 1, µ2 = 0 and three different scenarios for the standard deviations,

i.e. σ1 = 1 andσ2 = 5, σ1 = 5 andσ2 = 1, σ1 = 1 andσ2 = 1.1 , where the

chosen optimum compound target is (8) with weight functionω in (11). Moreover,

in the binary case we have considered both compound criteria(4) (Fig. 4-5) and

(20) (Fig. 6-7) assuming the trace-optimality criterion. Regarding criterion (4), we

have taken into accountω = 4
5 |p1 − p2| (Fig. 4) andω = 1

2 (Fig. 5), while for cri-

terion (20) we have assumedω = |p1−p2|+1
2 (Fig. 6) andω = 1

2 (Fig. 7). We have

taken into account three different parameter settings, namely p1 = 0.3, p2 = 0.2

(top panel of the figures),p1 = 0.65, p2 = 0.4 (middle panel of the figures) and

p1 = 0.95, p2 = 0.65 (bottom panel of the figures).

In general, Methods2 and3 perform better than Method1. Indeed, as theoreti-

cally shown in [7], the SML design is characterized by slowerconvergence, since it

is based only on the current estimate of the target (independently of the allocation
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proportion) and the MLE are characterized by strong variability for smalln. More-

over, graphical evidence points to the fact that Methods2 and3 guarantee stable

behaviour around the target starting fromn = 300 units, whereas all the procedures

have strong variability for small sample trials (in particular whenn < 200).

As regards normal responses (Fig. 3), simulations show thatthe convergence is

not affected by the values of the standard deviations and Methods2 and3 guarantee

a better convergence to the target. Whereas, for binary response trials (Fig. 4-7)

the variability of the procedures is limited when the responses are approximately

homoscedastic (i.e.p1 = 0.65 andp2 = 0.4).

Furthermore, as regards the comparison between the two different compound

criteria, there seem to be no significant differences in terms of convergence to the

corresponding targets.



S
O

M
E

R
E

C
E

N
T

D
E

V
E

L
O

P
M

E
N

T
S

IN
T

H
E

D
E

S
IG

N
O

F
A

D
A

P
T

IV
E

C
L

IN
IC

A
LT

R
IA

L
S

21

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIGURE 3. Convergence to the optimum compound targetπ∗
ω in (8) for methods 1 (first column), 2 (second column) and 3 (third

column) for normal responses withω = 4
5

[

1− exp

(

− |µ1−µ2|√
σ2
1+σ2

2

)]

andµ1 = 1, µ2 = 0 for σ1 = 1 andσ2 = 5 (top),σ1 = 5

andσ2 = 1 (middle),σ1 = 1 andσ2 = 1.1 (bottom).
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FIGURE 4. Convergence to the optimum compound targetπ∗
ω solving (17) for methods 1 (first column), 2 (second column) and

3 (third column) for binary responses withω = 4
5 |p1 − p2| andp1 = 0.3, p2 = 0.2 (top), p1 = 0.65, p2 = 0.4 (middle) and

p1 = 0.95, p2 = 0.65 (bottom).
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FIGURE 5. Convergence to the optimum compound targetπ∗
ω solving (17) for methods 1 (first column), 2 (second column) and

3 (third column) for binary responses withω = 1
2 andp1 = 0.3, p2 = 0.2 (top), p1 = 0.65, p2 = 0.4 (middle) andp1 = 0.95,

p2 = 0.65 (bottom).
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FIGURE 6. Convergence to the optimum compound targetπ∗
ω solving (23) for methods 1 (first column), 2 (second column) and

3 (third column), for binary responses withω = |p1−p2|+1
2 andp1 = 0.3, p2 = 0.2 (top), p1 = 0.65, p2 = 0.4 (middle) and

p1 = 0.95, p2 = 0.65 (bottom).
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FIGURE 7. Convergence to the optimum compound targetπ∗
ω solving (23) for methods 1 (first column), 2 (second column) and

3 (third column), for binary responses withω = 1
2 andp1 = 0.3, p2 = 0.2 (top), p1 = 0.65, p2 = 0.4 (middle) andp1 = 0.95,

p2 = 0.65 (bottom).
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6. THE HOMOSCEDASTIC MODEL WITH ONE CATEGORICAL COVARIATE

We now further specify (1) as follows

(28) E(Yik) = τk + zt
iβ , V (Yi) = σ2 i = 1, 2, . . . n

namely the observations are homoscedastic and the responsedepends on the treat-

ment and on one random categorical covariateZ with J fixed levels. The subjects

will be subdivided into strata (blocks) according to the level of Z. This case was

dealt with in [3]. The covariate distribution in the population is assumed to be

known: ρj = Pr(Z = zj) for j = 1, . . . , J ; β is the vector of block effects

andzi is the indicator function of the block for theith observation. Conditionally

on the covariate and the treatment allocations, patients’ responses are assumed to

be independent. In the statistical literature (28) is described as a 2-factor mixed

model without treatment-block interaction; in other words, the superiority of one

treatment over the other (meaningµ1 > µ2 or vice-versa) isuniformly constant

over the blocks. The inferential interest typically lies intesting or estimating the

differenceτ1 − τ2 as precisely as possible andβ is usually a nuisance parameter.

LetNj (j = 1, . . . , J) with
∑J

j=1Nj = n be the random size of blockj aftern

observations and letπ = (π1, . . . , πJ )
t denote the vector of allocation proportions

to T1 in each block. LetZ = (Z1, . . . , Zn)
t be the vector of covariates for then

subjects.

From block design theory we obtain

V ar(τ̂1 − τ̂2|Z) = σ2







n−
J
∑

j=1

(2πj − 1)2Nj







−1

,

so the inferential loss depends on the design through the allocation vectorπ and the

block sizes. The loss is a minimum if the treatments are equally replicated within

each block (for a recent discussion see [4]). The loss is random, since it depends on

the block sizes which are not under the experimental control, therefore one must

average over the covariate distribution. After some suitable simplifications and

approximations we can let our criterion be

(29) Ψ̃I(π) = EZ



n−1
J
∑

j=1

(2πj − 1)2Nj



 =

J
∑

j=1

(2πj − 1)2ρj

ranging in[0, 1].
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The percentage of patients assigned to the worse treatment is

(30) ΠW (π) =
1

2
+





1

2
−

J
∑

j=1

πj ρj



 sgn(τ1 − τ2).

We choose the compound criterion of Section 2, i.e.

(31) Φω(π ) = ωΠW (π) + (1− ω) Ψ̃I(π).

Setting the partial derivatives with respect toπj equal to0 we find the set of equa-

tions

−ω sgn(τ1 − τ2) + 4(1 − ω)(2πj − 1) = 0 for all j = 1, ..., J.

Thus the same result as (7) applies to each block so that the optimal targetπ∗
ω =

(π∗
ω1, . . . , π

∗
ωJ )

t is given by

(32) π∗
ωj =

1

2
+ sgn(τ1 − τ2)min

{

1

8

(

ω

1− ω

)

,
1

2

}

for all j = 1, . . . , J.

Observe that the optimal compound target does not depend on the covariate proba-

bilities ρj ’s and if the weight function is chosen so thatω < 4/5, thenπ∗
ωj ∈ (0; 1).

WhenJ = 1 (no covariates), thenτ1−τ2 = µ1−µ2 and (32) reduces to expression

(7).

Remark 8. This allocation is always “ethical”, i.e. more subjects areassigned

to the better treatment, whatever their covariate value. Since the compound opti-

mal allocations in all the blocks are the same as (7), there isno need for further

examples.

The optimumπ∗
ω can be targeted by a suitable implementation of the above

mentioned sequential methods adjusted for covariates by applying the same ran-

domization function for each block. However, in [3] a different method was em-

ployed namely the randomization function

(33) gj(x; y) =
y(y/x)γj

y(y/x)γj + (1− y)[(1− y)/(1 − x)]γj

with γj ∝ ρ−1
j for all j = 1, . . . , J , so the allocations for the profiles which may

be potentially under-represented will be forced towards the optimal target.
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