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Abstract

A general model for enzyme kinetics with inhibition, the “mixed” inhibi-
tion model, simplifies to the non-competitive inhibition model when two of
the parameters are equal. We reparamaterise the model and provide designs
for investigating the equality of parameters, which corresponds to a scalar
parameterδ being zero. For linear models T-optimum designs for discrimi-
nating between models in whichδ is, and is not, equal to zero are identical
to designs in which the estimate ofδ has minimum variance. We show that
this equality does not hold for our nonlinear model, except as δ approaches
zero. We provide optimum discriminating designs for a series of parame-
ter values. An Appendix presents analytical expressions for the D-optimum
design for the four parameters of the mixed inhibition model.

Keywords: Analytical D-optimality; Ds(T)-optimality; General Equivalence
Theorem; model-discriminating design; optimum design; T-optimality

1 Introduction

Establishing the equality of parameters is important in thebuilding of the non-
linear models used for enzyme kinetic reactions with inhibition. We re-write the
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models so that testing parameter equality is identical to testing whether a param-
eterδ = 0. We consider the problem of the optimum design of experiments for
testing this hypothesis.

To test whetherδ = 0 we compare models in whichδ is constrained to be
zero with those in which it is not so constrained. For linear models the power
of the resulting F test for the comparison of the two models ismaximized by the
T-optimum design (Atkinson and Fedorov 1975a; Atkinson et al. 2007, cap.20)
which maximizes the non-centrality parameterδTAδ, withA the information ma-
trix for δ.

An alternative approach is to estimateδ as precisely as possible, by finding
the Ds-optimum design maximizing the determinant ofA. Since the T criterion,
unlike Ds-optimality, depends on the value ofδ, the two criteria cannot, in general,
yield the same designs, the T-optimum design having higher power. However, in
our application,δ is scalar (s = 1), so that the non-centrality parameterδTAδ =
δ2A. Then the D1 and T-optimum designs coincide for linear models, sinceA
does not depend on the values of the parameters. However, fornonlinear models,
D1- and T-optimum designs are identical only if the models are linearized at the
same nominal values of the parameters. Otherwise, for discrimination between
the original (that is, nonlinearized) models, D1 and T-optimum designs become
identical asδ → 0. See López-Fidalgo, Tommasi, and Trandafir (2008).

The two purposes of our paper are to provide a methodology yielding good de-
signs for testing the equality of parameters and to explore the relationship between
the T- and D1-optimum designs, with particular emphasis on the efficiency of the
designs. We start in§2 with a short introduction to the optimum design criteria we
shall be using. Our example, from enzyme kinetics, is introduced in§3, where we
reparameterise this nonlinear model to allow for testing parameter equality. The
next section describes D- and Ds-optimum designs for this four-parameter model.
We recall the analytical expressions for the D-optimum designs (Bogacka et al.
2011). Section 5 presents optimum designs for testing parameter equality for a
series of values ofδ and shows how the T- and Ds-optimum designs diverge asδ
increases, that is as the hypothesis of interest becomes increasingly false. Brief
comments on T-optimality conclude in§6. Analytical expressions for the support
points of the D-optimum design for the four-parameter mixedinhibition model
are in the Appendix.

Throughout we work with the customary second-order assumptions of additive
independent errors of constant variance. We are then able touse the standard
theory of optimum design for regression models as describedin several books
including Pukelsheim (1993), Fedorov and Hackl (1997) and Atkinson, Donev,
and Tobias (2007). We focus on continuous designs expressedas a probability
measureξ over a design regionX .
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2 Models and Design Criteria

2.1 Linear models: D- and Ds-optimality

The linear model for observationi taken at design pointxi is

yi = ψTf(xi) + ǫi, (1)

whereψ is a vector of unknown parameters,f(.) is a vector of known functions
and the independent errorsǫi are normally distributed;ǫi ∼ N (0, σ2). If a simpler
model may fit the data we can write

yi = ψT
1 f1(xi) + δTf2(xi) + ǫi, (2)

wheref1(.) andf2(.) are subvectors off(.) of appropriate dimension andψ =
(ψT

1 , δ
T)T. We then test the significance ofδ. In general,δ can be a vector ofs

parameters.
Under these assumptions, efficient estimation is by least squares. For the de-

sign measureξ putting weightwi at the design pointxi in the design regionX ,
the information matrix for̂ψ is

M(ξ) =
n

∑

i=1

wif(xi)f
T(xi) (3)

for a design withn support points. With

Mjk(ξ) =

n
∑

i=1

wifj(xi)f
T
k (xi), (4)

the covariance matrix for the parameter of interestδ is proportional to

A−1 = {M22(ξ) −M21(ξ)M
−1
11 (ξ)MT

21(ξ)}
−1 (j, k = 1, 2). (5)

Accordingly, the Ds-optimum design forδ in the linear model (2) maximizes the
determinant

|A| = |M22(ξ) −M21(ξ)M
−1
11 (ξ)MT

21(ξ)| = |M(ξ)|/|M11(ξ)|. (6)

2.2 Linear models: T-optimality

T-optimum designs were introduced by Atkinson and Fedorov (1975a) for mod-
els that may be nonlinear. Let the two models beηt(xi, ψt) – taken as true – and
η1(xi, ψ1), whereη1(.) need not be a special case ofηt(.) In general the T-optimum
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design depends on the value assumed for the parameter vectorψt. Let the param-
eter estimate whenη1(.) is fitted to observations without error fromηt(.) beψ̂1(ξ).
That is

ψ̂1(ξ) = arg min
ψ1

n
∑

i=1

wi{ηt(xi, ψt) − η1(xi, ψ1)}
2. (7)

Then the T-optimum design maximizes the non-centrality parameter

∆(ξ) =

n
∑

i=1

wi

{

ηt(xi, ψt) − η1(xi, ψ̂1)
}2

. (8)

If both models are linear and contain some terms in common, wecan extend
(1) and (2) and write

yi = ψTf(xi) + ǫi = ψT
t ft(xi) + δTf̃2(xi) + ǫi, (9)

where the terms̃f2 are the complement of the termsft in the full modelf (see
Atkinson et al. 2007,§20.9.1). If, as is the case in our example,η1(.) is nested
in ηt(.) we recover (2) and the T-optimum design maximizes the non-centrality
parameter

∆(ξ) = δT{M22(ξ) −M21(ξ)M
−1
11 (ξ)MT

21(ξ)}δ. (10)

Atkinson and Fedorov (1975a) give an example of discrimination between
a quadratic polynomial in one variable and a constant. Thuss = 2. The T-
optimum design splits trials evenly between the values ofx giving the maximum
and minimum of the quadratic function, the design points therefore depending
on the value ofψ0. This is distinct from the Ds-optimum design for the two
parameters, which puts one third of the trials at the ends andcentre of the design
region. However, for testing the quadratic against a model with linear trend, so
thats = 1, the Ds- and T-optimum designs are identical, putting weight 1/4 atthe
ends of the design region and weight 1/2 at the centre, regardless of the value of
ψ0. A curious aside is that, in the special case that the next to highest order term is
missing, the designs are not unique (Dette and Titoff 2008; Atkinson 2010; Dette,
Melas, and Shpilev 2011).

2.3 Nonlinear models: D-, Ds- and T-optimality

Locally D- and Ds-optimum designs for nonlinear models are found by Taylor
expansion around some prior point valueψ0 of the parameter. The information
matrix is then a function of the vector of partial derivatives

f(xi, ψ
0) =

∂η(xi, ψ)

∂ψ

∣

∣

∣

∣

ψ0

(11)
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of the response function with respect to the parametersψ, often called the parame-
ter sensitivities, whereψ0 is a prior point estimate of the parameters. See Chapter
17 of Atkinson et al. (2007).

On the other hand, T-optimality, as (7) and (8) show, does notinvolve any
linearization. Whenδ is scalar and the models are linear, T-optimum designs
maximizing (8) are also D1-optimum. However, for nonlinear models D1 and
T-optimum designs are not in general identical. This arisesbecause the D1-
optimality criterion is used for discriminating between models that are linearized
at (ψ0T

1 , 0)T andψ0T
1 , respectively, while the T-optimality criterion is applied to

the original model and depends on the nominal values(ψ0T
1 , δ0)T. The T-optimum

design approaches theD1-optimum design asδ0 → 0. For a theoretical justifica-
tion see López-Fidalgo et al. (2008).

Here we find two Ds-optimum designs for the nonlinear model. The first at
(ψ0T

1 , 0)T and the second at(ψ̂T
1 (ξ∗T ), 0)T whereξ∗T denotes the T-optimum design.

To avoid confusion, for the nonce we call this second criterion Ds(T)-optimality.
Interest is in how well these two designs compare with the T-optimum design for
model discrimination. We look at their properties for a series of values ofδ0.

3 Enzyme Kinetics

The models arise in the assessment of drug metabolism and drug-drug interac-
tion. In studies of inhibition, interest may be in the effectof the drug in reducing
the activity of an enzyme. An example is penicillin which inhibits the enzyme
producing the cell walls of bacteria. In the study of the effect of “cocktails” of
drugs, interest is in whether one drug inhibits the metabolism of another. See
Segel (1993).

The models relate the velocity of reactionv to concentrations of substrate[S]
and of inhibitor[I]. Different types of binding lead to a variety of models for the
reaction. Here we consider two possible models.

Mixed Inhibition. In this four-parameter model the deterministic velocity
equation is:

v =
V [S]

Km

(

1 +
[I]

Kc

)

+ [S]

(

1 +
[I]

Ku

) , (12)

with the parametersV,Km, Ku andKc to be determined experimentally. In de-
signing experiments it is assumed that the errors in the measurements ofv follow
the normal assumptions of§2.

Non-competitive Inhibition. WhenKu = Kc the model has a specific inter-
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pretation and becomes

v =
V [S]

(Km + [S])

(

1 +
[I]

Kc

) . (13)

To obtain efficient designs for testing the equality ofKc andKu we rewrite
the model (12) in a nonlinear form analogous to (2). If we letθ1 = 1/Kc and
θ2 = 1/Ku, (12) becomes

v =
V [S]

Km (1 + θ1[I]) + [S] (1 + θ2[I])
. (14)

We now make a reparameterization and writeθ1 = θ + δ andθ2 = θ − δ, when
(14) becomes

v =
V [S]

(Km + [S]) (1 + θ[I]) + δ[I] (Km − [S])
, (15)

which reduces to (13) whenδ = 0. If θ is also zero, we obtain the Michaelis-
Menten model.

With ψ = (V,Km, θ, δ)
T the information matrix is a function of the vector of

partial derivatives (11) withη = v.

4 D- and Ds-optimum Designs

An experimental design involves the choice of concentrationsxi = ([S]i, [I]i)
T at

which measurements are to be taken. Since (15) is nonlinear in three of the pa-
rameters, D- and Ds-optimum designs will depend on the values of all parameters
exceptV . In this paper we find locally optimum designs that depend on the prior
valueψ0. Chapter 18 of Atkinson et al. (2007) describes, for simplerexamples, a
Bayesian approach which incorporates more general prior information aboutψ.

If it is known thatδ is not equal to zero we require good designs for estimat-
ing all four parameters of the full model, for which D-optimality is appropriate.
Bogacka et al. (2011) present D-optimum designs for the nonlinear model (12)
or, equivalently, for the reparameterized form (15). When the design region is a
rectangleX =

[

[S]min, [S]max
]

×
[

[I]min, [I]max
]

the D-optimum design has
the form

ξ∗ =

{

([S]max, [I]min)
T (s2, [I]min)

T ([S]max, i3)
T (s4, i4)

T

1
4

1
4

1
4

1
4

}

, (16)

6



so that four settings of experimental values(s2, s4, i3 andi4) have to be calcu-
lated. Bogacka et al. (2011) present analytical expressions for these quantities as
functions of the parameter values and of the boundaries of the design region.

In our example in§5 we take the design regionX such that[S] ∈ [0, 100] and
[I] ∈ [0, 100]. With both[I]min and[S]min = 0, the results of Bogacka et al. (2011)
simplify appreciably and we obtain the formulae given in theAppendix.

A further simplification occurs withδ0 = 0, when the design is of the form

ξ∗ =

{

([S]max, [I]min)
T (s2, [I]min)

T ([S]max, i3)
T (s2, i3)

T

1
4

1
4

1
4

1
4

}

, (17)

a special case of (16) with only two unknowns. Now

s2 = s4 = max

{

[S]min,
[S]maxKm

[S]max + 2Km

}

,

i3 = i4 = min {Kic + 2[I]min, [I]max} .

The analytical results do not extend to Ds-optimality. In addition to the four
design points we also need to find numerically the design weights wi. When
X is two dimensional this requires an 11-dimensional numerical search. Instead
we finesse the problem, checking our results through use of the extension to Ds-
optimality of the equivalence theorem for D-optimality, originally due to Kiefer
and Wolfowitz (1960).

To find the Ds-optimum design for generalδ0 we assumed that this design
was also of the form (16), optimization of which requires a seven-dimensional
search over the weights and the values ofs2, i3, s4 andi4. Again, whenδ0 = 0,
the problem simplifies with, as for D-optimality, just two experimental variables
s2 and i3 needing to be found, in this case numerically. In addition numerical
explorations show that the design weights simplify to

w1 = 0.5 − 2p w2 = w3 = p and w4 = 0.5, (18)

for some0 < p < 0.25. In this case only a three dimensional search is required.
As with all designs found in this paper, we checked optimality by using the general
equivalence theorem (see Atkinson et al. 2007,§10.3 for Ds-optimality). As
required for these Ds-optimum designs, the maximum overX of the derivative
functionds(x, ξ) is one.

5 Numerical Comparison of Designs

The considerations of§2.3 provide us with four designs to be compared: those
that are D-, T-, Ds- and Ds(T)-optimum. We found designs for a series of values
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of δ0. Whenδ0 = 0 the locally optimum designs are for the initial parameter val-
ues(V 0, K0

m, K
0
c , K

0
u) = (1513, 6.59, 1.35, 1.35), which we took from an unpub-

lished technical report from Pfizer Ltd, Sandwich. Forδ0 6= 0, we tookθ0 = 1.35
in (15). Since the value ofV 0 does not affect the design it can be chosen for
numerical convenience.

The D-optimum designs were calculated from the expressionsin the Appendix;
with four support points in the design and four parameters, the weight on each de-
sign point is 1/4. The other designs were found by numerical optimization using
an unconstrained conjugate gradient algorithm, with trigonometric transforma-
tions to ensure that the design points lie inX and that the non-negative weightswi
sum to one (Atkinson et al. 2007,§9.5). To check the optimality of these designs
we used the appropriate equivalence theorem, performing a search of derivative
values over a dense grid of 1,002,001 points inX . (Atkinson and Fedorov 1975a
give the theorem for T-optimality).

Designs for three values ofδ0 and their efficiencies are detailed in Table 1.
The efficiencies of further designs are in Table 2. The D-efficiency of a designξ
relative to the D-optimum designξ∗ is

EffD(ξ) = {|M(ξ)|/|M(ξ∗)|}1/p . (19)

The T-efficiency ofξ is likewise

EffT(ξ) = ∆(ξ)/∆(ξ∗T ). (20)

In general, our numerical results show that, asδ0 → 0, the T-optimum design
tends to the Ds-optimum design evaluated atψ0. However, whenδ0 = 0, the
T-optimum design is not defined, and there are only two designs for comparison,
those that are D- and Ds-optimum. These two designs have design points that are
similar, but differ radically in weights. For the Ds-optimum design the weights
are approximately 1/10, 1/5, 1/5 with a weight of exactly 0.5on the fourth design
point. These weights are of the form given in (18). The D-efficiency of the Ds-
optimum design is about 78%, a surprisingly high value. The T-efficiency of the
D-optimum design is slightly lower at about 72%. These values are typical of
those we find over a wide range of values ofδ0.

For the other two prior values ofδ in Table 1 there are four distinct designs.
The form of the Ds- and Ds(T)-optimum designs is similar to that of the T-
optimum designs. Asδ0 increases, the design points gradually spread to higher
values of[S] and of [I], with the Ds(T)-optimum design in particular having a
high T-efficiency. The weights of this design do not depend onthe value ofδ.

In order to illustrate the importance of optimum design, we include in our
comparisons a design that is typical of those used in the subject area, consisting
of a trial at each of the 121 points of a grid with spacings of ten units in each
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Table 1: Enzyme kinetics: D-, T- Ds- and Ds(T)-optimum designs and efficiencies
for three values ofδ0. D- and Ds-designs calculated atψ0 = (V 0, K0

m, θ
0, δ0)T,

Ds(T) designs at̂ψ1(ξ
∗

T ) = (V̂ , K̂m, θ̂)
T.

δ0 = 0

Criterion i 1 2 3 4 D & T efficiency %

[

[S]i
[I]i

] [

100.
0.

] [

5.8226
0.

] [

100.
1.35

] [

5.8226
1.35

]

D wi 1/4 1/4 1/4 1/4 100 72.12

[

[S]i
[I]i

] [

100.
0.

] [

4.1877
0.

] [

100.
1.9093

] [

4.1877
1.9093

]

Ds wi 0.0858 0.2071 0.2071 0.5000 78.04 100

δ = 0.2

Criterion i 1 2 3 4 D & T efficiency %

[

[S]i
[I]i

] [

100.
0.

] [

5.8226
0.

] [

100.
1.7684

] [

7.3855
1.3711

]

D wi 1/4 1/4 1/4 1/4 100 71.21

[

[S]i
[I]i

] [

100.
0.

] [

4.3836
0.

] [

100.
2.3849

] [

5.0772
2.0441

]

T wi 0.0818 0.2178 0.2178 0.4826 77.83 100

[

[S]i
[I]i

] [

100.
0.

] [

4.1886
0.

] [

100.
2.5007

] [

5.5743
1.8520

]

Ds wi 0.0738 0.2413 0.1832 0.5017 76.14 97.89

[

[S]i
[I]i

] [

100.
0.

] [

4.5859
0.

] [

100.
2.2743

] [

4.5863
2.3746

]

Ds(T) wi 0.0858 0.2071 0.2071 0.5000 75.94 99.15

δ = 0.45

Criterion i 1 2 3 4 D & T efficiency %

[

[S]i
[I]i

] [

100.
0.

] [

5.8226
0.

] [

100.
2.8870

] [

10.2841
1.5571

]

D wi 1/4 1/4 1/4 1/4 100 68.78

[

[S]i
[I]i

] [

100.
0.

] [

4.7316
0.

] [

100.
3.5956

] [

6.8235
2.4374

]

T wi 0.0731 0.2329 0.2329 0.4611 76.64 100

[

[S]i
[I]i

] [

100.
0.

] [

4.1887
0.

] [

100.
4.0838

] [

8.3636
1.9557

]

Ds wi 0.0561 0.2912 0.1517 0.5010 71.64 88.01

[

[S]i
[I]i

] [

100.
0.

] [

5.3404
0.

] [

100.
3.1634

] [

5.3403
3.1638

]

Ds(T) wi 0.0858 0.2071 0.2071 0.5000 70.64 95.02

9



Table 2: Enzyme kinetics: T- and D-efficiencies for five design criteria over a
range of values ofδ0

T-efficiency D-efficiency

Criterion δ0 = 0 0.1 0.2 0.3 0.45 δ0 = 0 0.1 0.2 0.3 0.45

D 72.12 71.77 71.21 70.43 68.78 100 100 100 100 100
T 100⋆ 100 100 100 100 78.04⋆ 78.00 77.83 77.51 76.64

Ds 100 99.47 97.89 95.17 88.01 78.04 77.21 76.14 74.74 71.66
Ds(T) 100⋆ 99.79 99.15 98.00 95.02 78.04⋆ 77.18 75.95 74.27 70.64
Grid 1.11 1.38 1.73 2.22 3.41 5.29 5.80 6.40 7.14 8.66

⋆ values for the limiting Ds-optimum design asδ0 → 0

concentration. The efficiencies for this and for the four optimum designs are given
in Table 2.

The most noticeable feature of these efficiencies in Table 2 is the appallingly
low efficiency of the grid design. The D-efficiencies range from 5.29 to 8.66%,
which are unacceptably low values for estimation of all fourparameters. The T-
efficiencies are even lower, from 1.11 to 3.41%, showing thatthis design provides
virtually no information for the choice of a model.

The other, unexpected, feature of Table 2 is that the Ds(T)-optimum design
has very good T-efficiency and a D-efficiency only slightly lower than that of the
Ds-optimum design. We accordingly use the former to illustrate convergence to
the T-optimum design asδ0 → 0.

We start our study of the effect ofδ0, that is of departure from equality of
the parametersKc andKu, with the D-optimum design. The left-hand panel of
Figure 1 shows how the design points change withδ0. The first two design points
are independent ofδ0. As δ0 increases the values ofs4 andi4 increase slightly.
The major relative change, over the range studied, is ini3 which increases from
1.35 to 2.887. Since we took[I]max = 100, the optimum design uses only a very
small part ofX . This feature explains the very low efficiency of the grid-based
design. Designs for polynomial models for response surfaces typically cover the
whole experimental region. This example shows that the behaviour of optimum
designs for nonlinear models is very different - efficient designs strongly depend,
as here, on the specific nature of the nonlinear model. The results of Figure 1 also
explain the slight increase of the efficiencies of the grid design with δ0 that is a
feature of Table 2; the D-optimum design spreads to higher values of the variables
asδ0 increases.

The right-hand panel of Figure 1 shows the specific dependence on δ0 of,
reading downwards, the four variable experimental levelss4, s2, i3 andi4. As the
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Figure 1: Enzyme kinetics: dependence of the D-optimum design onδ0. Left-
hand panel, the labelled design points inX : •, the points forδ0 = 0. The most
noticeable change is in the value ofi3. The designs, for all values ofδ0, are
concentrated in a small portion ofX ([I]max = 100). Right-hand panel, design
points as a function ofδ0. Reading down:s4, s2, i3 andi4.

results in the Appendix show, for this model the value ofs2 is independent ofδ0

and so remains at 5.8226 throughout.
The plots in Figure 2 illustrate the gradual divergence of the Ds(T) and the

T-optimum designs asδ0 increases. The design points are in the left-hand panel.
The upper set of points are the values ofs4 ands2. The design for the Ds(T)-
optimum design has the same structure as the D-optimum design for δ0 = 0 of §4,
that iss2 = s4, the value falling on the intermediate curve. Similarly, the lower
triple of curves is fori3 andi4, which are equal in value for the Ds(T) design.

The design weights in the right-hand panel of Figure 2 show less dependence
on δ0 than do the design points; for both designsw2 = w3. The top pair of curves
is forw4 which equals 0.5 throughout for the Ds(T)-optimum design. The central
pair of curves showsw2 ( = w3), with w1 forming the bottom pair. These, in
particular, show only a slight divergence as the prior valueof δ0 increases.

6 Discussion

The plots quantify the relationship between the Ds(T)-optimum and T-optimum
designs for the enzyme kinetic model asδ0 increases. Unlike in linear models,
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Figure 2: Enzyme kinetics: divergence of T- and Ds(T)-optimum designs asδ0

increases:N T-optimum designs,× Ds(T)-optimum designs. Left-hand panel,
design points: upper triple,s4 ands2, equal for the Ds(T)-optimum designs; lower
triple, i3 andi4, again equal for the Ds(T)-optimum designs. Right-hand panel,
design weights: upper pair of curves,w4; central pair,w2 = w3; bottom pairw1.

Ds and T-optimum designs are not identical for nonlinear models, although here
the differences are not large, particularly if the designs use the parameter value
ψ̂1(ξ

∗

T ) rather thanψ0. However, as Table 2 shows, the Ds(T)-optimum design has
slightly lower D- and T-efficiencies than the T-optimum design, so the T-optimum
design is recommended for scientific use.

For linear models D1- and T-optimum designs are identical. It would be in-
teresting to investigate how the difference of the designs for nonlinear models
depends not only onδ0 but also on the parameter-effects curvature of the model
(Hamilton and Watts 1985; O’Brien 1992; Bogacka and Wright 2004). There is
also the possibility that there is a value of the parameter other thanψ̂1(ξ

∗

T ) which
gives a D1-optimum design with higher efficiencies than the Ds(T)-optimum de-
sign investigated here.

We have demonstrated the relationship between Ds and T-optimality through
a series of designs for prior values ofδ > 0. From (14) and (15) this series has
Ku = 1/(θ− δ) > Kc. A similar series of designs, but withKc > Ku, is obtained
for negativeδ.

We conclude with some comments on developments in T-optimality. T-optimum
designs for three or more models are developed by Atkinson and Fedorov (1975b)
and by Braess and Dette (2011). Dette and Titoff (2008) investigate the struc-
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ture of T-optimum designs using results from nonlinear approximation theory and
compare the power of T- and Ds-optimum designs. The investigation by López-
Fidalgo et al. (2008) of some T- and Ds-optimum designs, mentioned in§2.3, is
for an extension of the Michaelis-Menten model that does notinclude inhibition.
Uciński and Bogacka (2005) extend T-optimality to designsin which the factors
can be time traces of, for example, temperature in a chemicalreaction. López-
Fidalgo, Trandafir, and Tommasi (2007) extend T-optimalityto non-normal mod-
els.

If s > 1, T-optimum designs typically do not contain sufficient support points
to allow estimation of the parameters in the general model. Atkinson (2008) in-
troduced compound DT-optimum designs for simultaneous parameter estimation
and model discrimination. Waterhouse, Eccleston, and Duffull (2009) find ap-
proximations to DT-optimum designs based on the component optimum designs.
If the prior distribution forψ is sufficiently dispersed, the T-optimum design will
have sufficient support to allow estimation of the full model. However, more ef-
ficient designs will be obtained by using a compound design incorporating all
available prior information. Fast algorithms for the calculation of Bayesian de-
signs are given by Gotwalt, Jones, and Steinberg (2009).

Acknowledgment. We are grateful to the referees whose careful reading and
detailed comments led to appreciable improvements in the clarity of our presenta-
tion.

Appendix: D-optimum design for the mixed inhibi-
tion model

Values ofs2, i3, s4 andi4 for the D-optimum design (16) when[I]min = [S]min =
0.

s2 =
[S]maxKm

[S]max + 2Km

i3 = min

{

KcKu([S]max +Km)

KmKu + [S]maxKc
, [I]max

}

i4 = min

{
√

KcKu(KmKc + [S]max)

KmKu + [S]maxKc

, [I]max

}

s4 = max

{

−Km
Ku(Kc − i4)

Kc(Ku − i4)
, 0

}

.

Sinces2 is a function of neitherKc norKu its value does not vary withδ.
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