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Abstract

A general model for enzyme kinetics with inhibition, the %ad” inhibi-
tion model, simplifies to the non-competitive inhibition de when two of
the parameters are equal. We reparamaterise the model@ridegpdesigns
for investigating the equality of parameters, which cquoesls to a scalar
parametep being zero. For linear models T-optimum designs for diserim
nating between models in whichis, and is not, equal to zero are identical
to designs in which the estimate &has minimum variance. We show that
this equality does not hold for our nonlinear model, excejpt approaches
zero. We provide optimum discriminating designs for a seaeparame-
ter values. An Appendix presents analytical expressionthioD-optimum
design for the four parameters of the mixed inhibition model

Keywords: Analytical D-optimality; Ds(T)-optimality; General Equivalence
Theorem; model-discriminating design; optimum desigmplimality

1 Introduction

Establishing the equality of parameters is important inkbi#ding of the non-
linear models used for enzyme kinetic reactions with irtfobi We re-write the
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models so that testing parameter equality is identicaldbrtg whether a param-
etero = 0. We consider the problem of the optimum design of experisiéort
testing this hypothesis.

To test whethep = 0 we compare models in whichis constrained to be
zero with those in which it is not so constrained. For lineardels the power
of the resulting F test for the comparison of the two modehsaximized by the
T-optimum design (Atkinson and Fedorov 1975a; Atkinsonle2807, cap.20)
which maximizes the non-centrality parametérds, with A the information ma-
trix for 6.

An alternative approach is to estimates precisely as possible, by finding
the Ds-optimum design maximizing the determinant4f Since the T criterion,
unlike Ds-optimality, depends on the value&fthe two criteria cannot, in general,
yield the same designs, the T-optimum design having higbeep However, in
our applicationy is scalar § = 1), so that the non-centrality parameérdd =
5%2A. Then the B and T-optimum designs coincide for linear models, sirce
does not depend on the values of the parameters. Howevagitinear models,
D,- and T-optimum designs are identical only if the models aredrized at the
same nominal values of the parameters. Otherwise, foridistion between
the original (that is, nonlinearized) models; Bnd T-optimum designs become
identical as) — 0. See Lbpez-Fidalgo, Tommasi, and Trandafir (2008).

The two purposes of our paper are to provide a methodolodyiggegood de-
signs for testing the equality of parameters and to explaedlationship between
the T- and B-optimum designs, with particular emphasis on the effigresfache
designs. We start i§2 with a short introduction to the optimum design criteria we
shall be using. Our example, from enzyme kinetics, is inioad in§3, where we
reparameterise this nonlinear model to allow for testingpeeter equality. The
next section describes D- ang{optimum designs for this four-parameter model.
We recall the analytical expressions for the D-optimum giesi(Bogacka et al.
2011). Section 5 presents optimum designs for testing patexnequality for a
series of values aof and shows how the T- andgbptimum designs diverge as
increases, that is as the hypothesis of interest become=asingly false. Brief
comments on T-optimality conclude §6. Analytical expressions for the support
points of the D-optimum design for the four-parameter mixkgdbition model
are in the Appendix.

Throughout we work with the customary second-order assiompof additive
independent errors of constant variance. We are then ahleddhe standard
theory of optimum design for regression models as describestveral books
including Pukelsheim (1993), Fedorov and Hackl (1997) atkinson, Doneyv,
and Tobias (2007). We focus on continuous designs expressadprobability
measure over a design regiof’.



2 Modelsand Design Criteria

2.1 Linear models. D- and Ds-optimality

The linear model for observatiartaken at design point; is

yi =" f(z) + e, (1)

whereq is a vector of unknown parameterf,.) is a vector of known functions
and the independent errazsare normally distributed; ~ A(0, 02). If a simpler
model may fit the data we can write

Yi = @b;ffl(xz) + 5Tf2($z‘) + €, (2)

where f1(.) and f(.) are subvectors of (.) of appropriate dimension and =
(T, 0T)T. We then test the significance &f In generalg can be a vector of
parameters.

Under these assumptions, efficient estimation is by leasireg. For the de-
sign measuré putting weightw; at the design point; in the design regiort’,
the information matrix fon@ is

M(E) = i w2f<x2>fT(xz) 3)
=1
for a design withn support points. With
Mji(§) = zn:wifj(xi)fg(%)a (4)
=1
the covariance matrix for the parameter of intereist proportional to

Al = {M22(5) - le(f)Mﬁl(f)Mi(f)}_l (j, k= 172)~ )

Accordingly, the ¥-optimum design fob in the linear model (2) maximizes the
determinant

A = [Maa(€) — Ma1(§) My (§) My (€)| = [M()]/| M (8)]. (6)

2.2 Linear models: T-optimality

T-optimum designs were introduced by Atkinson and Fedoi®7%a) for mod-
els that may be nonlinear. Let the two modelsibe;, v;) — taken as true — and
ni(x;, 1), wheren;(.) need not be a special casepf.) In general the T-optimum
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design depends on the value assumed for the parameter vectat the param-
eter estimate whem, (.) is fitted to observations without error from(.) be ().
That is

?/;1(5) = arg rglbilnzwi{m(xi,wt) — (@, ¢1)}2- (7)
i=1

Then the T-optimum design maximizes the non-centralitapeater

n

A(g) = Zwi {Ut(%’, ) — 771(%#&1)}2 : (8)

i=1

If both models are linear and contain some terms in commorgameextend
(1) and (2) and write

yi = T f (i) + 6 = U fi(mi) + 6" o) + €, (9)

where the termg, are the complement of the ternfsin the full model f (see
Atkinson et al. 2007§20.9.1). If, as is the case in our exampjg(.) is nested
in 7,(.) we recover (2) and the T-optimum design maximizes the norakty
parameter

A(€) = 0" { Moz (€) — Moy (§) My (§) My (€)}0. (10)

Atkinson and Fedorov (1975a) give an example of discrinmmabetween
a quadratic polynomial in one variable and a constant. Thus 2. The T-
optimum design splits trials evenly between the values giving the maximum
and minimum of the quadratic function, the design pointsdfege depending
on the value ofy®. This is distinct from the B-optimum design for the two
parameters, which puts one third of the trials at the endscantie of the design
region. However, for testing the quadratic against a modl lmear trend, so
thats = 1, the Ds- and T-optimum designs are identical, putting weight 1/hat
ends of the design region and weight 1/2 at the centre, rigardf the value of
4°. A curious aside is that, in the special case that the nexgteelst order term is
missing, the designs are not unique (Dette and Titoff 20@Bin&on 2010; Dette,
Melas, and Shpilev 2011).

2.3 Nonlinear models: D-, Ds- and T-optimality

Locally D- and Bs-optimum designs for nonlinear models are found by Taylor
expansion around some prior point valié of the parameter. The information
matrix is then a function of the vector of partial derivasve
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of the response function with respect to the paramefteodten called the parame-
ter sensitivities, where? is a prior point estimate of the parameters. See Chapter
17 of Atkinson et al. (2007).

On the other hand, T-optimality, as (7) and (8) show, doesimative any
linearization. When is scalar and the models are linear, T-optimum designs
maximizing (8) are also Poptimum. However, for nonlinear models; @nd
T-optimum designs are not in general identical. This arisesause the D
optimality criterion is used for discriminating between daets that are linearized
at (v9%,0)T andy{T, respectively, while the T-optimality criterion is apli¢o
the original model and depends on the nominal va(ués, 6°)T. The T-optimum
design approaches th#,-optimum design a8’ — 0. For a theoretical justifica-
tion see Lopez-Fidalgo et al. (2008).

Here we find two [3-optimum designs for the nonlinear model. The first at
(9T, 0)T and the second &t'T (¢4, 0)T where¢: denotes the T-optimum design.
To avoid confusion, for the nonce we call this second coteiDs(T)-optimality.
Interest is in how well these two designs compare with th@flhaum design for
model discrimination. We look at their properties for a esf values of°.

3 EnzymeKinetics

The models arise in the assessment of drug metabolism agdddug interac-
tion. In studies of inhibition, interest may be in the effe€the drug in reducing
the activity of an enzyme. An example is penicillin which iioits the enzyme
producing the cell walls of bacteria. In the study of the effef “cocktails” of
drugs, interest is in whether one drug inhibits the metabolof another. See
Segel (1993).

The models relate the velocity of reactiorto concentrations of substrat€]
and of inhibitor[I]. Different types of binding lead to a variety of models foe th
reaction. Here we consider two possible models.

Mixed Inhibition. In this four-parameter model the deterministic velocity
equation is:

VIS]

Km(1+[Kﬁc)+[S] (1+%)7

with the parameter¥, K,,, K, and K. to be determined experimentally. In de-
signing experiments it is assumed that the errors in the nneaments ob follow
the normal assumptions 62.

Non-competitive Inhibition. When K,, = K. the model has a specific inter-

(12)

v =



pretation and becomes
VIS]

(Ko + [9)) <1+[Kﬂc)' (13)

v =

To obtain efficient designs for testing the equality/of and K, we rewrite
the model (12) in a nonlinear form analogous to (2). If weflet= 1/K. and
0, = 1/K,, (12) becomes

V1S

Ko (L4 600) + 5] (1 6al0)) (14)

v =

We now make a reparameterization and wéite= 6 + § andf, = 0 — §, when
(14) becomes
V[s]

U= Eon 7 S A+ 010 4 0] (Ko — ] (13)

which reduces to (13) wheth = 0. If # is also zero, we obtain the Michaelis-
Menten model.

With ¢ = (V, K,,,,0,6)T the information matrix is a function of the vector of
partial derivatives (11) withy = v.

4 D- and Ds-optimum Designs

An experimental design involves the choice of concentratio = ([S];, [1];)" at
which measurements are to be taken. Since (15) is nonlingaree of the pa-
rameters, D- and optimum designs will depend on the values of all parameters
exceptV. In this paper we find locally optimum designs that depencherptior
valuew®. Chapter 18 of Atkinson et al. (2007) describes, for simpi@mples, a
Bayesian approach which incorporates more general priomration about).

If it is known thaté is not equal to zero we require good designs for estimat-
ing all four parameters of the full model, for which D-optilityais appropriate.
Bogacka et al. (2011) present D-optimum designs for theineat model (12)
or, equivalently, for the reparameterized form (15). WHhea design region is a
rectangleX = [[S]min: [SImax * [[ZImin: [/Imax the D-optimum design has
the form

5*:{@5]%, Mo (52, L) (Sl )" <S4’i4>T}’ (16)

1 1

1 1
4 4 4 4



so that four settings of experimental values, s, i3 andi,) have to be calcu-
lated. Bogacka et al. (2011) present analytical expresdmrthese quantities as
functions of the parameter values and of the boundarieseafiéisign region.

In our example ir§5 we take the design regioti such tha{S] € [0, 100] and
[I] € [0, 100]. With both[I],,;, and[S]min = O, the results of Bogacka et al. (2011)
simplify appreciably and we obtain the formulae given in Apgpendix.

A further simplification occurs witd® = 0, when the design is of the form

5*:{@5]%, Mo (52, L) (Sl )" <82’i3>T}’ (17)

1 1 1

1
4 1 4 4
a special case of (16) with only two unknowns. Now

[S]max Fm } |

S2 = §4 = mmax {[S]min, m

i3 = 1y = min {Kic + 2[{]imin, [[Jmax} -

The analytical results do not extend tg-Dptimality. In addition to the four
design points we also need to find numerically the design hgig;,. When
X is two dimensional this requires an 11-dimensional nuraésgearch. Instead
we finesse the problem, checking our results through usesaéxtension to g
optimality of the equivalence theorem for D-optimalityjginally due to Kiefer
and Wolfowitz (1960).

To find the Bs-optimum design for generdl’ we assumed that this design
was also of the form (16), optimization of which requires aesedimensional
search over the weights and the valuesgfis, s, andi,. Again, whens® = 0,
the problem simplifies with, as for D-optimality, just twopetimental variables
sy andiz needing to be found, in this case numerically. In additiomatical
explorations show that the design weights simplify to

w; =0.5—2p wy = w3 =p and wy = 0.5, (18)

for some0 < p < 0.25. In this case only a three dimensional search is required.
As with all designs found in this paper, we checked optimaijt using the general
equivalence theorem (see Atkinson et al. 20810.3 for Ds-optimality). As
required for these Boptimum designs, the maximum ovéf of the derivative
functiond,(zx, £) is one.

5 Numerical Comparison of Designs

The considerations df2.3 provide us with four designs to be compared: those
that are D-, T-, [3- and Ds(T)-optimum. We found designs for a series of values
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of 6°. Whend® = 0 the locally optimum designs are for the initial parametds va
ues(VY K°, K? K?) = (1513,6.59,1.35,1.35), which we took from an unpub-
lished technical report from Pfizer Ltd, Sandwich. Bbe£ 0, we tookd® = 1.35

in (15). Since the value of’® does not affect the design it can be chosen for
numerical convenience.

The D-optimum designs were calculated from the expressihe Appendix;
with four support points in the design and four parametéisyteight on each de-
sign point is 1/4. The other designs were found by numeriptihdzation using
an unconstrained conjugate gradient algorithm, with tr@uoetric transforma-
tions to ensure that the design points lieXirand that the non-negative weighis
sum to one (Atkinson et al. 200%9.5). To check the optimality of these designs
we used the appropriate equivalence theorem, performimguets of derivative
values over a dense grid of 1,002,001 point&in(Atkinson and Fedorov 1975a
give the theorem for T-optimality).

Designs for three values of and their efficiencies are detailed in Table 1.
The efficiencies of further designs are in Table 2. The D-efficy of a desigrg
relative to the D-optimum desigit is

Effo(€) = {|M(©)I/|ME)}". (19)
The T-efficiency of is likewise
Effr(¢) = A(§)/AEr)- (20)

In general, our numerical results show thatjas- 0, the T-optimum design
tends to the @-optimum design evaluated af’. However, when® = 0, the
T-optimum design is not defined, and there are only two designcomparison,
those that are D- andd2optimum. These two designs have design points that are
similar, but differ radically in weights. For thedoptimum design the weights
are approximately 1/10, 1/5, 1/5 with a weight of exactly @&the fourth design
point. These weights are of the form given in (18). The D-&dficy of the -
optimum design is about 78%, a surprisingly high value. THedfi€iency of the
D-optimum design is slightly lower at about 72%. These valaee typical of
those we find over a wide range of valuesitf

For the other two prior values @fin Table 1 there are four distinct designs.
The form of the - and Ds(T)-optimum designs is similar to that of the T-
optimum designs. A8 increases, the design points gradually spread to higher
values of[S] and of[I], with the Ds(T)-optimum design in particular having a
high T-efficiency. The weights of this design do not dependhawvalue ob.

In order to illustrate the importance of optimum design, welude in our
comparisons a design that is typical of those used in theestibjea, consisting
of a trial at each of the 121 points of a grid with spacings of t&its in each
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Table 1: Enzyme kinetics: D-, T-§ and Ds(T)-optimum designs and efficiencies

for three values 06°. D- and Ds-designs calculated at’ = (V?, K7,,6°,6%)",
Ds(T) designs aty; (&4) = (V, K., 0)T.

=0
Criterion i 1 2 3 4 D & T efficiency %
[S): 100. 5.8226 100. 5.8226
1] 0. 0. 1.35 1.35
D w; 1/4 1/4 1/4 1/4 100 72.12
[S) 100. 4.1877 100. 4.1877
[1: 0. 0. 1.9093 1.9093
Ds w; 0.0858 0.2071 0.2071 0.5000 | 78.04 100
§=02
Criterion i 1 2 3 4 D & T efficiency %
[ [S]: ] [ 100. ] [ 5.8226 ] 100. [ 7.3855 ]
| ] | 0. | 0. | 1.7684 | | 1.3711 |
D w; 1/4 1/4 1/4 1/4 100 71.21
[ [S]: ] [ 100. ] [ 4.3836 ] 100. [ 5.0772 ]
| Ui | | O | 0. | | 2.3849 | | 2.0441 |
T w; 0.0818 0.2178 0.2178 0.4826 | 77.83 100
[ [S]: ] [ 100. ] [ 4.1886 ] 100. [ 5.5743 ]
| Ui | | O | 0. | | 25007 | | 1.8520 |
Ds w; 0.0738 0.2413 0.1832 0.5017 | 76.14 97.89
[ [S]: ] [ 100. ] [ 4.5859 ] 100. [ 4.5863 ]
| Ui | | O | 0. | | 22743 | | 2.3746 |
Ds(T) w; 0.0858 0.2071 0.2071 0.5000 | 75.94 99.15
§=0.45
Criterion i 1 2 3 4 D & T efficiency %
[ [S); ] [ 100. 7 [ 5.8226 | 100. 10.2841
| ] | 0. | 0. | 2.8870 | 1.5571
D w; 1/4 1/4 1/4 1/4 100 68.78
[ [S}: ] [ 100. 7 [ 4.7316 | 100. [ 6.8235 ]
| Ui | | o | 0. | | 3.5956 | | 24374 |
T w; 0.0731 0.2329 0.2329 0.4611 | 76.64 100
[ [S); ] [ 100. 7 [ 4.1887 ] 100. [ 8.3636 ]
| Ui | | o | 0. | | 4.0838 | | 1.9557 |
Ds w; 0.0561 0.2912 0.1517 0.5010 | 71.64 88.01
[ [S}: ] [ 100. 7 [ 5.3404 | 100. [ 5.3403 ]
| Ul | | o | 0. | | 3.1634 | | 3.1638 |
Ds(T) w; 0.0858 0.2071 0.2071 0.5000 | 70.64 95.02




Table 2: Enzyme kinetics: T- and D-efficiencies for five dasagiteria over a
range of values of°

T-efficiency D-efficiency

Criterion | 69 =0 0.1 0.2 0.3 0.45( =0 0.1 0.2 0.3 0.45

D 72.12 7177 7121 70.43 68.78 100 100 100 100 100

T 100 100 100 100 100 78.04 78.00 77.83 7751 76.64

Ds 100 99.47 97.89 95.17 88.01 78.04 7721 76.14 7474 71.66
Ds(T) 100 99.79 99.15 98.00 95.02 78.04 77.18 75.95 7427 70.64

Grid 1.11 1.38 1.73 2.22 3.41| 5.29 5.80 6.40 7.14 8.66

* values for the limiting @-optimum design ag® — 0

concentration. The efficiencies for this and for the fouiropim designs are given
in Table 2.

The most noticeable feature of these efficiencies in TabstRda appallingly
low efficiency of the grid design. The D-efficiencies ranganir5.29 to 8.66%,
which are unacceptably low values for estimation of all fparameters. The T-
efficiencies are even lower, from 1.11 to 3.41%, showingtiatdesign provides
virtually no information for the choice of a model.

The other, unexpected, feature of Table 2 is that te€rPoptimum design
has very good T-efficiency and a D-efficiency only slightlwér than that of the
Ds-optimum design. We accordingly use the former to illugtrednvergence to
the T-optimum design a¥ — 0.

We start our study of the effect of, that is of departure from equality of
the parameter®’. and K, with the D-optimum design. The left-hand panel of
Figure 1 shows how the design points change WithThe first two design points
are independent af’. As §° increases the values ef andi, increase slightly.
The major relative change, over the range studied, ig imhich increases from
1.35to 2.887. Since we todK|,,.. = 100, the optimum design uses only a very
small part ofX'. This feature explains the very low efficiency of the gricséad
design. Designs for polynomial models for response susfagacally cover the
whole experimental region. This example shows that the\netaof optimum
designs for nonlinear models is very different - efficiersigas strongly depend,
as here, on the specific nature of the nonlinear model. Thiétsesf Figure 1 also
explain the slight increase of the efficiencies of the gridigle with /° that is a
feature of Table 2; the D-optimum design spreads to higheegaf the variables
asd’ increases.

The right-hand panel of Figure 1 shows the specific depemdend® of,
reading downwards, the four variable experimental levgls,, i; andiy. As the
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Points of D-optimum Design Points as a function of delta
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Figure 1: Enzyme kinetics: dependence of the D-optimumgtesh ¢°. Left-
hand panel, the labelled design pointstin e, the points fors® = 0. The most
noticeable change is in the value @f The designs, for all values of, are
concentrated in a small portion &f ([/]max = 100). Right-hand panel, design
points as a function of’. Reading downsy, s, i3 andiy.

results in the Appendix show, for this model the valuepfs independent of°
and so remains at 5.8226 throughouit.

The plots in Figure 2 illustrate the gradual divergence ef Big(T) and the
T-optimum designs a& increases. The design points are in the left-hand panel.
The upper set of points are the valuessgfand s;. The design for the E(T)-
optimum design has the same structure as the D-optimumrtfesig® = 0 of §4,
that iss, = s4, the value falling on the intermediate curve. Similarlye tower
triple of curves is foti; andi,, which are equal in value for thedDr) design.

The design weights in the right-hand panel of Figure 2 shes tkependence
on §° than do the design points; for both designs= w;. The top pair of curves
is for w, which equals 0.5 throughout for thes(O)-optimum design. The central
pair of curves shows, ( = ws), with w; forming the bottom pair. These, in
particular, show only a slight divergence as the prior vaii& increases.

6 Discussion

The plots quantify the relationship between thgD-optimum and T-optimum
designs for the enzyme kinetic model &sincreases. Unlike in linear models,
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T- and Ds(T)-designs: points T- and Ds(T)-designs: weights

S

0.4

0.3

design points
2
weights
0.2

I

0.0

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
delta delta

Figure 2: Enzyme kinetics: divergence of T- ang(D)-optimum designs a8’
increases:A T-optimum designsx Ds(T)-optimum designs. Left-hand panel,
design points: upper triple, ands,, equal for the [3(T)-optimum designs; lower
triple, i3 andi,, again equal for the §T)-optimum designs. Right-hand panel,
design weights: upper pair of curves,; central pairw, = ws; bottom pairw, .

Ds and T-optimum designs are not identical for nonlinear madathough here
the differences are not large, particularly if the desigss the parameter value
U (&) rather than)®. However, as Table 2 shows, thg(D)-optimum design has
slightly lower D- and T-efficiencies than the T-optimum dgsiso the T-optimum
design is recommended for scientific use.

For linear models B and T-optimum designs are identical. It would be in-
teresting to investigate how the difference of the desigmsnbnlinear models
depends not only on° but also on the parameter-effects curvature of the model
(Hamilton and Watts 1985; O’'Brien 1992; Bogacka and Wrigh®4). There is
also the possibility that there is a value of the parameteerahan, (&5) which
gives a Q-optimum design with higher efficiencies than thg(D)-optimum de-
sign investigated here.

We have demonstrated the relationship betwegmm T-optimality through
a series of designs for prior values®f> 0. From (14) and (15) this series has
K,=1/(6—6) > K_.. Asimilar series of designs, but witki. > K, is obtained
for negative).

We conclude with some comments on developments in T-optyn@optimum
designs for three or more models are developed by Atkinsdri-adorov (1975b)
and by Braess and Dette (2011). Dette and Titoff (2008) tiyate the struc-
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ture of T-optimum designs using results from nonlinear appnation theory and
compare the power of T- andgbptimum designs. The investigation by Lopez-
Fidalgo et al. (2008) of some T- andsptimum designs, mentioned §2.3, is
for an extension of the Michaelis-Menten model that doesmatide inhibition.
Ucinski and Bogacka (2005) extend T-optimality to design&hich the factors
can be time traces of, for example, temperature in a chemeeation. Lopez-
Fidalgo, Trandafir, and Tommasi (2007) extend T-optimabtypon-normal mod-
els.

If s > 1, T-optimum designs typically do not contain sufficient sopigoints
to allow estimation of the parameters in the general mod#ingon (2008) in-
troduced compound DT-optimum designs for simultaneouamater estimation
and model discrimination. Waterhouse, Eccleston, and Wuf2009) find ap-
proximations to DT-optimum designs based on the comporgitham designs.
If the prior distribution fory is sufficiently dispersed, the T-optimum design will
have sufficient support to allow estimation of the full moddbwever, more ef-
ficient designs will be obtained by using a compound desigorporating all
available prior information. Fast algorithms for the cadtion of Bayesian de-
signs are given by Gotwalt, Jones, and Steinberg (2009).

Acknowledgment. We are grateful to the referees whose careful reading and
detailed comments led to appreciable improvements in Hréybf our presenta-
tion.

Appendix: D-optimum design for the mixed inhibi-
tion model

Values ofs,, i3, s, andiy for the D-optimum design (16) whef|,,i, = [S]min =
0.

[S]mame
[S]max + 2Km

. . KcKu([S]max + Km)
13 = mln{ KmKu T [S]mach 5 [I]max

. KcKu(KmKC + [S]max>
14 = IMinN {\/ KmKu T [S]mach ) [I]max

Ku(Kc - 24) 0
Kc(Ku - 24) ’ .
Sinces, is a function of neithef . nor K, its value does not vary with.

S9 =

S4 = max {—Km
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