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Abstract

We prove that strong ergodicity of a Markov process is linked with a spectral
radius of a certain “associated” semigroup operator, although, not a “natural” one.
We also give sufficient conditions for weak ergodicity and provide explicit estimates
of the convergence rate. To establish these results we construct a modification of
the Vaserstein coupling. Some applications including mixing properties are also
discussed.

1 Introduction

A general question about equilibrium distributions for homogeneous Markov processes
may be posed as follows. If a Markov process converges to the stationary distribution,
then how fast is convergence? In this paper we focus on quantitative estimates on the
convergence rate in the total variation metric.

Recall that the total variation distance between two probability measures µ and ν on
a measurable space (E,E) is defined by

‖µ− ν‖TV := 2 sup
A∈E
|µ(A)− ν(A)|.

Let Xn, n ∈ Z+ be a Markov process on (E,E) and assume it has a stationary measure
π. Consider the measure µxn(A) := Px(Xn ∈ A), x ∈ E, A ∈ E. The process Xn is called
strongly ergodic if there exist C > 0, λ > 0 such that

sup
x∈E
‖µxn − π‖TV ≤ Ce−λn. (1.1)

The process Xn is called weakly ergodic if for all x ∈ E we have ‖µxn − π‖TV → 0 as
n→∞.

One possible approach to estimate the constant λ in (1.1) was introduced by Diaconis
and Stroock [2]. They have shown that if an irreducible finite state-space Markov chain is
reversible, then this Markov chain is strongly ergodic with λ > ln gap(P), where P is the
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transition probability matrix and gap(P) denotes the largest out of the eigenvalue moduli
which are strictly less than one. (For positive operators this value is called spectral gap;
notice that for reversible Markov chain its transition matrix is self-adjoint.)

In this paper a more general situation is considered, which also includes non-reversible
processes. To estimate the convergence rate in strongly ergodic as well as in weakly
ergodic cases we use the coupling method.

This method dates back to Doeblin [4] and was later developed by Doob [5], Vaserstein
[19], Pitman [15], Griffeath [7], Nummelin [14] and many others. Pitman and Griffeath
proposed different constructions of maximal coupling, in which the probability of coupling
is as big as possible at any time. However, as shown in [7], any construction of maximal
coupling can not be Markovian, which significantly complicates a convergence rate esti-
mation. On the other hand, Vaserstein [19] proposed a “maximal” Markovian coupling.
This coupling is “maximal” in the sense that the probability of coupling in one step is as
big as possible.

We modify the Vaserstein’s construction and adapt his ideas to a more general state-
space. This enables us to find a new sufficient condition which guarantees strong ergodicity
of a Markov process. A natural name for it seems to be a local Markov–Dobrushin’s
condition, because it localizes Dobrushin’s ergodic coefficient from [3] and, in turn, this
coefficient considered in time–homogeneous case is based on the construction proposed
by Markov himself [12, 13].

It turned out that the decay rate λ is related to a spectral radius of a certain semigroup
operator. A further modification of the coupling technique allows to deal with weakly
ergodic case and obtain estimates which depend on the initial state of a Markov process.
We consider both exponential and polynomial convergence.

Notice also that in this paper we establish only upper bounds of the rate of convergence.
For the corresponding lower bounds, see, e.g., [21].

We ought to comment about relation to some other well-known coupling methods,
see, for example, [1, 11, 14, 16], etc. Most of them are based on so called generalized
regeneration. Our approach is not a generalized regeneration.

Recurrence assumptions used in this paper are formulated in terms of moments of
stopping times. To the authors’ point of view, this is an adequate alternative to conditions
in terms of Lyapunov functions, although, they are, clearly, close enough. The latter
approach is widely known in the literature, but will not be used in this paper. So, we give
only a minimal number of references about it, see [9, 10, 18].

The rest of the paper is organized as follows. We describe a modification of the Vaser-
stein construction in Section 2.1. The main results on convergence, including both strong
and weak ergodicity, are formulated in Section 2.2. Section 3 contains some examples and
applications, including estimation of mixing coefficients and central limit theorem. All
proofs are placed in Section 4.

2 Construction of Coupling and Main Results

2.1 Coupling

The Vaserstein’s coupling construction was proposed in [19]. It provides a coupling for
two Markov chains which have a countable state space. This chapter contains two main
lemmas which allow to construct a Vaserstein-type coupling for two homogeneous Markov
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processes. The lemmas are crucial in establishing a new representation for the convergence
rate of a Markov process to its stationary regime and will be used in the sequel.

Throughout this paper we assume that (X1
n)n∈Z+

and (X2
n)n∈Z+

are homogeneous
Markov processes on (R,B(R)) with the same transition measures. Furthermore, we sup-
pose that the transition measure has a density p(u, v) with respect to some non-negative
sigma-finite measure Λ, i.e.

P
(
X1
n+1 ∈ B|X1

n = u
)

=

∫
B

p(u, v)Λ(dv), (2.1)

for all B ∈ B(R). As it is natural for Markov processes (see, e.g., [6]) we assume that the
function p(·, y) is Borel measurable for each y.

We recall that a coupling is a bivariate processes X̃n =
(
X̃1
n, X̃

2
n

)
such that X̃1

n
d
= X1

n,

X̃2
n

d
= X2

n for all n = 0, 1, . . . and X1
n = X2

n for all n > n0(ω). In other words, two copies
of the Markov process start from different states and are pasted together after they reach
the same state. For motivation of this definition and related discussion see, e.g., [15].

We start with a simple lemma which demonstrates our ideas and provides a coupling
between two random variables.

Let X1 and X2 be two random variables with densities p1(t) and p2(t) with respect to
Λ, correspondingly. Define

q :=

+∞∫
−∞

p1(t) ∧ p2(t) Λ(dt).

and assume that 0 < q < 1. Further we will explain how to deal with degenerate cases
q = 0 and q = 1. Let us introduce independent random variables η1, η2 and ξ, with the
following densities:

pη1(t) = (1− q)−1
(
p1(t)− p1(t) ∧ p2(t)

)
,

pη2(t) = (1− q)−1
(
p2(t)− p1(t) ∧ p2(t)

)
,

pξ(t) = q−1
(
p1(t) ∧ p2(t)

)
.

Let ζ be a random variable independent of η1, η2 and ξ taking values in {0, 1} such that

P(ζ = 0) = q, P(ζ = 1) = 1− q.

Lemma 1. Assume that q 6= 0 and q 6= 1. Define the random variables X̃1 and X̃2 by
the following formula:

X̃1 := η1 I(ζ = 1) + ξ I(ζ = 0),

X̃2 := η2 I(ζ = 1) + ξ I(ζ = 0).

Then X̃1 d
= X1 and X̃2 d

= X2. Moreover, P(X̃1 = X̃2) = q.

Now let us generalize lemma 1 to a sequence of random variables and present our cou-
pling construction. This construction will be used in the following to obtain an estimate
of the total variation distance between the random variables X1

n and X2
n.
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Let us define

q(u, v) :=

+∞∫
−∞

p(u, t) ∧ p(v, t) Λ(dt), (2.2)

q0 :=

+∞∫
−∞

pX1
0
(t) ∧ pX2

0
(t) Λ(dt). (2.3)

It is clear that 0 ≤ q(u, v) ≤ 1 for all u, v.
We assume that X1

0 and X2
0 have different distributions, so q0 < 1. Otherwise we

obviously have X1
n

d
= X2

n for all n, and the coupling is trivial, namely X̃1
n = X̃2

n := X1
n.

Introduce a Markov process (η1
n, η

2
n, ξn, ζn). If q0 = 0 then we set

η1
0 := X1

0 , η
2
0 := X2

0 , ξ0 := 0, ζ0 := 1.

Otherwise if 0 < q0 < 1 we apply lemma 1 to the random variables X1
0 and X2

0 to create
η1

0, η2
0, ξ0 and ζ0.

Define the transition probability density ϕ with respect to Λ for this process,

ϕ(x, y) := ϕ1(x, y1)ϕ2(x, y2)ϕ3(x, y3)ϕ4(x, y4), (2.4)

where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and if 0 < q(x1, x2) < 1, then

ϕ1(x, u) := (1− q(x1, x2))−1
(
p(x1, u)− p(x1, u) ∧ p(x2, u)

)
,

ϕ2(x, u) := (1− q(x1, x2))−1
(
p(x2, u)− p(x1, u) ∧ p(x2, u)

)
,

ϕ3(x, u) := I(x4 = 1)q(x1, x2)−1p(x1, u) ∧ p(x2, u) + I(x4 = 0)p(x3, u),

ϕ4(x, u) := I(x4 = 1)
(
δ1(u)(1− q(x1, x2)) + δ0(u)q(x1, x2)

)
+ I(x4 = 0)δ0(u). (2.5)

If q(x1, x2) = 0, then we set1 ϕ3(x, u) := I(x4 = 1) I(x1 < u < x1 + 1) + I(x4 = 0)p(x3, u)
and if q(x1, x2) = 1 then we set ϕ1(x, u) = ϕ2(x, u) := I(x1 < u < x1 + 1). Here
notation δa(u) stands for the delta measure concentrated at a. As it follows easily from the
construction, the random variables

(
η1
n+1, η

2
n+1, ξn+1, ζn+1

)
are conditionally independent

given (η1
n, η

2
n, ξn, ζn).

Lemma 2. Define random variables X̃1
n and X̃2

n, n ∈ Z+, by the following formulae:

X̃1
n := η1

n I(ζn = 1) + ξn I(ζn = 0),

X̃2
n := η2

n I(ζn = 1) + ξn I(ζn = 0).

Then X̃1
n

d
= X1

n, X̃2
n

d
= X2

n for all n ∈ Z+.

Moreover, X̃1
n = X̃2

n for all n ≥ n0(ω) := inf{k ≥ 0 : ζk = 0} and

P(X̃1
n 6= X̃2

n) ≤ (1− q0)E
n−1∏
i=0

(1− q(η1
i , η

2
i )). (2.6)

1As it follows from the proof below, in degenerated cases q(x1, x2) = 0 (respectively q(x1, x2) = 1)
functions ϕ3(x, u) I(x4 = 1) (respectively ϕ1(x, u) and ϕ2(x, u)) can be defined arbitrarily.
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Informally speaking, the processes η1
n and η2

n represent X1
n and X2

n, correspondingly,
under condition that the coupling was not successful until time n. On the other hand,
the process ξn represents both X1

n and X2
n, if the coupling occurs before time n. Finally,

the process ζn represents the moment of coupling. Namely, if ζn = 0 then the coupling
occurs before time n and vice versa. As it follows from (2.5),

P (ζn+1 = 0|ζn = 0) = 1,

P (ζn+1 = 0|ζn = 1, η1
n = x1, η2

n = x2) = q(x1, x2).

Thus, if two processes were coupled at time n, then they remain coupled at time n + 1,
and if they were not coupled, then the coupling occurs with the probability q(η1

n, η
2
n). We

stress once again that at each time probability of coupling at the next step is as large as
possible, given the current states.

Remark 1.
(
X̃1
n

)
n∈Z+

and
(
X̃2
n

)
n∈Z+

are homogeneous Markov processes with respect to

their natural filtration. Moreover,(
X̃1
n

)
n∈Z+

d
=
(
X1
n

)
n∈Z+

and
(
X̃2
n

)
n∈Z+

d
=
(
X2
n

)
n∈Z+

. (2.7)

Thus the constructed coupling is Markovian.

2.2 Main results

In this chapter we establish some results about convergence of homogeneous Markov
processes in the total variation metric.

We recall that the total variation distance between two random variables X and Y is
defined as the total variation distance between their laws, i.e.

dTV (X, Y ) := 2 sup
A∈B(R)

|P (X ∈ A)− P (Y ∈ A)|.

Remind that (X1
n)n∈Z+

and (X2
n)n∈Z+

are homogeneous Markov processes with the
same transition probability densities p(u, v) with respect to measure Λ. Without loss of
generality, we may assume that the processes (X1

n)n∈Z+
and (X2

n)n∈Z+
are independent.

Indeed, if this is not the case, then we can consider their independent copies.
Let us introduce the operator A

Af(x) := (1− q(x))E {f(η1)| η0 = x} , (2.8)

where x = (x1, x2) is a 2-dimensional vector, q(x) is defined in (2.2), and ηi = (η1
i , η

2
i ) is

the first two coordinates of the Markov process (η1
i , η

2
i , ξi, ζi) defined in (2.4).

Our goal is to find an explicit upper bound of the total variation distance between X1
n

and X2
n. In particular, if X2

n has a stationary distribution π, then we get a convergence
rate of X1

n to its stationary regime. We discuss two different approaches.
The first approach is based on spectral properties of the operator A. It is easy to see

that definition (2.8) is equivalent to the following:

Af(x1, x2) = (1− q(x1, x2))

∫
R

∫
R

f(t1, t2)ψ(x1, x2, t1)ψ(x2, x1, t2) Λ(dt1)Λ(dt2), (2.9)
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where the function ψ(u, v, w) := (1− q(u, v))−1 (p(u,w)− p(u,w) ∧ p(v, w)) if q(u, v) < 1
and ψ(u, v, w) := I(u < w < u + 1) if q(u, v) = 1. Therefore A is an integral operator
and there exist a number of methods for estimating its spectral radius in various function
spaces.

It turns out that strong ergodicity of a Markov process is related to a spectral radius
of A,

r(A) = lim
n→∞

n
√
‖An‖. (2.10)

Here the norm ‖An‖ should be specified, however any functional space norm may be used
if ‖1‖ = 1 in this space. We use the spaces L∞ and Lp. Although estimates in the space
Cb of bounded continuous functions might provide a better upper bound of the constant
C in (1.1), they lead to the same bound of λ and require additional conditions on the
transition density p(u, v). Therefore we do not consider these estimates.

Theorem 1. The operator A can be considered as a bounded linear operator on L∞ =
L∞(R2,B(R2),Λ× Λ) and has a spectral radius r(A) ≤ 1.

Furthermore, if r(A) 6= 1 then for any ε > 0 there exists N such that for n > N

dTV (X1
n+1, X

2
n+1) ≤ 2(1− q0)e−n(| ln r(A)|−ε). (2.11)

In some cases it may be easier to work with Lp spaces, in particular, with L2. Hence,
we state one immediate corollary of this type.

Corollary 1. Let the following conditions hold:

1) The operator A is well-defined as A : Lp → Lp, 1 ≤ p < +∞ where we denote Lp =
Lp(R2,B(R2), µ), the measure µ is finite and is of form µ(dx) = m(x) Λ(dx1)Λ(dx2),
m(x) 6= 0.

2) The random variables X1
0 and X2

0 have densities g(u) and h(u) correspondingly with
respect to the measure Λ.

3) The spectral radius r(A) of the operator A is less than 1.

Then for any ε > 0 there exists N such that for n > N

dTV (X1
n, X

2
n) ≤ Ce−n(| ln r(A)|−ε), (2.12)

where

C :=
2

(1− q0)

∥∥∥(g(u)− g(u) ∧ h(u))(h(v)− g(v) ∧ h(v))

m(u, v)

∥∥∥
Lq
,

and p−1 + q−1 = 1.

The second approach uses spectral properties along with recurrence and allows to
obtain a non-uniform estimate of convergence rate under more general conditions. It is
based on the following simple observation. If the operator A is considered on the space
L∞ (as in Theorem 1) then we obviously have r(A) < ‖A‖∞ = 1− inf

x∈R
q(x). However this

infimum might equal 0 in some cases, making this estimate useless. So we introduce a
“good ” set

K(ε) := {(x1, x2) : q(x1, x2) ≥ ε},
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where 0 ≤ ε ≤ 1. Roughly speaking, if the process (X1
n, X

2
n) visits K(ε) frequently

enough, then the rate of convergence can be exponential or polynomial depending on the
frequency of visits. This is the main idea of the alternative approach. It should be noticed
that, of course, the use of recurrence in general is one of the main ideas in the whole area.
We only link it here to the newly introduced operator A and its spectral radius.

Let B ∈ B(R2) and define τB := inf{t > 0 : ηt ∈ B}. In other words, τB is a first time
when the process ηn “hits” the set B. Similarly we denote TB := inf{t > 0 : (X1

t , X
2
t ) ∈

B}.

Proposition 1. Assume that there exist ε > 0, λ > 0, M > 0, B ⊂ K(ε) such that the
following conditions hold:

1) Q := Eeλτ
B
<∞.

2) For all x = (x1, x2) ∈ B we have Exe
λτB ≤M .

Then there exists a constant C > 0, which does not depend on initial distribution (X1
0 , X

2
0 )

such that
dTV (X1

n, X
2
n) ≤ CQe−nθ, (2.13)

where

θ =
| ln(1− ε)|λ

lnM + | ln(1− ε)|
.

Remark 2. Actually, we can change the first condition of proposition 1 to

Q1 := E I(q(η0) < 1)eλτ
B

<∞.

Moreover it is sufficient to check the second condition of the above theorem only for x ∈
B \K(1).

We also can change inequality (2.13) to the following

dTV (X1
n, X

2
n) ≤ CQ1e

−nθ.

Conditions 1 and 2 in proposition 1 are formulated in terms of the derived process
ηn. Let us reformulate these conditions in terms of a first hit time of the original process
(X1

n, X
2
n).

Theorem 2. Assume that there exist ε > 0, λ > 0, M > 0, B ⊂ K(ε) such that the
following conditions hold:

1) Q2 := EeλT
B
<∞.

2) For all x = (x1, x2) ∈ B \K(1) we have Exe
λTB < M .

Then there exists a constant C > 0 which does not depend on the initial distribution
(X1

0 , X
2
0 ) such that

dTV (X1
n, X

2
n) ≤ CQ2e

−nθ1 , (2.14)

where

θ1 =
| ln(1− ε)|λ

lnM + 3| ln(1− ε)|
. (2.15)
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Notice that setting B = K(ε) in Theorem 2 may not be optimal. Namely, denote all
sets (λ,M) which suit the conditions 1) and 2) of Theorem 2 for a given B ⊂ K(ε) by
A(B). Then it may happen that B1 ⊂ B2 ⊂ K(ε), but

sup
(λ,M)∈A(B1)

θ1(λ,M) > sup
(λ,M)∈A(B2)

θ1(λ,M).

In other words, for given ε, it may make sense to consider an optimization problem and
possibly not to take the maximal K(ε) itself. In particular, even if the process satisfies the
global Markov–Dobrushin assumption, the best constant in the strong ergodicity condition
may be better than | ln(1 − ε)| (cf. below Example 1) if a localized version is used with
some B, see Example 4 below.

Now let us consider the case when TB has only polynomial moments, rather than
exponential. It means that the process (X1

n, X
2
n) visits B less frequently. So it is natural,

that in this case the rate of convergence is slower than exponential. Namely the following
theorem is true.

Theorem 3. Assume that there exist ε > 0, λ ≥ 1, M > 0, B ⊂ K(ε) such that the
following conditions hold:

1) Q3 := E
(
TB
)λ
<∞.

2) For all x = (x1, x2) ∈ B \K(1) we have Ex

(
TB
)λ
< M .

Then for each 0 < λ1 < λ there exists a constant C > 0 which does not depend on the
initial distribution (X1

0 , X
2
0 ) such that

dTV (X1
n, X

2
n) ≤ CQ3n

−λ1 . (2.16)

3 Examples and applications

As an illustration to theorems 1 and 2 let us give some specific examples when dTV (X1
n, X

2
n)

converges to zero with exponential rate.

Example 1 (see e.g. [17]). Suppose the transition probability density p(u, v) satisfies the
global Markov–Dobrushin’s condition, namely,

inf
u,v

+∞∫
−∞

p(u, t) ∧ p(v, t) Λ(dt) = ε > 0. (3.1)

Then
dTV (X1

n, X
2
n) ≤ 2(1− ε)n.

Condition (3.1) is of a global nature. We give weaker local conditions below.

Example 2. Suppose there exist ε > 0, δ > 0, K > 0 such that

inf
|u|<K
|v|<K

+∞∫
−∞

p(u, t) ∧ p(v, t) Λ(dt) = ε (3.2)

8



and
P
(
|X1

1 | < K
∣∣X1

0 = u
)
≥ δ (3.3)

for all u.
Then there exist C > 0, θ > 0 such that dTV (X1

n, X
2
n) ≤ Ce−nθ.

Obviously, conditions (3.2) and (3.3) are weaker than the global Markov–Dobrushin’s
condition above (example 1). Let us give a more general example with global condition
(3.3) replaced to its local version.

We denote SD := inf{t > 0 : X1
t ∈ D}, where D ∈ B(R1).

Example 3. Assume that there exist ε > 0, δ > 0, K > 0, λ > 0, M > 0 such that

1) Condition (3.2) is met;

2) P (|X1
1 | < K|X1

0 = u) > δ for all |u| < K;

3) Eue
λS(−K;K)

<∞ for all u;

4) Eue
λS(−K;K)

< M for all |u| < K.

Then there exist C > 0, θ > 0 such that

dTV (X1
n, X

2
n) ≤ Ce−nθ.

Example 3 shows that if a Markov process often visits a certain “good” bounded set,
then it converges to the stationary distribution with exponential rate.

The next example illustrates the point mentioned in Section 2.1: even if the global
Markov–Dobrushin’s condition is satisfied, the convergence rate may be better, in fact,
arbitrarily better, than the rate provided by this condition.

Example 4. Consider a Markov chain on the state space S = {1, 2, 3, 4} with a transition
matrix with a small parameter 0 < δ << 1:

P =


2/3− δ 1/3− δ δ δ
1/3− δ 2/3− δ δ δ
1− 3δ δ δ δ
δ 1− 3δ δ δ

 .

Here the global Markov–Dobrushin’s condition holds and, according to the Example 1,
guarantees the rate

2(1− 4δ)n.

This rate, apparently, may be arbitrarily slow if δ is close enough to zero. On the other
hand, if we denote B = {1, 2} × {1, 2}, then Theorem 2 provides the following bound
(probably, not optimal yet)

C exp(−θn),

with

θ ≥ ln 3(| ln δ| − ln 6)

| ln δ|+ 4 ln 3
.

Whence, the value of θ tends to optimal rate ln 3 if we let δ → 0.
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Indeed, this result follows from (2.15) with ε = 2/3, λ = − ln 6 − ln δ − ln(1 − δ),
M = (1− 2δ)2/(2δ(1− δ)).

Let us give some applications of theorems 1 and 3. We shall show how these theorems
allow to estimate mixing coefficients of Markov process and establish the central limit
theorem.

Let Xn, n ∈ Z+ be a homogeneous Markov process with a transitional density p(u, v)
with respect to the measure Λ. We assume that the process Xn has a stationary distri-
bution π and let Xπ

n be a stationary version of the process Xn.
We recall that β-mixing and ϕ-mixing coefficients of the process Xn (see, e.g., [8])are

defined by
β(n) = sup

t≥0
E sup
K∈FX≥t+n

|P (K|FXt )− P (K)|, (3.4)

ϕ(n) = sup
t≥0

sup
A∈FXt

B∈FX≥t+n

|P (B|A)− P (B)|,

where FXt := σ{Xi, i ≤ t} and by FX≥u we denote a σ-field generated by random variables
{Xs, s ≥ u}.

It turned out that if the process Xn satisfies the conditions of Theorem 1, then it is a
ϕ-mixing process. Alternatively, if the process Xn satisfies the conditions of Theorem 3,
then it is a β-mixing process.

Theorem 4. Assume that the operator A : L∞ 7→ L∞ defined by (2.8) has a spectral
radius r(A) 6= 1. Then for any ε > 0 there exist N > 0 such that for n > N

ϕ(n+ 1) ≤ 4e−n(| ln r(A)|−ε).

Moreover, if

1) E|Xπ
1 |2 <∞,

2) σ2 := VarXπ
1 + 2

∞∑
k=1

cov(Xπ
1 , X

π
k+1) 6= 0,

then the process Xn satisfies the central limit theorem, i.e.

n∑
i=1

Xi − nEXπ
1

√
n

d−→ N(0, σ2) as n→∞.

Theorem 5. Assume that there exist ε > 0, λ > 2, M > 0, B ⊂ K(ε) such that the
following conditions hold:

1) E(X0,Xπ
0 )

(
TB
)λ
<∞.

2) E(u,Xπ
0 )

(
TB
)λ
<∞ for all u ∈ R.

3) Ex

(
TB
)λ
< M for all x = (x1, x2) ∈ B.

Then for all λ1 < λ− 1 there exists C > 0 such that for all n ∈ N

β(n) ≤ Cn−λ1 .

10



Theorem 6. Suppose the conditions of theorem 5 are satisfied. Furthermore, assume that

1) E|Xπ
1 |2+δ <∞, for δ > 2

λ−2
,

2) σ2 := VarXπ
1 + 2

∞∑
k=1

cov(Xπ
1 , X

π
k+1) 6= 0.

Then the process Xn satisfies the central limit theorem, i.e.

n∑
i=1

Xi − nEXπ
1

√
n

d−→ N(0, σ2) as n→∞.

4 Proofs

4.1 Proofs of the coupling lemmas

Proof of lemma 1. First let us verify that X̃1 d
= X1. It is sufficient to prove that for any

bounded measurable function f(t) we have Ef(X̃1) = Ef(X1). We claim that this is the
case. Indeed,

Ef(X̃1) = Ef(η1) I(ζ = 1) + Ef(ξ) I(ζ = 0) =

= (1− q)
+∞∫
−∞

f(t)(1− q)−1
(
p1(t)− p1(t) ∧ p2(t)

)
Λ(dt)+

+ q

+∞∫
−∞

f(t)q−1
(
p1(t) ∧ p2(t)

)
Λ(dt) =

=

+∞∫
−∞

f(t)p1(t) Λ(dt) = Ef(X1).

Similarly, X̃2 d
= X2.

To conclude the proof, it remains to note that

P(X̃1 = X̃2) ≥ P(ζ = 0) = q.

Proof of lemma 2. Let us prove the first statement of the lemma by induction over n.

Basis. n = 0. Then by construction X̃1
0

d
= X1

0 and X̃2
0

d
= X2

0 thanks to lemma 1 .

Inductive step. Assume X̃1
n

d
= X1

n and X̃2
n

d
= X2

n. Let us show that X̃1
n+1

d
= X1

n+1

and X̃2
n+1

d
= X2

n+1.

To prove the first equality it is sufficient to check that Ef(X̃1
n+1) = Ef(X1

n+1) for any
bounded measurable function f(x). We obviously have

Ef(X̃1
n+1) = EE

(
f(X̃1

n+1)
∣∣∣ η1

n, η
2
n, ξn, ζn

)
. (4.1)

11



Let us find the conditional expectation in formula (4.1).

E
(
f(X̃1

n+1)
∣∣∣ η1

n = x1, η2
n = x2, ξn = x3, ζn = 1

)
=

= E
(
f(η1

n+1) I(ζn+1 = 1) + f(ξn+1) I(ζn+1 = 0)
∣∣ η1

n = x1, η2
n = x2, ξn = x3, ζn = 1

)
=

= (1− q(x1, x2))

+∞∫
−∞

f(u)ϕ1(x, u) Λ(du) + q(x1, x2)

+∞∫
−∞

f(u)ϕ3(x, u) Λ(du) =

=

+∞∫
−∞

f(u)p(x1, u) Λ(du). (4.2)

Similarly,

E
(
f(X̃1

n+1)
∣∣∣ η1

n = x1, η2
n = x2, ξn = x3, ζn = 0

)
=

= E
(
f(η1

n+1) I(ζn+1 = 1) + f(ξn+1) I(ζn+1 = 0)
∣∣ η1

n = x1, η2
n = x2, ξn = x3, ζn = 0

)
=

=

+∞∫
−∞

f(u)ϕ3(x, u) Λ(du) =

+∞∫
−∞

f(u)p(x3, u) Λ(du). (4.3)

Then it follows from (4.2) and (4.3) that

E
(
f(X̃1

n+1)
∣∣∣ η1

n, η
2
n, ξn, ζn

)
=

+∞∫
−∞

f(u)p(η1
n, u) Λ(du) I(ζn = 1)+

+

+∞∫
−∞

f(u)p(ξn, u) Λ(du) I(ζn = 0) =

+∞∫
−∞

f(u)p(X̃1
n, u) Λ(du).

Therefore formula (4.1) and the inductive assumption imply

Ef(X̃1
n+1) = E

+∞∫
−∞

f(u)p(X̃1
n, u) Λ(du) = E

+∞∫
−∞

f(u)p(X1
n, u) Λ(du) = Ef(X1

n+1). (4.4)

Consequently X̃1
n+1

d
= X1

n+1.

Likewise, one can verify that X̃2
n+1

d
= X2

n+1. Moreover, it follows from the definition,

that X̃1
n = X̃2

n for all n ≥ inf{k ≥ 0 : ζk = 0} = n0.
To establish inequality (2.6) let us note that

P(X̃1
n 6= X̃2

n) ≤ E I(ζ0 = 1) · I(ζ1 = 1) · . . . · I(ζn = 1). (4.5)

We denote Gn := σ(η1
i , η

2
i , ξi, ζi, i = 1 . . . n) and we prove by induction over k that the

following identity

E

(
n∏
i=k

I(ζi = 1)

∣∣∣∣∣Gk−1

)
= E

(
n−1∏
i=k−1

(1− q(η1
i , η

2
i ))

∣∣∣∣∣Gk−1

)
I(ζk−1 = 1) (4.6)
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holds for all k ≤ n.
Basis. k = n. Then

E (I(ζn = 1)|Gn−1) =E
(

I(ζn = 1)| η1
n−1, η

2
n−1, ζn−1

)
=

= I(ζn−1 = 1)(1− q(η1
n−1, η

2
n−1)).

Inductive step. Assume that identity (4.6) is proved for all k ≥ K+ 1. Let us prove
(4.6) for k = K. For simplicity we denote

α(x, y) := E

(
n−1∏
i=K

(1− q(η1
i , η

2
i ))

∣∣∣∣∣ η1
K = x, η2

K = y

)
.

We have,

E

(
n∏

i=K

I(ζi = 1)

∣∣∣∣∣GK−1

)
= E

{
I(ζK = 1)E

(
n∏

i=K+1

I(ζi = 1)

∣∣∣∣∣GK
)∣∣∣∣∣GK−1

}
=

= E

{
I(ζK = 1)E

(
n−1∏
i=K

(1− q(η1
i , η

2
i ))

∣∣∣∣∣GK
)∣∣∣∣∣GK−1

}
=

= E

{
I(ζK = 1)E

(
n−1∏
i=K

(1− q(η1
i , η

2
i ))

∣∣∣∣∣ η1
K , η

2
K

)∣∣∣∣∣GK−1

}
=

= E
{

I(ζK = 1)α(η1
K , η

2
K)
∣∣GK−1

}
=

= E {I(ζK = 1)|GK−1} E
{
α(η1

K , η
2
K)
∣∣GK−1

}
= (4.7)

= I(ζK−1 = 1)(1− q(η1
K−1, η

2
K−1))E

(
n−1∏
i=K

(1− q(η1
i , η

2
i ))

∣∣∣∣∣GK−1

)
=

= E

(
n−1∏

i=K−1

(1− q(η1
i , η

2
i ))

∣∣∣∣∣GK−1

)
I(ζK−1 = 1).

Equality (4.7) is correct because the random variables η1
K , ξK and ζK are conditionally

independent given GK−1. Identity (4.6) is proved.
Setting k = 1 in (4.6) and combining it with (4.5) we obtain

P(X̃1
n 6= X̃2

n) ≤ E

{
I(ζ0 = 1)E

(
n∏
i=1

I(ζi = 1)

∣∣∣∣∣G0

)}
=

= E

{
I(ζ0 = 1)E

(
n−1∏
i=0

(1− q(η1
i , η

2
i ))

∣∣∣∣∣G0

)}
=

= (1− q0)E
n−1∏
i=0

(1− q(η1
i , η

2
i )).

Inequality (2.6) is proved.

Proof of remark 1. Denote F̃1
n := σ(X̃1

i , 0 ≤ i ≤ n). Then for any bounded measurable
function f(x) we have

E
(
f(X̃1

n+1)
∣∣∣ F̃1

n

)
=E

(
E
(
f(X̃1

n+1)
∣∣∣Gn)∣∣∣ F̃1

n

)
= E

(
E
(
f(X̃1

n+1)
∣∣∣ η1

n, η
2
n, ξn, ζn

)∣∣∣ F̃1
n

)
=

=E
(
f(X̃1

n+1)
∣∣∣ X̃1

n

)
.
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Hence,
(
X̃1
n

)
n∈Z+

is a homogeneous Markov process and
(
X̃1
n

)
n∈Z+

d
= (X1

n)n∈Z+
.

4.2 Proofs of the main results

Proof of theorem 1. The proof is based on the coupling construction presented in lemma
2 and inequality (2.6).

First note that

r(A) ≤ ‖A‖∞ = ‖A1(x)‖∞ ≤ ‖1− q(x)‖∞ ≤ 1.

We apply lemma 2 to the random processes X1
n and X2

n and construct the processes X̃1
n

and X̃2
n. Then it follows from (2.6) that

1

2
dTV (X1

n, X
2
n) =

1

2
dTV (X̃1

n, X̃
2
n) ≤ P(X̃1

n 6= X̃2
n) = (1− q0)E

n−1∏
i=0

(1− q(η1
i , η

2
i )). (4.8)

Clearly, for any function f ∈ Cb(R2)

E
n−1∏
i=0

(
1− q(ηi)

)
f(ηn) = EE

(
n−1∏
i=0

(
1− q(ηi)

)
f(ηn)

∣∣∣∣∣ η0, ..., ηn−1

)
=

= E

(
n−2∏
i=0

(
1− q(ηi)

)
(1− q(ηn−1))E(f(ηn)|ηn−1)

)
=

= E

(
n−2∏
i=0

(
1− q(ηi)

)
Af(ηn−1)

)
= · · · = EAnf(η0). (4.9)

It is easy to show that for a Borel set B with Λ(B) = 0 we have P (η1
1 ∈ B) = 0. Hence

combining (4.8) and (4.9) we see that

1

2
dTV (X1

n, X
2
n) ≤ (1− q0)EAn−11(η1) ≤ (1− q0)E‖An−11‖∞ = (1− q0)‖An−11‖∞. (4.10)

Since ‖An1‖∞ = ‖An‖∞, it remains to estimate the norm of operator A. It follows
from (2.10) that if r(A) 6= 1 then for any ε > 0 there exists n0 such that for n > n0

‖An‖∞ ≤ e−n(| ln r(A)|−ε).

Finally, using the last inequality and (4.10) we get (2.11). This completes the proof of
theorem 1.

Proof of corollary 1. Arguing as in the proof above, we see that formulas (4.8) and (4.9)
are correct. Further,

EAn1(η0) =

∫
R2

An1(u, v)pη1
0
(u)pη2

0
(v) Λ(du)Λ(dv) =

=

∫
R2

[An1(u, v)m1/p(u, v)] [pη1
0
(u)pη2

0
(v)m−1/p(u, v)] Λ(du)Λ(dv) ≤

≤
∥∥∥pη1

0
(u)pη2

0
(v)

m(u, v)

∥∥∥
Lq
‖An1‖Lp =

=
1

(1− q0)2

∥∥∥(g(u)− g(u) ∧ h(u))(h(v)− g(v) ∧ h(v))

m(u, v)

∥∥∥
Lq
‖An1‖Lp . (4.11)

To conclude the proof, it remains to combine (4.8), (4.9) and (4.11) to get (2.12).
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Proof of proposition 1. In the proof for simplicity we omit superscript B on τB. Consider
operator Ã : L∞ → L∞, where L∞ = L∞(R2,B(R2),Λ× Λ),

Ãf(x) := E ((1− q(η1))(1− q(η2)) · . . . · (1− q(ητ ))f(ητ )| η0 = x) . (4.12)

Arguing as in the proof of theorem 1 we see that the operator Ã is well defined. Further-
more, since∣∣∣Ãf(x)

∣∣∣ ≤ E
(

(1− q(ητ )) |f(ητ )|
∣∣∣η0 = x

)
≤ (1− ε)E

(
|f(ητ )|

∣∣∣η0 = x
)
,

we have ‖Ã‖ ≤ 1− ε.
Let us define Hn := σ(η0, η1, . . . , ηn). We introduce a sequence of stopping times

τ1 := τ , τn+1 := inf{t > τn : ηt ∈ B}.
Note that for any function f ∈ Cb(R2) we have

E
τn∏
i=0

(
1− q(ηi)

)
f(ητn) = EE

(
τn∏
i=0

(
1− q(ηi)

)
f(ητn)

∣∣∣∣∣Hτn−1

)
=

= E

(
τn−1∏
i=0

(
1− q(ηi)

)
Ãf(ητn−1)

)
= · · · = E

τ1∏
i=0

(
1− q(ηi)

)
Ãn−1f(ητ1).

(4.13)

Let ∆(n) be an increasing positive deterministic function of n. We will choose appro-
priate ∆(n) later. Introduce the set κn := {ω : τb∆(n)c ≤ n}, where by buc we denote a
lower integer part of u.

Applying lemma 2 to the random processes X1
n and X2

n we get

1

2
dTV (X1

n+1, X
2
n+1) =

1

2
dTV (X̃1

n+1, X̃
2
n+1) ≤ (1− q0)E

n∏
i=0

(1− q(ηi)) =

= (1− q0)E I(κn)
n∏
i=0

(1− q(ηi)) + (1− q0)E(1− I(κn))
n∏
i=0

(1− q(ηi)) ≤

≤ (1− q0)EÃb∆(n)c−11(ητ1) + (1− q0)E(1− I(κn)) ≤
≤ (1− q0)EÃb∆(n)c−11(ητ1) + (1− q0)P(τb∆(n)c > n). (4.14)

Evidently,
EÃb∆(n)c−11(ητ1) ≤ ‖Ã‖b∆(n)c−1 ≤ (1− ε)b∆(n)c−1. (4.15)

Let us estimate the second term in (4.14). It follows from Chebyshev inequality that

P(τb∆(n)c > n) ≤ e−λnEeλτb∆(n)c = e−λnEeλτb∆(n)c−1 E
(
eλ(τb∆(n)c−τb∆(n)c−1)

∣∣Hτb∆(n)c−1

)
=

= e−λnEeλτb∆(n)c−1 E
(
eλ(τb∆(n)c−τb∆(n)c−1)

∣∣ ητb∆(n)c−1

)
. (4.16)

Now, since ητb∆(n)c−1
∈ B, condition 2) of the theorem implies

E
(
eλ(τb∆(n)c−τb∆(n)c−1)

∣∣ ητb∆(n)c−1
= x

)
= Exe

λτ1 < M.
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Combining this with (4.16) we see that

P(τb∆(n)c > n) ≤ e−λnMEeλτb∆(n)c−1 ≤ e−λnM b∆(n)c−1Eeλτ1 ≤ e−λn+∆(n) lnMM−1Eeλτ1 .

Hence, it follows from estimate above, (4.14) and (4.15) that

1

2
dTV (X1

n+1, X
2
n+1) ≤ (1− ε)−2eln(1−ε)∆(n) + e−λn+∆(n) lnMM−1Eeλτ1 . (4.17)

Thus, we proved that the last inequality is satisfied for all ∆(n) > 0. We choose ∆(n)
which minimizes the right-hand side of the inequality for sufficiently large n. Obviously,
such ∆(n) is the solution of the following equation:

− ln(1− ε)∆(n) = λn−∆(n) lnM.

Consequently,

∆(n) =
λn

lnM − ln(1− ε)
. (4.18)

To complete the proof it remains to substitute (4.18) into (4.17).

Proof of remark 2. Let us show how the proof of proposition 1 should be modified if
condition 2 is satisfied only for x ∈ B \K(1).

Again, let ∆(n) be an increasing positive deterministic function of n, which will be
chosen later. We consider the following three sets: ιn := {ω : ∃ k ≤ n q(ηk) = 1},
κn := {ω : τb∆(n)c ≤ n} \ ιn and ζn := Ω \ (ιn ∪ κn). Using (4.13) we get (cf. (4.14))

1

2
dTV (X1

n+1, X
2
n+1) ≤ (1− q0)E

n∏
i=0

(1− q(ηi)) =

= (1− q0)E(I(ιn) + I(κn) + I(ζn))
n∏
i=0

(1− q(ηi)) ≤

≤ (1− q0)EÃb∆(n)c−11(ητ1) + (1− q0)E I(ζn) ≤
≤ (1− q0)EÃb∆(n)c−11(ητ1) + (1− q0)P(τb∆(n)c > n, Ω \ ιn). (4.14 ′)

The first term in (4.14 ′) is estimated like in inequality (4.15). To estimate the second
term let us notice (cf. (4.16))

P(τb∆(n)c > n,Ω \ ιn) =

b∆(n)c∑
k=1

P(τk > n, τk−1 ≤ n, Ω \ ιn) ≤

≤e−λn
b∆(n)c∑
k=1

Eeλτk I(τk−1 ≤ n, Ω \ ιτk−1
). (4.16 ′)

Obviously,

Eeλτk I(τk−1 ≤ n, Ω \ ιτk−1
) = Eeλτk−1 I(τk−1 ≤ n, Ω \ ιτk−1

)E
(
eλ(τk−τk−1)

∣∣ ητk−1

)
.

We see that if ω /∈ ιτk−1
then ητk−1

(ω) ∈ B \K(1). Therefore, modified condition 2 implies

I(τk−1 ≤ n, Ω \ ιτk−1
)E
(
eλ(τk−τk−1)

∣∣ ητk−1

)
< M I(τk−2 ≤ n, Ω \ ιτk−2

).
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Hence

Eeλτk I(τk−1 ≤ n, Ω \ ιτk−1
) ≤MEeλτk−1 I(τk−2 ≤ n, Ω \ ιτk−2

) ≤
≤Mk−1Eeλτ1 I(q(η0) < 1).

Consequently, we have

P(τb∆(n)c > n, Ω \ ιn) ≤e−λn
b∆(n)c∑
k=1

Mk−1Eeλτ1 I(q(η0) < 1) ≤

≤e−λn+∆(n) lnM(M − 1)−1Eeλτ1 I(q(η0) < 1).

The end of the proof is similar to the end of the proof of proposition 1.

Proof of theorem 2. To prove the theorem we slightly modify the coupling construction
used in lemma 2.

Let us define

q′(u, v) :=


1, if q(u, v) = 1 and (u, v) ∈ B;
ε, if ε ≤ q(u, v) < 1 and (u, v) ∈ B;
0, otherwise,

Introduce l(u, v) := q′(u, v)/q(u, v). Consider the Markov process (η′1n , η
′2
n , ξ

′
n, ζ
′
n) and set

η′10 := X1
0 , η

′2
0 := X2

0 , ξ
′
0 := 0, ζ ′0 := 1.

Assume that the process (η′1n , η
′2
n , ξ

′
n, ζ
′
n) has the transition probability density ϕ′(x, y) with

respect to the measure Λ, where ϕ′(x, y) is defined by the following formula (cf. (2.4) and
(2.5))

ϕ′(x, y) := ϕ′1(x, y1)ϕ′2(x, y2)ϕ′3(x, y3)ϕ′4(x, y4), (4.19)

here x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and if 0 < q′(x1, x2) < 1

ϕ′1(x, u) := (1− q′(x1, x2))−1
(
p(x1, u)− [p(x1, u) ∧ p(x2, u)]l(x1, x2)

)
,

ϕ′2(x, u) := (1− q′(x1, x2))−1
(
p(x2, u)− [p(x1, u) ∧ p(x2, u)]l(x1, x2)

)
,

ϕ′3(x, u) := I(x4 = 1)q′(x1, x2)−1[p(x1, u) ∧ p(x2, u)]l(x1, x2) + I(x4 = 0)p(x3, u),

ϕ′4(x, u) := I(x4 = 1)
(
δ1(u)(1− q′(x1, x2)) + δ0(u)q′(x1, x2)

)
+ I(x4 = 0)δ0(u).

If q′(x1, x2) = 0 then we set ϕ′3(x, u) := I(x4 = 1) I(x1 < u < x1 +1)+I(x4 = 0)p(x3, u)
and if q′(x1, x2) = 1 then we set ϕ′1(x, u) = ϕ′2(x, u) := I(x1 < u < x1 + 1).

One can easily verify that the statements of lemma 2 and proposition 1 with appro-
priate modifications are correct for the new coupling. Let us show that conditions of
modified proposition 1 are satisfied.

The main advantage of the modified coupling is that the transition probability density
of the process η′i = (η′1i , η

′2
i ) can be easily estimated. Indeed, if x = (x1, x2) ∈ B \K(1)

we obviously have

ϕ′1(x, u)ϕ′2(x, v) ≤ p(x1, u)p(x2, v)

(1− ε)2

and if x /∈ B then
ϕ′1(x, u)ϕ′2(x, v) = p(x1, u)p(x2, v).
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Therefore for all x /∈ K(1) we have

Px(τ > n) = P(η′1 /∈ B, . . . , η′n /∈ B) =

=

∫
R2\B

· · ·
∫

R2\B

ϕ′1(x, x1
1)ϕ′2(x, x2

1) . . . ϕ′1(xn−1, x
1
n)ϕ′2(xn−1, x

2
n) Λ(dx1) . . .Λ(dxn) ≤

≤ 1

(1− ε)2

∫
R2\B

· · ·
∫

R2\B

p(x1, x1
1)p(x2, x2

1) . . . p(x1
n−1, x

1
n)p(x2

n−1, x
2
n) Λ(dx1) . . .Λ(dxn) =

=
1

(1− ε)2
Px(T > n). (4.20)

Consequently, for x ∈ B \K(1) we obtain

Exe
λτ =

∞∑
n=1

eλnPx(τ = n) = 1 + (eλ − 1)
∞∑
n=0

eλnPx(τ > n) ≤

≤ 1

(1− ε)2
(1 + (eλ − 1)

∞∑
n=0

eλnPx(T > n)) <
M

(1− ε)2
.

Similarly, one can prove that Eeλτ I(q(η0) < 1) ≤ CEeλT for some C > 0. Thus, taking
into account remark 2, we see that conditions of proposition 1 are satisfied.

Proof of theorem 3. The proof is similar to the proof of theorem 2 and proposition 1.
We consider the same coupling construction as in the proof of theorem 2. We claim

that conditions 1 and 2 implies that E
(
τB
)λ
<∞ and

Ex

(
τB
)λ
< M(1− ε)−2 (4.21)

for all x ∈ B \K(1). Indeed, both inequalities immediately follow from (4.20).
Now let us prove (2.16). First we assume that (4.21) holds for x ∈ B. As in the proof

of proposition 1 we consider a set κn := {ω : τb∆(n)c ≤ n}, where ∆(n) is an increasing
positive deterministic function of n. By a similar argument,

1

2
dTV (X1

n+1, X
2
n+1) ≤ (1− ε)b∆(n)c−1 + P(τb∆(n)c > n).

To estimate the second term in the inequality above we use Chebyshev inequality.

P(τb∆(n)c > n) ≤ n−λEτλb∆(n)c = n−λE
(b∆(n)c∑

k=1

(τk − τk−1)
)λ
≤

≤ n−λb∆(n)cλ−1E

b∆(n)c∑
k=1

(τk − τk−1)λ ≤ n−λb∆(n)cλM1,

where M1 := max
(
M(1 − ε)−2, E

(
τB
)λ)

. Therefore it remains to take ∆(n) = n1−λ1/λ

and use an argument similar to that in the proof of remark 2.
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4.3 Other proofs

Proof of example 1. The proof is a straightforward application of lemma 2 and inequality
(2.6).

Proof of example 2. Let us verify that conditions of theorem 2 are satisfied. Let B =
K(ε). Obviously, for all x we have

Px(T
K(ε) > 1) ≤ 1− δ2.

Hence,
Px(T

K(ε) > n) ≤ (1− δ2)n.

Therefore both conditions of theorem 2 hold.

Proof of example 3. Let us verify that conditions of theorem 2 are satisfied. We set
B = (−K;K) × (−K;K). The main idea of the proof is that after the first compo-
nent of the bivariate process (X1

n, X
2
n) reaches the interval (−K;K) it stays there for m

more steps with a positive probability (at least δm). On the other hand, the probability
that the second component does not visit (−K;K) during that time is small for large m.
Therefore, there is a positive probability that both X1

n and X2
n reach (−K;K) simulta-

neously. Moreover, if the second component still does not reach (−K;K), we repeat the
attempt: wait until the first component hits (−K;K) and wait another m units of time
with a hope that the second component will also visit (−K;K).

Now let us give a formal proof. Without loss of generality we can assume that X1
n and

X2
n are independent. Let m > 0 and 0 < λ1 < λ. We will choose appropriate m and λ1

later. Our goal is to prove that

sup
|x1|<K
|x2|<K

Exe
λ1T (−K;K)×(−K;K)

<∞. (4.22)

In this proof for simplicity by {X i
a,b /∈ D} we denote the set {X i

a /∈ D,X i
a+1 /∈ D, . . . , X i

b /∈
D}, where a and b are integers, i = 1, 2 and D ∈ B(R).

Step 1. Let |u| < K. Condition 4 of the example and Chebyshev inequality imply

Pu

(
X1

1,n /∈ (−K;K)
)
≤Me−λn.

Therefore the probability that X1
t does not reach interval (−K;K) during m consecutive

steps k < t ≤ k +m can be estimated as follows:

Pu

(
X1
k+1,k+m /∈ (−K;K)

)
=

k∑
i=0

Pu

(
X1
i ∈ (−K;K), X1

i+1,k+m /∈ (−K;K)
)
≤

≤
k∑
i=0

Me−λ(k+m−i) < Me−λm(1− e−λm)−1 =: α. (4.23)

Hence for the probability that X1
t does not belong to (−K;K) on moments kj < t ≤

kj +m, where j = 1 . . . n and k1 < k1 +m < k2 < · · · < kn we obtain

Pu

( n⋂
j=1

X1
kj+1,kj+m

/∈ (−K;K)
)
≤ 2n−1αn.
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Indeed, it is sufficient to consider all possible cases of behavior of the process X1
t between

these intervals. Namely, it can either belongs to (−K;K) or not. The number of all
possible cases is 2n−1 and the probability of each of the case is less than αn.

Step 2. Introduce the stopping times

S1,m := {inf t > 0 : X1
t−m+1 ∈ (−K;K), . . . , X1

t ∈ (−K;K)},
Sn,m := {inf t > Sn−1,m +m− 1 : X1

t−m+1 ∈ (−K;K), . . . , X1
t ∈ (−K;K)}.

Hence S1,m is the first moment when the process X1
t belongs to (−K,K) during m con-

secutive time steps. Then for the expectation in (4.22) we obtain

Exe
λ1T ≤

∞∑
n=1

Exe
λ1Sn,m I(Sn−1,m < T ≤ Sn,m) ≤

∞∑
n=0

Ex I(T > Sn,m)(eλ1Sn+1,m−eλ1Sn,m)+1.

Since X1
n and X2

n are independent we have

Ex I(T > Sn,m)(eλ1Sn+1,m − eλ1Sn,m) ≤ αn2n−1(M1 − 1)Mn
1 ,

where M1 := sup
|u|<K

Eu exp(λ1S1,m). Consequently, it remains to prove that M1 < 1/2α.

Indeed, if this is the case, then

Exe
λ1T ≤

∞∑
n=0

αn2n−1(M1 − 1)Mn
1 + 1 = 1 +

M1 − 1

2− 4αM1

,

and (4.22) holds.
Step 3. Now let us take m such that α < 1/4. We claim that it is possible to find λ1

such that M1 < 2.
Consider the stopping time S̃1,m+1

S̃1,m+1 :=

{
m, if X1

1 ∈ (−K,K), . . . , X1
m ∈ (−K,K);

{inf t > 0 : X1
t−m ∈ (−K;K), . . . , X1

t ∈ (−K;K)}, otherwise.

Obviously, S1,m ≤ S̃1,m+1. Introduce also time of the first return into (−K,K).

R := {inf t > 0 : X1
t ∈ (−K;K) and ∃s < t : X1

s /∈ (−K;K)}.

It is clear, that R > 1. Therefore for all n > m we have

Pu(S1,m > n) ≤ Pu(S̃1,m+1 > n) =

= Eu I(∃s ≤ m : X1
s /∈ (−K;K))E(I(S̃1,m+1 > n)|FR) ≤

≤ (1− δm)Pu(S̃1,m+1 > n− 1).

Consequently, for all |u| < K we have Pu(S1,m > n) ≤ (1− δm)n−m. This implies that for
sufficiently small λ1 we get M1 < 2.

Proof of theorem 4. Let us denote by Xu
n a Markov process with the transition probability

density p(u, v) and with the initial distribution Xu
0 = u. It follows from theorem 1 that

for any ε > 0 there exist N > 0 such that if n > N , then for all u

dTV (Xu
n+1, Xn+1) ≤ 2e−n(| ln r(A)|−ε).

Therefore, the statement of the theorem immediately follows from [8, Theorem 19.1.2].
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Proof of theorem 5. First, let us notice that in the second least upper bound in (3.4), it
is sufficient to consider only sets K of the form {ω : Xt1 ∈ B1, . . . , Xtm ∈ Bm}, where
t+ n ≤ t1 < · · · < tm are positive integers and B1, . . . , Bm ∈ B(R).

By Xu
n we denote a Markov process with the transition probability density p(u, v) and

with the initial distributions Xu
0 = u. It follows from the definition of process Xπ

n that

Xπ
n

d
= Xπ

m for any positive integers n,m. Then we have∣∣P (Xt1 ∈ B1, . . . , Xtn ∈ Bn|Xt = u)− P (Xt1 ∈ B1, . . . , Xtn ∈ Bn)
∣∣ ≤

=
∣∣P(Xu

t1−t ∈ B1, . . . , X
u
tn−t ∈ Bn)− P(Xπ

t1−t ∈ B1, . . . , X
π
tn−t ∈ Bn)

∣∣+
+
∣∣P(Xπ

t1
∈ B1, . . . , X

π
tn ∈ Bn)− P(Xt1 ∈ B1, . . . , Xtn ∈ Bn)

∣∣. (4.24)

Introduce λ2 such that λ1 < λ2 < λ − 1. Let us apply theorem 3 to the Markov
processes Xu

n and Xπ
n with λ2 in place of λ. Then it follows from (2.16) that for all u ∈ R

and for all k ∈ Z+

dTV (Xπ
k , X

u
k ) ≤ Cg(u)k−λ1 ,

where g(u) := E(u,Xπ
0 )

(
TB
)λ2 .

Hence, taking into account remark 1, we obtain∣∣P(Xu
t1−t ∈ B1, . . . , X

u
tn−t ∈ Bn)− P(Xπ

t1−t ∈ B1, . . . , X
π
tn−t ∈ Bn)

∣∣ ≤
≤ 1

2
dTV (Xπ

t1−t, X
u
t1−t) ≤

1

2
Cg(u)(t1 − t)−λ1 ≤ 1

2
Cg(u)n−λ1 . (4.25)

Similarly,∣∣P(Xt1 ∈ B1, . . . , Xtn ∈ Bn)− P(Xπ
t1
∈ B1, . . . , X

π
tn ∈ Bn)

∣∣ ≤ 1

2
dTV (Xπ

t1
, Xt1) ≤

≤ 1

2
Cgn−λ1 , (4.26)

where g = E(X0,Xπ
0 )

(
TB
)λ2 .

Thus, using (3.4), (4.24), (4.25) and (4.26) we get

β(n) ≤ 1

2
C sup

t≥0
E(g(Xt) + g)n−λ1 .

Hence, it remains to prove, that

sup
t≥0

Eg(Xt) <∞.

We claim that this is the case. Indeed, if we introduce a first hit time after time n

T (n) := inf{t > n : (Xt, X
π
t ) ∈ B},

then Eg(Xt) = E(T (t)−t)λ2 . Moreover, it follows from conditions 2) and 4) of the theorem
that for all n and for all x ∈ B

Px(T
B > n) ≤ n−λEx

(
TB
)λ ≤Mn−λ,

P(TB > n) ≤ n−λE(X0,Xπ
0 )

(
TB
)λ
.
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Hence,

P(T (t) − t > n) = P(T (t) > n+ t) =

=
t∑

k=1

P
(
(Xk, X

π
k ) ∈ B, (Xk+1, X

π
k+1) /∈ B, . . . , (Xt+n, X

π
t+n) /∈ B

)
+

+ P
(
(X1, X

π
1 ) /∈ B, . . . , (Xt+n, X

π
t+n) /∈ B

)
=

=
t∑

k=1

E
[
I
(
(Xk, X

π
k ) ∈ B

)
P(Xk,X

π
k )(T

B > t+ n− k)
]

+ P(TB > t+ n) ≤

≤M1

t∑
k=0

(t+ n− k)−λ ≤M1

∞∑
k=n

k−λ ≤M2n
−λ+1,

for some M1 > 0 and M2 > 0. Note that the final estimate of probability P(T (t) − t > n)
does not depend on t. Consequently, since λ2 < λ− 1 we have

E(T (t) − t)λ2 < C1

for some C1 > 0 for all t.
This completes the proof of theorem 5.

Proof of theorem 6. First, let us prove the central limit theorem (CLT) for process
Xπ
n . This process is stationary, therefore CLT follows from CLT for stationary processes

with mixing ([8, Theorem 18.5.3]). Indeed, it sufficient to check that
∞∑
n=1

α(n)
δ

2+δ < ∞,

where by α(n) we denote α-mixing coefficient of sequence Xπ
n (see, e.g., [8]).

Let us apply theorem 5 to the process Xπ
n with λ1 >

2+δ
δ

. Since α(n) ≤ β(n), we get

∞∑
n=1

α(n)
δ

2+δ ≤
∞∑
n=1

β(n)
δ

2+δ <∞,

where the last series converges because β(n) = O(n−λ1).
Now, let us establish CLT in the general case. Let u ∈ R and let us fix N0. We have

for n > N0∣∣∣∣P(∑n
i=1Xi − nEXπ

1√
n

≤ u
)
− P

(∑n
i=1X

π
i − nEXπ

1√
n

≤ u
)∣∣∣∣ ≤

≤
∣∣∣∣P(∑n

i=1Xi − nEXπ
1√

n
≤ u

)
− P

(∑n
i=N0

Xi − nEXπ
1√

n
≤ u

)∣∣∣∣+
+

∣∣∣∣P(
∑n

i=N0
Xi − nEXπ

1√
n

≤ u
)
− P

(∑n
i=N0

Xi − nEXπ
1√

n
≤ u

)∣∣∣∣+
+

∣∣∣∣P(
∑n

i=N0
Xπ
i − nEXπ

1√
n

≤ u
)
− P

(∑n
i=1X

π
i − nEXπ

1√
n

≤ u
)∣∣∣∣.

The first and the last term in the right-hand side of the inequality above tend to zero, as
n→∞. Lemma 2 yields that the middle term is less than dTV (XN0 , X

π
N0

) and also tends
to zero, as N0 →∞. Therefore for all u

lim
n→∞

∣∣∣∣P(∑n
i=1 Xi − nEXπ

1√
n

≤ u
)
− P

(∑n
i=1 X

π
i − nEXπ

1√
n

≤ u
)∣∣∣∣ = 0.

Theorem 6 is proved.
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