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Abstract

In this paper we present an alternative method for the spectral analysis of a strictly
stationary time series {Yt}t∈Z. We define a “new” spectrum as the Fourier transform of the
differences between copulas of the pairs (Yt, Yt−k) and the independence copula. This object
is called copula spectral density kernel and allows to separate marginal and serial aspects of a
time series. We show that it is intrinsically related to the concept of quantile regression. Like
in quantile regression, which provides more information about the conditional distribution
than the classical location-scale model, the copula spectral density kernel is more informative
than the spectral density obtained from the autocovariances. In particular the approach
provides a complete description of the distributions of all pairs (Yt, Yt−k). Moreover, it
inherits the robustness properties of classical quantile regression, because it does not require
any distributional assumptions such as the existence of finite moments. In order to estimate
the copula spectral density kernel we introduce rank-based Laplace periodograms which
are calculated as bilinear forms of weighted L1-projections of the ranks of the observed
time series onto a harmonic regression model. We establish the asymptotic distribution of
those periodograms, and the consistency of adequately smoothed versions. The finite-sample
properties of the new methodology, and its potential for applications are briefly investigated
by simulations and a short empirical example.

AMS 1980 subject classification : 62M15, 62G35.
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Copulas, Ranks, Time reversibility .

1 Introduction.

1.1 The location-scale paradigm.

Whether linear or not, most traditional time series models are of the conditional location/scale
type: conditional on past values Yt−1, Yt−2, . . ., the random variable Yt satisfies an equation of
the form

Yt = ψ(Yt−1, Yt−2, . . . ) + σ(Yt−1, Yt−2, . . . )εt t ∈ Z, (1.1)
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where {εt}t∈Z is white noise, and εt is independent of Yt−1, Yt−2, . . . . The (Yt−1, Yt−2, . . . )-
measurable functions ψ and σ are (conditional) location and scale functions, possibly para-
metrized by some ϑϑϑ. Equation (1.1) may characterize a data-generating process – in which
case “=” is to be considered as “almost sure equality” – or, more generally, it simply describes
Yt’s conditional (on Yt−1, Yt−2, . . . ) distribution – and “=” is to be interpreted as “equality in
(conditional) distribution”. Such distinction is, however, irrelevant from a statistical point of
view, as it has no impact on likelihoods.

In model (1.1), the distribution of Yt conditional on Yt−1, Yt−2, . . . is nothing but the dis-
tribution of εt, rescaled by the conditional scale parameter σ(Yt−1, Yt−2, . . . ) and shifted by the
conditional location parameter ψ(Yt−1, Yt−2, . . . ). Sophisticated as they may be, the mappings

(Yt−1, Yt−2, . . . ) 7→ (ψ(Yt−1, Yt−2, . . . ), σ(Yt−1, Yt−2, . . . ))

only can account for a very limited type of the dynamics of the process {Yt}t∈Z. The dynamics of
volatility provided by this model are quite poor, being of a pure rescaling nature. In particular no
impact of past values on skewness, kurtosis, tails, can be reflected. All standardized conditional
distributions strictly coincide with that of ε, and all conditional τ -quantiles, hence all values at
risk, follow, irrespective of τ , from those of ε via one single linear transformation.

Note that the interpretation of ψ and σ depends on the identification constraints on ε: if ε
is assumed to have mean zero and variance one, then ψ and σ are a conditional mean and a
conditional standard error, respectively. In this case models of the form (1.1) clearly belong to
the L2-Gaussian legacy. If ε is assumed to have median zero and expected absolute deviation
or median absolute deviation one, ψ and σ are a conditional median and a conditional expected
or median absolute deviation.

On the basis of these “remarks”, the following questions naturally arise: Can we do better?
Can we go beyond that (conditional) “location-scale paradigm”? Can we model richer dynamics
under which the conditional quantiles of Y are not just a shifted and rescaled version of those
of ε and under which the whole conditional distribution of Yt, not just its location and scale,
can be affected by the past? And, can we achieve this in a statistically tractable way?

1.2 Marginal and serial features.

Another drawback of models of the form (1.1) is their sensitivity to nonlinear marginal trans-
formations. If two statisticians observe the same time series, but measure it on different scales,
Yt and Y 3

t or eYt , for instance, and both adjust a model of the form (1.1) to their measurements,
they will end up with drastically different analyses and predictions. The only way to avoid
this problem consists in disentangling the marginal (viz., related to the scale of measurement)
aspects of the series under study from its serial aspects, that is, basing the description of serial
dependence features on quantities such as the FY (Yt)’s, where FY is Yt’s marginal distribution
function. Those quantities do not depend on the measurement scale since they are invariant
under continuous monotone increasing transformations.

This point of view is closely related to the concept of copulas (see Nelsen [2006] or Genest
and Favre [2007]). Consider, for instance, a strictly stationary Markovian process {Yt}t∈Z of
order one. This process is fully characterized by the joint distribution of (Yt, Yt−1) or, equiva-
lently, by the marginal distribution function FY (or the quantile function F−1

Y ) of Yt, along with
the joint distribution of (Ut, Ut−1) := (FY (Yt), FY (Yt−1)), a “serial copula of order one”. In
such a description, the marginal features of the process {Yt}t∈Z are entirely described by FY ,
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independently of the serial features, that are accounted for by the serial copula. Two statisti-
cians observing the same phenomenon but recording Yt and eYt , respectively, would use distinct
quantile functions, but they would agree on serial features.

In more general cases, serial copulas of order one are not sufficient, and higher-order or
multiple copulas may be needed. Note that the description of the model in this context is
clearly “in distribution”: Ut is not related to Ut−1 through any direct interpretable “almost sure
relation” reflecting some “physical” data-generating mechanism.

1.3 A new nonparametric approach.

The objective of this paper is to show how to overcome the limitations of conditional location-
scale modelling described in Sections 1.1 and 1.2, and to provide statistical tools for a new
approach to time series modelling. Not surprisingly, those tools are essentially related to copulas,
quantiles and ranks. The traditional nonparametric techniques, such as spectral analysis (in its
usual L2-form), which only account for second-order serial features, cannot handle such objects,
and we therefore propose and develop an original, flexible and fully nonparametric L1-spectral
analysis method.

While classical spectral densities are obtained as Fourier transforms of classical covariance
functions, we rather define spectral density kernels, associated with covariance kernels of the
form

γk(x1, x2) := Cov(I{Yt ≤ x1}, I{Yt−k ≤ x2}) (1.2)

(Laplace cross-covariance kernels) or

γUk (τ1, τ2) := Cov(I{Ut ≤ τ1}, I{Ut−k ≤ τ2}) (1.3)

(copula cross-covariance kernels), where Ut := FY (Yt) and FY denotes the marginal distribu-
tion of the strictly stationary process {Yt}t∈Z. Contrary to covariance functions, the kernels
{γk(x1, x2)|x1, x2 ∈ R} and {γUk (τ1, τ2)|τ1, τ2 ∈ [0, 1]} allow for a complete description of arbi-
trary bivariate distributions for the couples (Yt, Yt−k) and arbitrary bivariate copulas of the pairs
(Ut, Ut−k), respectively, and thus escape the conditional location-scale paradigm discussed in Sec-
tion 1.1. They are able to account for sophisticated dependence features that covariance-based
methods are unable to detect, such as time-irreversibility, tail dependence, varying conditional
skewness or kurtosis, etc. And, in view of the desired separation between marginal and serial
features expressed in Section 1.2, special virtues, such as invariance/equivariance (with respect
to continuous order-preserving marginal transformations), can be expected from the copula co-
variance kernels defined in (1.3).

Classical nonparametric spectral-based inference methods have proven quite effective [Granger,
1964, Bloomfield, 1976], essentially in a Gaussian context, where dependencies are fully char-
acterized by autocovariance functions. Therefore, it can be anticipated that similar methods,
based on estimated versions of Laplace or copula spectral kernels (associated with Laplace and
copula covariance kernels, respectively) would be quite useful in the study of series exhibiting
those features that classical covariance-related spectra cannot account for.

Estimation of Laplace and copula spectral kernels, however, requires a substitute for the ordi-
nary periodogram concept considered in the classical approach. We therefore introduce Laplace
and copula periodogram kernels. While ordinary periodograms are defined via least squares
regression of the observations on the sines and cosines of the harmonic basis, our periodogram
kernels are obtained via quantile regression in the Koenker and Bassett [1978] sense. A study
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of their asymptotic properties shows that, just as ordinary periodograms, they produce asymp-
totically unbiased estimates (more precisely, the mean of their asymptotic distribution is 2π
times the corresponding spectrum), and we therefore also consider smoothed versions that yield
consistency. Asymptotic results show that copula periodograms, as anticipated, are preferable
to the Laplace ones, as their asymptotic behavior only depends on the bivariate copulas of the
pairs (Ut, Ut−k), not on the (in general unknown) marginal distribution FY of the Yt’s.

Unfortunately, copula periodogram kernels are not statistics, since their definition involves
the transformation of Yt into Ut, hence the knowledge of the marginal distribution function FY .
We therefore introduce a third periodogram kernel, based on the empirical version of FY , that
is, on the ranks of the random variables Y1, . . . , Yn, and establish, under mild assumptions, the
asymptotic equivalence of that rank-based Laplace periodogram with the copula one. Smoothed
rank-based Laplace periodogram kernels, accordingly, seem to be the adequate tools in this con-
text. We conclude with a brief numerical illustration – simulations and an empirical application
– of their potential use in practical problems.

1.4 Review of related literature

Quantities of the form (1.2) and (1.3) arise naturally when the clipped series (I{Yt ≤ x})t∈Z
and (I{Ut ≤ τ})t∈Z are investigated. Processes of this type have been considered earlier in the
literature (see, for instance, Kedem [1980]). In the field of signal processing the idea to replace
the quadratic by other loss functions has been discussed by Katkovnik [1998] who proposed to
use Lp-distances and analyzed the properties of these M-periodograms. Hong [2000] used the
Laplace covariances corresponding to positive lags to construct a test for serial dependence.
Linton and Whang [2007] considered sequences of Laplace cross-correlations γk(τ, τ)/γ0(τ, τ)
(called quantilogram by these authors) in order to test for directional predictability. Li [2008]
suggested least absolute deviation estimators in a harmonic regression model assuming that the
median of the random variables Yt vanishes. The focus of this author was on the quantity

f0,0(ω) =
1

2π

∑
k∈Z

γk(0, 0) exp(ikω),

which he called Laplace spectrum. He constructed an asymptotically unbiased estimator for
a quantity which differs from f0,0(ωj) by a factor involving 1/(F ′Y (0))2 (here ωj denotes the
jth Fourier frequency) and extended these results to arbitrary quantiles (see Li [2011]). An
important drawback of this method consists in the fact that it requires estimates of the quantity
F ′Y (0) in order to obtain an estimate of the Laplace spectrum. Moreover, Li [2008, 2011] does
not prove consistency of a smoothed version of his estimates. Very recently, Hagemann [2011]
proposed an alternative method to estimate the Laplace spectrum (called quantile spectrum
by this author), which is based on an estimate of a linearization of Li [2008]’s statistic. This
approach does not suffer from the drawbacks of Li [2008]’s method and yields consistent estimates
avoiding estimation of the marginal density. On the other hand this method does not allow a
direct interpretation in terms of (weighted) absolute deviation estimates.
In order to obtain a complete description of the two-dimensional distributions at lag k, Hong
[1999] introduced the generalized spectrum defined as the covariance Cov(eix1Yt , eix2Yt+k), and this
approach was used by Chung and Hong [2007] to test for directional pedictability. Recently, Lee
and Rao [2011] considered a Fourier transform of the differences between the joint density of the
pairs (Yt, Yt−k) and the product of the two marginal densities to investigate serial dependence.
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Unlike ours, these methods are not invariant with respect to transformations of the marginal
distributions.

Finally, there exist some recent proposals to use pair-copula constructions to describe de-
pendencies in the time-domain. Domma et al. [2009] assumed a first-order Markov process, such
that only distributions of pairs (Yt, Yt+1) at lag k = 1 need to be considered. Smith et al. [2010]
decomposed the distribution at a point in time, conditional upon the past, into the product of
a sequence of bivariate copula densities and the marginal density, known as D-vine by Bedford
and Cooke [2002].

The approach presented in this paper differs from these references in many important aspects.
Essentially, it combines their attractive features while avoiding some of their drawbacks. It
shares the quantile-based flavor of Kedem [1980], Linton and Whang [2007], Li [2008, 2011] and
Hagemann [2011]. In contrast to the latter, however, we do not focus on a particular quantile,
and consider copula cross-covariances γUk (τ1, τ2) for all (not necessarily equal) values of τ1, τ2,
while Li [2008, 2011] and Hagemann [2011] restrict to the case τ1 = τ2. As a consequence, we
obtain, as in the characteristic function approach of Hong [1999], a complete characterization of
the dependencies among the pairs (Yt, Yt−k). This allows to address such important features as
time reversibility [see Proposition 2.1] or tail dependence in general. By replacing the original
observations with their ranks, we furthermore achieve an attractive invariance property with
respect to modifications of marginal distributions, which is not satisfied in the case of Hong
[1999]’s method. Moreover, we also avoid the scaling problem of Li’s estimates and establish the
consistency of a smoothed version of periodograms. Finally, because our method is related to
the concept of copulas it allows to separate marginal and serial aspects of a time series, which
makes it attractive for practitioners.

1.5 Outline of the paper.

The paper is organized as follows. In Section 2.1, we introduce the concepts of Laplace and
copula cross-covariance kernels which, in this quantile-based approach, are to replace the ordi-
nary autocovariance function. The corresponding spectra and periodograms are introduced in
Sections 2.2 and 2.3, respectively. Section 3 deals with the asymptotic properties of the Laplace,
copula, and rank-based Laplace periodograms. In Section 4, smoothed periodograms are con-
sidered, and the smoothed rank-based Laplace periodogram kernel is shown to be a consistent
estimator of the copula spectral density. Some numerical illustration is provided in Section 5,
and most of the technical details are concentrated in an appendix.

2 An L1-approach to spectral analysis.

2.1 The Laplace and copula cross-covariance kernels.

Covariances clearly are not sufficient for describing a serial copula. We therefore introduce the
following concept, which will be convenient for that purpose. Let {Yt}t∈Z be a strictly stationary
process and define the copula cross-covariance kernel of lag k ∈ Z of {Yt}t∈Z as

γUk :=
{
γUk (τ1, τ2) | (τ1, τ2) ∈ (0, 1)2

}
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where γUk (τ1, τ2) is defined in (1.3). Similarly, define the Laplace cross-covariance kernel of lag
k ∈ Z of {Yt}t∈Z as

γk :=
{
γk(x1, x2) | (x1, x2) ∈ R2

}
,

where γk(x1, x2) is defined in (1.2). Contrary to traditional cross-covariances, copula and Laplace
cross-covariance kernels exist for all k (no finite variance assumption needed). The words “co-
variance” and “cross-covariance” are used out of time series classical terminology; but we only
consider covariances of indicators, which provide a canonical description of their joint distri-
butions. The copula cross-covariance kernel of order k indeed entirely characterizes the joint
distribution of (Ut, Ut−k), and conversely, without requiring any information on the distribution
function FY of Yt. Along with FY , the copula cross-covariance kernel of order k entirely char-
acterizes the Laplace cross-covariance kernel of order k and the joint distribution of (Yt, Yt−k),
and conversely. If

∫
x2dFY <∞, the distribution function FY of Yt and the collection of copula

cross-covariance kernels of all orders jointly characterize the autocovariance function of {Yt}t∈Z.

2.2 The Laplace and copula spectral density kernels.

Assume that the Laplace cross-covariance kernels γk (equivalently, the copula cross-covariance
kernels γUk ), k ∈ Z are absolutely summable, that is, they satisfy

∑∞
k=−∞|γk(x1, x2)| < ∞ for

all (x1, x2) ∈ R2. Then, γk admits the representation

γk(x1, x2) =

∫ π

−π
eikωfx1,x2(ω)dω, (x1, x2) ∈ R2

with

fx1,x2(ω) =
1

2π

∞∑
k=−∞

γk(x1, x2)e−ikω, (x1, x2) ∈ R2. (2.1)

The collection {ω 7→ fx1,x2(ω)|(x1, x2) ∈ R2}, called the Laplace spectral density kernel, is such
that each mapping ω ∈ (−π, π] 7→ fx1,x2(ω), (x1, x2) ∈ R2, is continuous and satisfies (writing z̄
for the complex conjugate of z ∈ C)

fx1,x2(−ω) = fx2,x1(ω) = fx1,x2(ω). (2.2)

Similarly define the copula spectral density kernel as

fqτ1 ,qτ2 (ω) =
1

2π

∞∑
k=−∞

γUk (τ1, τ2)e−ikω, (τ1, τ2) ∈ (0, 1)2. (2.3)

where qτi := F−1
Y (τi) (i = 1, 2). Note that fqτ1 ,qτ2 is the Fourier transform of the differences

between copulas of the pairs (Yt, Yt−k) and the independence copula. Clearly, the same identity
(2.2) holds for fqτ1 ,qτ2 (ω) as for fx1,x2(ω).

Throughout this paper we denote by
d
= equality in distribution and define =z and <z as the

imaginary and real part of z ∈ C, respectively. Obviously we have =fx1,x2(ω) = 0 for all ω if
and only if γk(x1, x2) = γ−k(x1, x2) for all k and we obtain the following result.
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Proposition 2.1 The following statements are equivalent:

(1) (Yt, Yt+k)
d
= (Yt, Yt−k) for all k (time-reversibility).

(2) =fx1,x2(ω) = 0 for all ω and x1, x2 .

(3) =fqτ1 ,qτ2 (ω) = 0 for all ω and τ1, τ2 .

2.3 The Laplace, copula, and rank-based Laplace periodogram kernels.

The Laplace (resp., the copula) cross-covariance kernels describe the behaviour of Yt (resp.,
of Ut = FY (Yt)) via a characterization of their conditional quantiles.

If a quantile-based approach is to be considered, it seems intuitively reasonable that the tradi-
tional L2-tools, which are closely related with the concepts of mean and variance, be abandoned
in favor of quantile-specific ones. In particular, traditional L2-projections should be replaced
with (weighted) L1-ones. Recall that, in traditional spectral analysis, estimation is usually based
on the ordinary periodogram

In(ωj,n) :=
1

n

∣∣∣ n∑
t=1

Yte
itωj,n

∣∣∣2,
where ωj,n = 2πj/n ∈ Fn := {2πj/n| j = 1

2 , . . . , b
n−1

2 c, b
n
2 c} denote the positive Fourier

frequencies. A straightforward calculation shows that this can be expressed as

In(ωj,n) =
n

4
‖b̂n,OLS(ωj,n)‖2 :=

n

4
b̂′n,OLS(ωj,n)

(
1 −i
i 1

)
b̂n,OLS(ωj,n),

where

(ân,OLS(ωj,n), b̂′n,OLS(ωj,n)) := Argmin(a,b′)∈R3

n∑
t=1

(
Yt − (a,b′)ct(ωj,n)

)2
(2.4)

is the ordinary least squares estimator in the linear model with regression constants ct(ωj,n) :=
(1, cos(tωj,n), sin(tωj,n))′, corresponding to an L2-projection of the observed series onto the har-
monic basis.

If, instead of a representation of Yt itself, we are interested in a representation, in terms of
the harmonic basis, of Yt’s quantile of order τ , it may seem natural to replace that ordinary
periodogram In(ωj,n) with

L̂n,τ (ωj,n) :=
n

4
‖b̂n,τ (ωj,n)‖2 :=

n

4
b̂′n,τ (ωj,n)

(
1 −i
i 1

)
b̂n,τ (ωj,n),

where

(ân,τ (ωj,n), b̂n,τ (ωj,n)) := Argmin(a,b′)∈R3

n∑
t=1

ρτ
(
Yt − (a,b′)ct(ωj,n)

)
, (2.5)

and
ρτ (x) := x(τ − I{x ≤ 0}) = (1− τ)|x|I{x ≤ 0}+ τ |x|I{x > 0}, τ ∈ (0, 1),

is the so-called check function (see Koenker [2005]). In definition (2.5), the L2-loss function,
which yields the classical definition (2.4), is thus replaced by Koenker and Bassett’s weighted
L1-loss which produces quantile regression estimates [Koenker and Bassett, 1978]. That this
indeed is a sensible definition will follow from the asymptotic results of Section 3.
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This L1-approach has been taken by Li [2008] for the particular case τ = 1/2, leading to a
least absolute deviations (LAD) regression coefficient b̂n,0.5 and later by Li [2011] for arbitrary
τ ∈ (0, 1).

More generally, for a given series Y1, . . . , Yn, define the Laplace periodogram kernel as the
collection

L̂n,τ1,τ2(ωj,n) :=
n

4
b̂′n,τ1(ωj,n)

(
1 −i
i 1

)
b̂n,τ2(ωj,n), (τ1, τ2) ∈ (0, 1)2, ωj,n ∈ Fn. (2.6)

For any (τ1, τ2, ωj,n), computation of L̂n,τ1,τ2(ωj,n) is immediate via the simplex algorithm (as
in classical Koenker-Bassett quantile regression, see Koenker [2005]).

Similarly, define the copula periodogram kernel as the Laplace periodogram kernel L̂Un,τ1,τ2(ωj,n)

associated with the series U1, . . . , Un. This means that L̂Un,τ1,τ2(ωj,n) is obtained from (2.6) by

replacing the estimate b̂n,τ by the second and third component of the vector

(â, (b̂U )′) := Argmin(a,b′)∈R3

n∑
t=1

ρτ
(
Ut − (a,b′)ct(ωj,n)

)
.

Finally, because the marginal distribution function FY required for the calculation of the data
Ut = FY (Yt) is not known, we introduce the empirical or rank-based Laplace periodogram kernel

as the Laplace periodogram kernel L̂˜n,τ1,τ2(ωj,n) associated with the series n−1R
(n)
1 , . . . , n−1R

(n)
n ,

where R
(n)
t denotes the rank of Yt among Y1, . . . , Yn. In other words, L̂˜n,τ1,τ2(ωj,n) is obtained

from (2.6) by replacing the estimate b̂n,τ by the second and third component of the vector

(â, b̂′˜ ) := Argmin(a,b′)∈R3

n∑
t=1

ρτ

(
n−1R

(n)
t − (a,b′)ct(ωj,n)

)
.

Before we continue, a few remarks regarding the philosophy of the notations used in this paper
might be appropriate. With T̂ we usually denote a statistic obtained from the original time
series Y1, . . . , Yn such as L̂n,τ1,τ2 . The notation T̂U means the T has been calculated from the
“data” U1, . . . , Un – a typical example is L̂Un,τ1,τ2 (note that Ut = FY (Yt)). Finally, the notation

T̂˜ reflects the fact that T̂ has been calculated from the normalized ranks n−1R
(n)
1 , . . . , n−1R

(n)
n

such as the rank-based Laplace periodogram kernel L̂˜n,τ1,τ2 .

3 Asymptotic properties.

3.1 Asymptotics of Laplace and copula periodogram kernels.

We now proceed to deriving the asymptotic distributions of the Laplace and rank-based Laplace
periodogram kernels, which, as we shall see, establishes their relation to the spectral density
kernels defined in (2.1) and (2.3). Throughout the rest of the paper we make the following basic
assumptions.

Assumption (A1) The process {Yt}t∈Z is strictly stationary and mn-decomposable [Chanda
et al., 1990], i.e. it admits a representation

Yt = Xt,n +Dt,n, t ∈ Z, n ∈ N, (3.1)
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where {Xt,n} and {Dt,n} are strictly stationary and {Xt,n} ismn-dependent withmn = O(n1/4−a)
for some a > 0 and, for some nonnegative sequences (ηn) and (κn) converging to 0 as n→∞,

P(|Dt,n| > ηn) ≤ κn. (3.2)

Assumption (A2) The distribution function Fn,X of Xt,n and, for any t1, t2, the joint
distribution functions of (Xt1,n, Xt2,n) are twice continuously differentiable, with uniformly (with
respect to n and all their arguments) bounded derivatives. Moreover we assume that there
exist d > 0 and n0 <∞ such that

inf
n≥n0

inf
|x−qn,τ |≤d

fn,X(x) > 0,

where fn,X and qn,τ := F−1
n,X(τ) denote the density and τ -quantile corresponding to the distri-

bution Fn,X .
Assumption (A3) For any τ ∈ (0, 1),

sup
n

n∑
k=−n

|Cov(I{X1,n ≤ qn,τ}, I{Xk,n ≤ qn,τ})| <∞.

Assumption (A4) |fn,X(qn,τ )− fY (qτ )| = o((log n)−1).

Let qτ := F−1
Y (τ) denote the τ -quantile of FY and consider a ν-tuple Ω := {ω1, . . . , ων} ⊂

(0, π) of distinct frequencies. Denote by L̂n,τ1,τ2 and L̂Un,τ1,τ2 , respectively, the Laplace and
copula periodogram kernels associated with a realization of length n. For each (τ1, τ2) ∈ (0, 1)2

and ω ∈ (0, π), write
◦
fτ1,τ2 (ω) := fqτ1 ,qτ2 (ω)/(fY (qτ1)fY (qτ2)) (3.3)

for the scaled version of the spectral density kernel fqτ1 ,qτ2 (ω) defined in (2.3). In the following

two statements
L−→ denotes convergence in distribution, and χ2

k denotes a chi-square distribution
with k degrees of freedom. We also introduce the piecewise constant function (defined on the
interval (0, π))

gn(ω) := ωj,n, (3.4)

where ωj,n is the Fourier frequency closest to ω such that ω ∈ (ωj,n− 2π
n , ωj,n+ 2π

n ]. The following
result is the key for understanding the asymptotic properties of the Laplace periodogram kernel.

Theorem 3.1 Let Ω := {ω1, . . . , ων} ⊂ (0, π) denote distinct frequencies and T := {τ1, . . . , τp} ⊂
(0, 1) distinct quantile orders. Let Assumptions (A1)–(A4) be satisfied with (A2) and (A3) hold-
ing for every τ ∈ T . Also assume κn + ηn = o(n−1). Then

√
n
(
b̂n,τ (gn(ω))

)
τ∈T, ω∈Ω

L−−−→
n→∞

(
Nτ (ω)

)
τ∈T, ω∈Ω

,

where (Nτ (ω))τ∈T, ω∈Ω denotes a vector of centered normal distributed random variables with

M(τk1 , τk2) := Cov(Nτ1(ω1), Nτ2(ω2)) =


2π

<◦fτ1,τ1 (ω) −=
◦
fτ1,τ2 (ω)

=
◦
fτ1,τ2 (ω) <

◦
fτ2,τ2 (ω)

 if ω1 = ω2 =: ω

(
0 0

0 0

)
if ω1 6= ω2.

(3.5)
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Proof. The proof consists of two basic steps which will be sketched in this section. The technical
details for the arguments presented here can be found in Appendix A.

Step 1: The first step consists of a linearization of the estimate b̂n,τ (ωj,n) defined in (2.5).
To be precise we define for any τ ∈ (0, 1), ω ∈ (0, π) and δδδ ∈ R3 the functions

Ẑn,τ,ω(δ) :=
n∑
t=1

(
ρτ (Yt − qτ − n−1/2c′t(ω)δ)− ρτ (Yt − qτ )

)
, (3.6)

ẐXn,τ,ω(δ) :=

n∑
t=1

(
ρτ (Xt,n − qn,τ − n−1/2c′t(ω)δ)− ρτ (Xt,n − qn,τ )

)
, (3.7)

where ct(ω) := (1, cos(ωt), sin(ωt))′, and qτ and qn,τ denote the τ -quantiles of FY and Fn,X ,
respectively. Further define

ZXn,τ,ω(δ) := −δ′ζXn,τ,ω +
1

2
δ′QX

n,ωδ,

where

ζXn,τ,ω := n−1/2
n∑
t=1

ct(ω)(τ − I{Xt,n ≤ qn,τ}) (3.8)

QX
n,τ,ω := fn,X(qn,τ )n−1

n∑
t=1

ct(ω)c′t(ω). (3.9)

We first show that the minimizers

δ̂n,τ,ω := arg min
δ
Ẑn,τ,ω(δ) and δXn,τ,ω := arg min

δ
ZXn,τ,ω(δ) = (QX

n,τ,ω)−1ζXn,τ,ω (3.10)

are close in probability (uniformly with respect to ω ∈ Fn). Note that from the definition
in (2.5) it follows that the random variable

√
nb̂n,τ (ωj,n) coincides with the second and third

component of the vector δ̂n,τ,ω. Moreover, for ωj,n = 2πj/n we have

QX
n,τ,ωj,n = fn,X(qn,τ ) diag(1, 1/2, 1/2), (3.11)

where diag(a1, . . . , ak) denotes the diagonal matrix with diagonal elements a1, . . . , ak.
More precisely, we establish the following estimate

sup
ω∈Fn

‖δ̂n,τ,ω − δXn,τ,ω‖ = oP

(
(n−1/8 ∨ (n−1/6m1/3

n ))(log n)3/2
)
. (3.12)

This result is obtained from the following arguments, for which the details are provided in
Section 6.1. Roughly speaking, estimates of the type (3.12) can be obtained by showing that the
corresponding functions Ẑn,τ,ω and ZXn,τ,ω are uniformly close in probability. A precise statement
is given in Lemma 6.1 (see Section 6.1.1), where we show that (3.12) follows if the estimate

sup
ω∈Fn

sup
‖δ−δXn,τ,ω‖≤ε

|Ẑn,τ,ω(δ)− ZXn,τ,ω(δ)| = oP

(
(n−1/4 ∨ (n−1/3m2/3

n ))(log n)3
)

(3.13)

can be proved for some ε > 0. In order to prove this estimate we show in Section 6.1.2 that

sup
ω∈Fn

sup
‖δ−δXn,τ,ω‖≤ε

|Ẑn,τ,ω(δ)− ẐXn,τ,ω(δ)| = oP

(
(n−1/4 ∨ (n−1/3m2/3

n ))(log n)3
)
, (3.14)

10



where the function ẐXn,τ,ω is defined in (3.7). It remains to prove that the functions ẐXn,τ,ω and

ZXn,τ,ω are uniformly close in probability, which is done in two steps. First we apply Lemma 6.2
(see Section 6.1.1), which yields that there exists a finite constant A such that, with probability
tending to one,

sup
ω∈Fn

sup
‖δ−δXn,τ,ω‖≤ε

|ẐXn,τ,ω(δ)− ZXn,τ,ω(δ)| ≤ sup
ω∈Fn

sup
‖δ‖≤ε+A

√
logn

|ẐXn,τ,ω(δ)− ZXn,τ,ω(δ)|.

Secondly, we show in Section 6.1.3 that this result entails

sup
ω∈Fn

sup
‖δ−δXn,τ,ω‖≤ε

|ẐXn,τ,ω(δ)− ZXn,τ,ω(δ)| = oP

(
(n−1/4 ∨ (n−1/3m2/3

n ))(log n)3
)
. (3.15)

Combining the estimates (3.14) and (3.15) yields (3.13) and as a consequence (by an application
of Lemma 6.1) we obtain the estimate (3.12).

Step 2: As we have discussed at the beginning of the first step, the asymptotic properties
of
√
nb̂n,τ (ωj,n) can be obtained from those of the random variables δXn,τ,ω for which an explicit

expression is available. More precisely, for given sets Ω := {ω1, . . . , ων} ⊂ (0, π) of Fourier
frequencies and T := {τ1, . . . , τp} ⊂ (0, 1) consider the linear combination with coefficients
λλλik ∈ R2, i = 1, . . . , ν, k = 1, . . . , p

p∑
k=1

ν∑
i=1

λλλ′ik
√
nb̂n,τk(gn(ωi)) =

p∑
k=1

2

fn,X(qn,τk)

ν∑
i=1

λλλ′ik

n∑
t=1

vtn(ωi)√
n

(τk − I{Xt,n ≤ qn,τk}) + oP(1)

=

p∑
k=1

2

fY (qτk)

ν∑
i=1

λλλ′ik

n∑
t=1

vtn(ωi)√
n

(τk − I{Xt,n ≤ qn,τk}) + oP(1),

(3.16)

where vtn(ω) := (cos(gn(ω)t), sin(gn(ω)t))′. The first equality is a consequence of (3.10), (3.11)
and (3.12). For the second one, observe that the sum with respect to t, that is

S(i, k) :=

n∑
t=1

vtn(ωi)√
n

(τk − I{Xt,n ≤ qn,τk}) (3.17)

converges in distribution for every k ∈ {1, ..., p}, i ∈ {1, ..., ν} as we will show below. This implies
that each of those sums is stochastically bounded, and together with assumption (A4) this yields
the second equality. To prove the convergence in distribution, note that the summands in the
sum with index t in the last line are uniformly bounded and form a triangular array of centered,
mn-dependent random vectors. For the covariance we obtain

Cov
( n∑
t1=1

1√
n
vt1,n(ωi1)(τk1 − I{Xt1,n ≤ qτk1 ,n}),

n∑
t2=1

1√
n
vt2,n(ωi2)(τk2 − I{Xt2,n ≤ qτk2 ,n})

)
=

1

n

n∑
t1=1

n∑
t2=1

vt1,n(ωi1)v′t2,n(ωi2) Cov(I{Xt1,n ≤ qτk1 ,n}, I{Xt2,n ≤ qτk2 ,n})

=
1

n

n∑
t1=1

n∑
t2=1

vt1,n(ωi1)v′t2,n(ωi2) Cov(I{Yt1 ≤ qτk1}, I{Yt2 ≤ qτk2}) + o(1),
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where the last equality is due to the fact that∥∥∥ 1

n

n∑
t1=1

n∑
t2=1

vt1,n(ωi1)v′t2,n(ωi2)
(

Cov(I{Xt1,n ≤ qn,τk1}, I{Xt2,n ≤ qn,τk2})

− Cov(I{Yt1 ≤ qτk1}, I{Yt2 ≤ qτk2})
)∥∥∥
∞

≤ 1

n

n∑
t1=1

n∑
t2=1

(
E
∣∣I{Xt1,n ≤ qn,τk1}I{Xt2,n ≤ qn,τk2} − I{Yt1,n ≤ qτk1}I{Xt2,n ≤ qn,τk2}

∣∣
+ E

∣∣I{Yt1,n ≤ qτk1}I{Xt2,n ≤ qn,τk2} − I{Yt1 ≤ qτk1}I{Yt2 ≤ qτk2}
∣∣)

≤ 1

n

n∑
t1=1

n∑
t2=1

(
P
(
|Xt1,n − qn,τk1 | ≤ |Dt1,n|+ |qn,τk1 − qτk1 |

)
+ P

(
|Xt2,n − qn,τk2 | ≤ |Dt2,n|+ |qn,τk2 − qτk2 |

))
= nO(κn + ηn)

and the assumption that κn + ηn = o(n−1). Along the same lines as in the Proof of Theorem 2
of Li [2008], we then obtain

lim
n→∞

4

n

n∑
t1=1

n∑
t2=1

vt1,n(ωi1)v′t2,n(ωi2)
Cov(I{Yt1 ≤ qτk1}, I{Yt2 ≤ qτk2})

fY (qτk1 )fY (qτk2 )
= M(τk1 , τk2)

where M(τk1 , τk2) is defined in (3.5). By a Central Limit Theorem for triangular arrays of mn-
dependent random variables (Lemma 6.6), this proves the weak convergence of the sum S(k, i)
defined in (3.17). Next, apply Lemma 6.6 to the first term in the last line of (3.16) to obtain

p∑
k=1

2

fY (qτk)

ν∑
i=1

λλλ′ik

n∑
t=1

vtn(ωi)√
n

(τk − I{Xtn ≤ qn,τk})
L−→ N

(
0,Var(

p∑
k=1

ν∑
i=1

λλλ′ikNτk(ωi))
)
,

where (Nτ (ω))τ∈T, ω∈Ω denotes a vector of centered normal distributed random variables with
Cov(Nτ1(ω1), Nτ2(ω2)) = M(τk1 , τk2) defined in (3.5). Because of (3.16), the quantity

√
n

p∑
k=1

ν∑
i=1

λλλ′ikb̂τk(gn(ωi))

converges to the same limit distribution. Thus it follows by an application of the traditional
Cramér-Wold device that(√

nb̂n,τ (gn(ω))
)
τ∈T, ω∈Ω

L−−−→
n→∞

(
Nτ (ω)

)
τ∈T, ω∈Ω

.

2

As an immediate consequence of the above result the Continuous Mapping Theorem yields
the asymptotic distribution of a collection of Laplace periodogram kernels.

Theorem 3.2 Under the assumptions of Theorem 3.1

(L̂n,τ1,τ2(gn(ω1)), . . . , L̂n,τ1,τ2(gn(ων)))
L−→ (Lτ1,τ2(ω1), . . . , Lτ1,τ2(ων)), (3.18)
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where the random variables Lτ1,τ2 associated with distinct frequencies are mutually independent.
Moreover,

Lτ1,τ2(ω) ∼ π
◦
fτ1,τ2 (ω)χ2

2 if τ1 = τ2, (3.19)
and

Lτ1,τ2(ω)
d
=

1

4
(Z11, Z12)

(
1 −i
i 1

)(
Z21

Z22

)
if τ1 6= τ2,

where (Z11, Z12, Z21, Z22)′ ∼ N (0,ΣΣΣ4(ω)) with covariance matrix

ΣΣΣ4(ω) := 2π



◦
fτ1τ1 (ω) 0 <

◦
fτ1τ2 (ω) −=

◦
fτ1τ2 (ω)

0
◦
fτ1τ2 (ω) =

◦
fτ1τ2 (ω) <

◦
fτ1τ2 (ω)

<
◦
fτ1τ2 (ω) =

◦
fτ1τ2 (ω)

◦
fτ1τ2 (ω) 0

−=
◦
fτ1τ2 (ω) <

◦
fτ1τ2 (ω) 0

◦
fτ1τ2 (ω)

 . (3.20)

It follows from Theorem 3.2 that, for all (τ1, τ2) ∈ (0, 1)2 and ω ∈ (0, π),

E[Lτ1,τ2(ω)] = 2π
◦
fτ1,τ2 (ω),

which indicates that an estimator of the scaled spectral density 2π
◦
fτ1,τ2 (ω) defined in (3.3)

could be based on an average of quantities of the form L̂n,τ1,τ2(ω). Moreover, the following
result is an immediate consequence of Theorem 3.2 and yields the asymptotic distribution of the
copula periodogram kernel.

Corollary 3.1 Let Ω := {ω1, . . . , ων} ⊂ (0, π) denote distinct frequencies and (τ1, τ2) ∈ (0, 1)2.
If Assumptions (A1)–(A4) hold for every τ ∈ {τ1, τ2}, with κn + ηn = o(n−1), then

(L̂Un,τ1,τ2(gn(ω1)), . . . , L̂Un,τ1,τ2(gn(ων)))
L−→ (LUτ1,τ2(ω1), . . . , LUτ1,τ2(ων)), (3.21)

where gn(ω) is defined in (3.4). The random variables LUτ1,τ2 in (3.24) associated with distinct
frequencies are mutually independent,

LUτ1,τ2(ω) ∼ πfqτ1 ,qτ2 (ω)χ2
2 if τ1 = τ2, (3.22)

LUτ1,τ2(ω)
d
=

1

4
(Z11, Z12)

(
1 −i
i 1

)(
Z21

Z22

)
if τ1 6= τ2,

and (Z11, Z12, Z21, Z22)′ ∼ N (0,ΣΣΣ4(ω)) with covariance matrix

ΣΣΣ4(ω) := 2π


fqτ1qτ1 (ω) 0 <fqτ1qτ2 (ω) −=fqτ1qτ2 (ω)

0 fqτ1qτ2 (ω) =fqτ1qτ2 (ω) <fqτ1qτ2 (ω)

<fqτ1qτ2 (ω) =fqτ1qτ2 (ω) fqτ1qτ2 (ω) 0

−=fqτ1qτ2 (ω) <fqτ1qτ2 (ω) 0 fqτ1qτ2 (ω)

 . (3.23)

In particular,
E[LUτ1,τ2(ω)] = 2πfqτ1 ,qτ2 (ω).

This means that copula periodogram kernels L̂Un,τ1,τ2 , rather than the Laplace ones L̂n,τ1,τ2 , thus
seem to be the appropriate tools for statistical analysis regarding fqτ1 ,qτ2 . Unfortunately, they
are not statistics, since they involve the unknown marginal distribution FY which in practice is
unspecified. This problem will be solved in the following section.
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3.2 Asymptotics of rank-based Laplace periodogram kernels.

The final result of this section establishes the asymptotic equivalence of the copula and rank-
based Laplace periodogram kernels L̂Un,τ1τ2(ω) and L̂˜n,τ1τ2(ω), where the latter do not involve FY

and can be computed from the data. In particular the following results show that b̂˜ n, τ , L̂˜n,τ1,τ2(ω)

are asymptotically distribution-free in the sense that their asymptotic distributions only depend
on the process {Ut}t∈Z.

Theorem 3.3 Let Ω := {ω1, . . . , ων} ⊂ (0, π) denote distinct frequencies and T := {τ1, . . . , τp} ⊂
(0, 1) distinct quantile orders. Let Assumptions (A1)–(A3) be satisfied with (A2) and (A3) hold-
ing for every τ ∈ T . Also assume κn + ηn = o(n−1). Then(

b̂˜ n, τ (gn(ω))
)
τ∈T, ω∈Ω

L−−−→
n→∞

(
NU
τ,ω

)
τ∈T, ω∈Ω

where (NU
τ,ω)τ∈T, ω∈Ω denotes a vector of centered normal distributed random variables with

Cov(NU
τ1,ω1

, NU
τ2,ω2

) =



(
<fqτ1 ,qτ1 (ω) −=fqτ1 ,qτ2 (ω)

=fqτ1 ,qτ2 (ω) <fqτ2 ,qτ2 (ω)

)
if ω1 = ω2 =: ω, and(

0 0

0 0

)
if ω1 6= ω2.

Together with the above result, the Continuous Mapping Theorem yields

Theorem 3.4 Under the assumptions of Theorem 3.2

(L̂˜n,τ1,τ2(gn(ω1)), . . . , L̂˜n,τ1,τ2(gn(ων)))
L−→ (LUτ1,τ2(ω1), . . . , LUτ1,τ2(ων)), (3.24)

where gn(ω) and the distribution of the random variables LUτ1,τ2 are defined in (3.4) and Corollary
3.1, respectively.

Proof of Theorem 3.3. Let F̂n,Y denote the empirical distribution function of Y1, . . . , Yn,
e1 := (1, 0, 0)′, δ = (δ1, δ2, δ3)′, and Ut,n := Fn,X(Xt,n). We introduce the functions

Ẑ˜n,τ,ω(δ) :=
n∑
t=1

(
ρτ (F̂n,Y (Yt)− τ − n−1/2c′t(ω)δ)− ρτ (F̂n,Y (Yt)− τ)

)
Ẑ˜Xn,τ,ω(δ) :=

n∑
t=1

(
ρτ (F̂n,Y (Xt,n)− τ − n−1/2c′t(ω)δ)− ρτ (F̂n,Y (Xt,n)− τ)

)
ẐUn,τ,ω(δ) :=

n∑
t=1

(
ρτ (Ut,n − τ − n−1/2c′t(ω)δ)− ρτ (Ut,n − τ)

)
− δ1

√
n(Fn,X(F̂−1

n,Y (τ))− τ)

ZUn,τ,ω(δ) := −δ′
(
ζUn,τ,ω + e′1

√
n(Fn,X(F̂−1

n,Y (τ))− τ)
)

+
1

2
δ′QU

n,ωδ

where

QU
n,ω :=

1

n

n∑
t=1

ct(ω)c′t(ω) and ζUn,τ,ω := n−1/2
n∑
t=1

ct(ω)
(
τ − I{Ut,n ≤ τ}

)
.
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If we can show that the difference Ẑ˜n,τ,ω(δ)−ZUn,τ,ω(δ) is uniformly small in probability, a slight
modification of the arguments presented in the proof Theorem 3.2 yield a uniform linearization
of δ̂˜n,τ,ω := arg minδ Ẑ˜n,τ,ω(δ). More precisely, we show

sup
ω∈Fn

‖δ̂˜n,τ,ω − δUn,τ,ω‖ = oP

(
n−1/8m1/4

n log n
)

(3.25)

where
δUn,τ,ω := arg min

δ
ZUn,τ,ω(δ) = (QU

n,ω)−1
(
ζUn,τ,ω + e1

√
n(Fn,X(F̂−1

n,Y (τ))− τ)
)
.

The asymptotic normality of the linearization δUn,τ,ω then follows by similar arguments as given
in Step (2) of the proof of Theorem 3.2 and the details are omitted for the sake of brevity.

In order to prove (3.25) we note that Lemma 6.1 in the Appendix also holds with Ẑn,τ,ω(δ),

ZXn,τ,ω(δ), δXn,τ,ω and δ̂n,τ,ω replaced byẐ˜n,τ,ω(δ), ZUn,τ,ω(δ), δUn,τ,ω and δ̂˜n,τ,ω, respectively. There-

fore, it suffices to establish that, for some ε > 0,

sup
ω∈Fn

sup
‖δ−δUn,τ,ω‖≤ε

|Ẑ˜n,τ,ω(δ)− ZUn,τ,ω(δ)| = oP

(
n−1/4m1/2

n (log n)2
)
. (3.26)

Note that δUn,τ,ω decomposes into a term containing ζUn,τ,ω, to which Lemma 6.2 applies, and

a term involving
√
n(Fn,X(F̂−1

n,Y (τ)) − τ), which, for every τ , converges in distribution, so that

P(
√
n(Fn,X(F̂−1

n,Y (τ)) − τ) > A
√

log n) → 0 for any A > 0. Therefore, there exists a finite
constant A such that

lim
n→∞

P
(

sup
ω∈Fn

‖δUn,τ,ω‖∞ > A
√

log n
)

= 0.

It follows that, in order to establish (3.26), we may restrict to a supremum with respect to the
set ‖δ‖ ≤ 2A

√
log n. Knight’s identity (Knight [1998]; see p. 121 of Koenker [2005]) yields

Ẑ˜Xn,τ,ω(δ) = Ẑ˜Xn,τ,ω,1(δ) + Ẑ˜Xn,τ,ω,2(δ),

where

Ẑ˜Xn,τ,ω,1(δ) = −δ′n−1/2
n∑
t=1

ct(ω)
(
τ − I{Ut,n ≤ Fn,X(F̂−1

n,Y (τ))}
)
,

Ẑ˜Xn,τ,ω,2(δ) =
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Ut,n ≤ Fn,X(F̂−1

n,Y (s+ τ))} − I{Ut,n ≤ Fn,X(F̂−1
n,Y (τ))}

)
ds.

A similar representation holds for ZUn,τ,ω(δ). Now the proof of (3.26) is a consequence of the
following three auxiliary results, which are proved in Sections 6.2.1–6.2.3:

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣Ẑ˜n,τ,ω(δ)− Ẑ˜Xn,τ,ω(δ)
∣∣ = OP

(
(κn + ηn + rn(2ηn,mn))

√
n log n

)
(3.27)

where rn(2ηn,mn)) = o((n log n)−1/2) (for a precise definition see equation 6.8 in Appendix B),

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣∣Ẑ˜Xn,τ,ω,1(δ)− δ′n−1/2
n∑
t=1

ct(ω)(τ − I{Ut,n ≤ τ}) (3.28)

− δ1

√
n(Fn,X(F̂−1

n,Y (τ))− τ)
∣∣∣ = OP

(
n−1/4m1/2

n (log n)3/2
)
.
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sup
ω∈Fn

sup
‖δ‖≤A

√
logn

∣∣∣Ẑ˜Xn,τ,ω,2(δ)−
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Ut,n ≤ s+ τ} − I{Ut,n ≤ τ}

)
ds
∣∣∣

= OP

(
n−1/4m1/2

n (log n)3/2 +
√
n log n

(
κn + ηn + rn(ηn,mn)

))
. (3.29)

Note that the combination of (3.28) and (3.29) implies that Ẑ˜Xn,τ,ω and ẐUn,τ,ω are uniformly close

in probability. Finally, we obtain from (3.15)

sup
ω∈Fn

sup
‖δ‖≤A

√
logn

|ẐUn,τ,ω(δ)− ZUn,τ,ω(δ)| = oP((n−1/4 ∨ n−1/3m2/3
n )(log n)3), (3.30)

where we may replace ẐXn,τ,ω(δ) with ẐUn,τ,ω(δ) and ZXn,τ,ω(δ) with ZUn,τ,ω(δ), since U1,n, . . . , Un,n

are mn-dependent as required and the additional term δ1
√
n(Fn,X(F̂−1

n,Y (τ)) − τ) appears in

both ẐUn,τ,ω(δ) and ZUn,τ,ω(δ). Combining (3.27)–(3.30) yields (3.26), thus completing the proof
of Theorem 3.3. 2

4 Smoothed periodograms.

We have seen in Section 3.1 that the Laplace periodogram kernel converges in distribution and
that the expectation of the limit is the scaled spectral density kernel (at (τ1, τ2))

2π
◦
fτ1,τ2 (ω) := 2π

fqτ1qτ2 (ω)

fY (qτ1)fY (qτ2)
=

1

fY (qτ1)fY (qτ2)

∞∑
k=−∞

γk(qτ1 , qτ2)e−iωk.

In practice, however, this is not enough, and consistent estimation is a minimal requirement.
For this purpose, we consider, as in traditional spectral estimation, smoothed versions of peri-
odograms, of the form

f̂n,τ1,τ2(ωj,n) :=
∑
|k|≤Nn

Wn(k)L̂n,τ1,τ2(ωj+k,n) (4.1)

at the Fourier frequencies ωj,n = 2πj/n, where Nn → ∞ as n → ∞ is a sequence of positive
integers, and Wn = {Wn(j) : |j| ≤ Nn} a sequence of positive weights satisfying

Wn(k) = Wn(−k) for all k and
∑
|k|≤Nn

Wn(k) = 1.

Extending the definition of f̂n,τ1,τ2 to the interval (0, π) we introduce{
ω 7→ f̂n,τ1,τ2(ω)

∣∣ (τ1, τ2) ∈ [0, 1]2, ω ∈ (0, π)
}

as smoothed Laplace periodogram kernel, where

f̂n,τ1,τ2(ω) := f̂n,τ1,τ2(gn(ω)), (4.2)

and the function gn(ω) is defined in (3.4). In order to show that f̂n,τ1,τ2(ω) is a consistent

estimator of the scaled spectral density
◦
fτ1,τ2 (ω) we make the following additional assumptions.
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Assumption (A5) Nn/n→ 0, and
∑
|k|≤Nn

W 2
n(k) = O(1/n) as n→∞;

Assumption (A6) For any τ1, τ2, τ3, τ4 ∈ (0, 1),
∑∞

k=−∞ |γk(τ1, τ2)| <∞, and

∞∑
k2,k3,k4=−∞

| cum(I{Yt ≤ qτ1}, I{Yt+k2 ≤ qτ2}, I{Yt+k2 ≤ qτ3}, I{Yt+k4 ≤ qτ4})| <∞;

Assumption (A7) The function fqτ1 ,qτ2 defined in (2.3) is continuously differentiable for all
(τ1, τ2) ∈ (0, 1)2;

Theorem 4.1 Let (A1)–(A7) hold, with ηn = O(1/n) and κn = O(1/n). Then the smoothed
Laplace periodogram defined in (4.1) and (4.2) is a consistent estimator for the scaled Laplace
spectral density; more precisely,

f̂n,τ1,τ2(ω) = 2π
◦
fτ1,τ2 (ω) +OP

(
Rn + n−1/2 +Nn/n

)
= 2π

◦
fτ1,τ2 (ω) + oP(1), (4.3)

where Rn = |fY (qτ )− fn,X(qτ,n)| log n+ (n−1/8 ∨ n−1/6m
1/3
n )(log n)2.

Proof. The proof proceeds in several steps which are sketched here. The technical details can
be found in the Appendix B. We first show (Section 7.1) that

L̂n,τ1,τ2(ωj,n) = Ln,τ1,τ2(ωj,n)/
(
fY (qτ1)fY (qτ2)

)
+OP(Rn), (4.4)

uniformly in the Fourier frequencies ωj,n := 2πj/n, where

Ln,τ1,τ2(ωj,n) := n−1dn(τ1, ωj,n)dn(τ2,−ωj,n),

dn(τ, ωj,n) :=
∑n

t=1 eiωj,nt(τ − I{Yt ≤ qτ}) = (1, i)′n1/2bn,τ,ωj,n2−1fY (qτ ) and

n1/2bn,τ,ωj,n :=
2

fY (qτ )
n−1/2

n∑
t=1

(
cos(ωj,nt)
sin(ωj,nt)

)
(τ − I{Yt ≤ qτ}).

As an immediate consequence we obtain

f̂n,τ1,τ2(ωj,n) =
∑
|k|≤Nn

Wn(k)Ln,τ1,τ2(ωj+k,n)/
(
fY (qτ1)fY (qτ2)

)
+OP(Rn).

In Section 7.2, we show that, for any ωj,n = 2πj/n,

Kn :=
∑
|k|≤Nn

Wn(k)

(
Ln,τ1,τ2(ωj+k,n)

fY (qτ1)fY (qτ2)
−
◦
fτ1,τ2 (ωj+k,n)

)
= OP(1/

√
n). (4.5)

Now, let ωjnn be a sequence of Fourier frequencies that converges to a frequency ω ∈ (0, π) with

rate |ωjnn − ω| = O(Nn/n): both for f ≡ <
◦
fτ1,τ2 and f ≡ =

◦
fτ1,τ2 , we have∣∣∣ ∑

|k|≤Nn

Wn(k) (f(ωjn+k,n)− f(ω))
∣∣∣ ≤ ∑

|k|≤Nn

Wn(k)|f ′(ξjn+k,n)| |ωjn+k,n − ω|

≤ Cn
∑
|k|≤Nn

Wn(k) |2πk/n+ ωjnn − ω| ≤ Cn
∑
|k|≤Nn

Wn(k) |2πk/n|+ Cn
∑
|k|≤Nn

Wn(k) |ωjnn − ω|

≤ Cn
(
2πNn/n+ |ωjnn − ω|

) ∑
|k|≤Nn

Wn(k) = O(Nn/n),
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where |ξjn+k,n − ω| ≤ |ω − ωjn+k,n| and Cn := supξ∈Ξn |f
′(ξ)| is the supremum over

Ξn =
[
ω − |ω − ωjn,n| − ωNn,n, ω + |ω − ωjn,n|+ ωNn,n|

]
.

Note that, since |ω − ωjn,n| → 0 and ωNn,n = 2πNn/n → 0, Cn → f ′(ω), so that (Cn) is a
bounded sequence. This yields∣∣∣ ∑

|k|≤Nn

Wn(k)
(◦
fτ1,τ2 (ωjn+k)−

◦
fτ1,τ2 (ω)

)∣∣∣ = O(Nn/n),

and completes the proof of Theorem 4.1. 2

For a consistent estimation of the (unscaled) Laplace spectral density fτ1,τ2(ω), we propose
a smoothed version

f̂˜n,τ1,τ2(ω) := f̂˜n,τ1,τ2(gn(ω)), f̂˜n,τ1,τ2(ωj,n) :=
∑
|k|≤Nn

Wn(k)L̂˜n,τ1,τ2(ωj+k,n),

of the rank-based Laplace periodogram L̂˜n,τ1,τ2(ω). We then have the following result

Theorem 4.2 Let Assumptions (A1)–(A3) and (A5)–(A7) hold with ηn = O(1/n) and κn =
O(1/n). Then the smoothed rank-based Laplace periodogram L˜ τ1τ2n is a consistent estimator of

the (unscaled) Laplace spectral density fqτ1 ,qτ2 . More precisely,

f̂˜n,τ1,τ2(ω) = 2πfqτ1 ,qτ2 (ω) +OP

(
o(n−1/8m1/4

n (log n)3/2) +Nn/n
)

= 2πfqτ1 ,qτ2 (ω) + oP(1).

Proof. The proof is very similar to the proof of Theorem 4.1. The main difference lies in the
asymptotic representation for the quantity n1/2bUn,τ,ω denoting the second and third coordinate

of the quantity δUn,τ,ω in (3.25). Here we have to estimate the difference

An := sup
ω∈Fn

∥∥∥n1/2bUn,τ,ω − 2n−1/2
n∑
t=1

(
cos(ωt)
sin(ωt)

)
(τ − I{FY (Yt) ≤ τ})

∥∥∥.
Direct computation shows that

An ≤ Cn−1/2
n∑
t=1

|I{FY (Yt) ≤ τ} − I{Fn,X(Xt,n) ≤ τ}|

≤ Cn−1/2
n∑
t=1

I{|Fn,X(Xt,n)− τ | ≤ |FY (Yt)− Fn,X(Xt,n)|}

≤ Cn−1/2
n∑
t=1

I{|Fn,X(Xt,n)− τ | ≤ ‖FY − Fn,X‖∞ + C̃|Dt,n|}

≤ Cn−1/2
n∑
t=1

I{|Fn,X(Xt,n)− τ | ≤ ‖FY − Fn,X‖∞ + C̃ηn}+ I{|Dt,n| ≥ ηn}.

Since

|I{Yt ≤ x} − I{Xt,n ≤ x}| ≤ I{|Xt,n − x| ≤ |Dt,n|} ≤ I{|Xt,n − x| ≤ ηn}+ I{|Dt,n| ≥ ηn},
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‖FY − Fn,X‖∞ = O(κn + ηn). Thus, E|An| = O(
√
n(κn + ηn)), hence An = OP(

√
n(κn + ηn)).

The rest of the proof follows by the same arguments as in the proof of Theorem 4.1, yielding
the estimate

f̂˜n,τ1,τ2(ω) = fτ1,τ2(ω) +OP

(√
n log n(κn + ηn) + (n−1/8m1/4

n log n)
√

log n+ n−1/2 +Nn/n
)
,

Finally the assumptions imply
√
n log n(κn + ηn) + n−1/2 = o(n−1/8m

1/4
n (log n)3/2), which com-

pletes the proof of Theorem 4.2. 2

Note that Theorem 4.1 solves an open and important problem raised in Li [2008, 2011],
who considered the Laplace periodogram L̂n,τ1,τ2 for τ1 = τ2. This author showed asymptotic
unbiasedness, but did not prove consistency of a smoothed version of the Laplace periodogram.
Moreover, as pointed out in Theorem 3.1 the smoothed version of L̂n,τ1,τ2 is not consistent for
the copula spectral density kernel, which is the object of interest in our paper. Theorem 4.2
shows that the smoothed rank-based Laplace periodogram yields a consistent estimate of this
quantity.

5 Finite sample properties.

5.1 Simulation results.

In order to illustrate the finite sample properties of the new estimates we present a small sim-
ulation study. We consider AR(1) processes Yt = ϑYt−1 + εt with N (0, 1)- and t1-distributed
innovations εt, where ϑ := −0.3. All results presented in this section are based on 5000 simula-
tion runs.

We generate pseudo-random time series of lengths n = 100, n = 500 and n = 1000, of the
AR(1) processes and calculate the Laplace and rank-based Laplace periodogram, for τ1, τ2 ∈
{0.05, 0.25, 0.5, 0.75, 0.95}. We also determine the smoothed estimates using Daniell kernels (as
in Brockwell and Davis [2006], Example 10.4.3), where the parameters are (2, 1) for n = 100,
(10, 4) for n = 500 and (10, 25) for n = 1000. From all calculated periodograms we determine the
mean to estimate the expectation of the various estimates. Each of the following figures contains
9 subfigures. For any combination of τ1 and τ2, the imaginary parts of periodograms and spectra
are represented above the diagonal, whereas the real parts are represented below, or, for τ1 = τ2,
on the diagonal (note that in the case τ1 = τ2 all quantities under consideration are real). The
curves are plotted against ω/(2π). In all figures, the dashed line represents the “true” spectrum
(scaled for Figures 1 and 2; unscaled for Figure 3 and 4) and the solid line the (pointwise)
mean of the simulated smoothed Laplace periodograms. In order to illustrate the variability
the figures contain some additional information. The dotted lines represent the 0.1 and 0.9
(pointwise) sample quantiles of the unsmoothed periodograms from the 5000 simulation runs,
while the border of the gray area represents the 0.1 and 0.9 sample quantiles of the smoothed
estimates.

For the sake of brevity only results for sample size n = 500 are presented here, but fur-
ther results, which show a similar behavior, are available from the authors. In Figure 1 we
present the results of the Laplace and smoothed Laplace periodogram in the case of Gaussian
innovations, while the case of t1-distributed innovations is shown in Figure 2. Inspection of
these figures reveals that the imaginary component of the spectrum is vanishing in the case of
Gaussian innovations (see Figure 1). This observation reflects the fact that AR processes with
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Gaussian innovations are time-reversible. On the other hand for t1-distributed innovations this
phenomenon only takes place for the extreme quantiles (τ1 = 0.05, τ2 = 0.95), meaning that
P(Xt ≤ q0.05, Xt+k ≤ q0.95) is approximately equal to P(Xt ≤ q0.95, Xt+k ≤ q0.05). This, how-
ever, does not hold for τ1 = 0.5 and τ2 = 0.05 or 0.95 and frequencies above 0.3, which indicates
a time-irreversible impact of extreme values on the central ones. Another finding is that in most
cases the bias is usually larger for the estimation of the Laplace spectrum with τ1 = τ2, see, for
instance the panels in the diagonals of Figures 1 and 2.

The corresponding rank-based Laplace periodograms are shown in Figure 3 and 4 corre-
sponding to standard normal and t1-distributed innovations, respectively. The results show a
similar type of time reversibility as observed for the Laplace periodogram. It is interesting to
note that for the rank-based Laplace periodogram the bias appears to be much smaller, and
smoothing seems to be more effective (see Figures 3 and 4)

Finally, we investigate the quality of the estimates by their mean squared properties. In
Table 1 we present the square roots of the integrated mean squared errors (MSE). We consider
two innovation distributions (t1 and standard normal) and the smoothed rank-based Laplace
periodogram for sample sizes n = 100, 500, and 1000. Note that because of symmetry we do not
display all combinations. For example the spectra corresponding to the quantiles (.05, .05) and
(.95, .95) coincide in the scenario under consideration. We observe a reasonable behavior of the
rank-based Laplace periodogram with respect to MSE in all cases. It is interesting to note that
in both cases the integrated MSE becomes larger if quantiles from a neighbourhood of τ = 0.5
are involved. For example the integrated MSE is increasing for (0.05, 0.05), (0.05, 0.25) and
(0.05, 0.50) and then again decreasing for (0.05, 0.75), (0.05, 0.95). This phenomenon is closely
related to the fact that the empirical copula has variance zero at the boundaries of the unit
cube, see Genest and Segers [2010] for more details on this subject.

(τ1, τ2)
εt n (.05, .05) (.05, .25) (.05, .5) (.05, .75) (.05, .95) (.25, .25) (.25,.5) (.5,.5)

100 0.0206 0.0411 0.0465 0.0406 0.0221 0.0646 0.0842 0.0872
N (0,1) 500 0.0086 0.0191 0.0223 0.0195 0.0102 0.0355 0.0444 0.0487

1000 0.0055 0.0122 0.0143 0.0126 0.0066 0.0231 0.0287 0.0320

100 0.0217 0.0422 0.0472 0.0412 0.0236 0.0666 0.0863 0.0939
t1 500 0.0093 0.0196 0.0224 0.0196 0.0112 0.0366 0.0464 0.0531

1000 0.0060 0.0126 0.0144 0.0126 0.0074 0.0236 0.0298 0.0347

Table 1: Root Integrated Mean Square Errors of smoothed, rank-based Laplace periodograms, for
the two AR(1) examples above, and various series lengths.

5.2 An empirical application: S&P 500 returns.

The smoothed rank-based Laplace periodogram was computed from the series of daily return
values of the S&P 500 index (Jan/2/1963–Dec/31/2009, n = 11844), for the same quantile orders
as in the previous section; the weighting function is given by a Daniell kernel with parameters
(200,100). Results for the smoothed traditional periodogram are shown in Figure 5, while
the results for the rank-based Laplace periodogram are presented in Figure 6, with the same
convention as described in Section 5.1.
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Figure 1: Smoothed Laplace periodograms and (scaled) spectral densities defined in (3.3). The
process is an AR(1) process with N (0, 1)-distributed innovations and the sample size is 500.
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Figure 2: Smoothed Laplace periodograms and (scaled) spectral densities defined in (3.3). The
process is an AR(1) process with t1-distributed innovations and the sample size is 500.
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Figure 3: Smoothed rank-based Laplace periodograms and (unscaled) spectral densities defined
in (2.1). The process is an AR(1) process with N (0, 1)-distributed innovations; sample size:
n = 500.
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Figure 4: Smoothed rank-based Laplace periodograms and (unscaled) spectral densities defined in
(2.1). The process is an AR(1) process with t1-distributed innovations; sample size: n = 500.
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Figure 5: Smoothed traditional periodogram, S&P 500 returns
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Figure 6: Smoothed rank-based Laplace periodograms, S&P 500 returns
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The non-linear features of that series have been stressed by many authors (see, e. g. Ab-
hyankar et al. [1997], Berg et al. [2010], Brock et al. [1992], Hinich and Patterson [1990, 1985],
Hsieh [1989], Vaidyanathan and Krehbiel [1992]). Those non-linear features cannot be detected
by classical correlogram-based spectral methods, and hence do not appear in Figure 5, where
the traditional smoothed periodogram is depicted. They do appear, however, in the plots of
Figure 6. Whereas the picture for the central quantiles τ1 = τ2 = 0.5 looks quite similar to
that in Figure 5, the remaining ones, which involve at least one extreme quantile, are drastically
different, indicating a marked discrepancy between tail and central dependence structures. All
plots involving at least one extremal quantile yield a peak at the origin, which possibly corre-
sponds to a long-range memory for extremal events. Imaginary parts are not zero, suggesting
again time-irreversibility. Such features entirely escape a traditional spectral analysis.

6 Appendix A: Technical details for the proofs in Section 3

In this section we give the technical details for the proofs of Theorem 3.1 and 3.3. The proofs of
the results in this section rely on several lemmas. Five of them (Lemma 6.7, 6.8, 6.9, 6.10 and
6.6) are general results, the statement of which we postpone to Section 6.3. Two further ones
(Lemmas 6.4 and 6.5) are specific to the proof of (3.25) and presented in Section 6.2.4. Finally,
Lemmas 6.1, and 6.2 are auxiliary results used in the proofs of both (3.12) and (3.25); they
are regrouped in Section 6.1.1, while Lemma 6.3 (also in Section 6.1.1) is specific to the proof
of (3.12).

6.1 Details for the proof of (3.12)

Recall that the estimate (3.12) was obtained by a combination of Lemma 6.1, Lemma 6.2 and
(3.14) - (3.15). The Lemmata will be proved in Section 6.1.1 and are also used in a slightly
modified form in the proof of (3.25), which is the essential step in the proof of Theorem 3.3.
Throughout this section, the notation from the proof of Theorem 3.1 is used.

6.1.1 Three auxiliary Lemmas

The following Lemma generalizes ideas from Pollard [1991].

Lemma 6.1 Let Ban(x) denote the closed ball (in R3) with center x and radius an > 0. Assume
that, for some sequence of real numbers an = o(1),

∆n := sup
ω∈Fn

sup
δ∈Ban (δXn,τ,ω)

|Ẑn,τ,ω(δ)− ZXn,τ,ω(δ)| = oP(a2
n).

Then, supω∈Fn |δ̂n,τ,ω − δXn,τ,ω| = oP(an).

Proof. Let rn,τ,ω(δ) := Ẑn,τ,ω(δ) − ZXn,τ,ω(δ). Simple algebra and the explicit form (3.10) of

δXn,τ,ω yield

Ẑn,τ,ω(δ) =
1

2
(δ − δXn,τ,ω)′QX

n,τ,ω(δ − δXn,τ,ω)− 1

2
(δXn,τ,ω)′QX

n,τ,ωδ
X
n,τ,ω + rn,τ,ω(δ). (6.1)

Any δ ∈ R3 \ Ban(δXn,τ,ω) with distance ln := ‖δ − δXn,τ,ω‖ > an to δXn,τ,ω can be represented

as δ = δXn,τ,ω + ln,τ,ωdn,τ,ω, where dn,τ,ω := l−1
n,τ,ω(δ− δXn,τ,ω). The point δ∗n,τ,ω = δXn,τ,ω + andn,τ,ω
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is on the boundary of the ball Ban(δXn,τ,ω). The convexity of Ẑn,τ,ω(δ) therefore implies

anl
−1
n,τ,ωẐn,τ,ω(δ) +

(
1− anl−1

n,τ,ω

)
Ẑn,τ,ω(δXn,τ,ω) ≥ Ẑn,τ,ω(δ∗n,τ,ω) = ZXn,τ,ω(δ∗n,τ,ω) + rn,τ,ω(δ∗n,τ,ω)

≥ 1

2
d′n,τ,ωQ

X
n,τ,ωdn,τ,ωa

2
n −

1

2
(δXn,τ,ω)′QX

n,τ,ωδ
X
n,τ,ω −∆n

≥ 1

2
d′n,τ,ωQ

X
n,τ,ωdn,τ,ωa

2
n + Ẑn,τ,ω(δXn,τ,ω)− 2∆n.

Rearranging and taking the infimum over ω and δδδ, we obtain

inf
ω∈Fn

inf
δ:|δ−δXn,τ,ω |>an

(
Ẑn,τ,ω(δ)− Ẑn,τ,ω(δXn,τ,ω)

)
≥ inf

ω∈Fn
inf

δ:|δ−δ̃n,τ,ω |>an
ln,τ,ω a

−1
n

(1

2
d′n,τ,ωQ

X
n,τ,ωdn,τ,ωa

2
n − 2∆n

)
. (6.2)

By assumption, the smallest eigenvalue of QX
n,τ,ω is bounded away from zero uniformly in ω ∈ Fn,

for n sufficiently large. Hence, 2∆n <
1
2d
′
n,τ,ωQ

X
n,τ,ωdn,τ,ωa

2
n with probability tending to one, the

right-hand side in (6.2) is strictly positive, and the minimum of Ẑn,τ,ω(δ) cannot be attained at
any δ with |δ − δXn,τ,ω| > an. 2

Lemma 6.2 For any τ ∈ (0, 1), there exists a finite constant A such that

lim
n→∞

P
(

sup
ω∈Fn

‖δXn,τ,ω‖∞ > A
√

log n
)

= 0.

Proof. For any A > 0,

P
(

sup
ω∈Fn

‖δXn,τ,ω‖∞ ≥ A
√

log n
)
≤ n sup

ω∈Fn
P
(
‖Sn,ω‖∞ ≥ A

√
n log n

)
, (6.3)

where Sn,ω := n1/2δXn,τ,ω =
∑n

t=1 Ht,ω with Ht,ω := (QX
n,τ,ω)−1ct(ω)(τ − I{Xt,n ≤ qn,τ}). In

order to bound the probabilities on the right-hand side of (6.3), we apply Lemma 6.8, with

xn = 2
√

log n and ψn = n1/6m
−2/3
n x−1

n , to each component of Sn,ω. Let Sn,ω,j and Ht,ω,j ,
j = 1, 2, 3 denote the jth components of Sn,ω and Ht,ω, respectively. The quantities Ht,ω,j form
a triangular array of centered, mn-dependent, real-valued random variables, and each of them is
bounded by a finite constant that does not depend on ω. Therefore, Condition 2 of Lemma 6.8
holds. Next, observe that, for ω ∈ Fn, we have E[Sn,ωS

′
n,ω] = n diag(1, 4, 4)Wn, where

Wn =
1

n

n∑
s=1

n∑
t=1

cs(ω)c′t(ω)(E[I{Xs,n ≤ qn,τ}I{Xt,n ≤ qn,τ}]− τ2).

Each entry of cs(ω)c′t(ω) is uniformly bounded by 1. Together with Assumption (A3), this
implies that the diagonal entries of Wn are bounded uniformly in ω and n. Because all terms
are centered, we have B2

n,ω,j := ES2
n,ω,j = O(n). Note that ψn(n−1/2m2

nx
3
n)1/3 = 1. Therefore,

the left-hand side in Condition 1 of Lemma 6.8 is of the order xnmn = O(n1/4) and, since
ψ2
n(nm2

nx
3
n)2/3 = n, that condition holds. Condition 3 follows from the fact that ψn → ∞ and

n−1/2m2
nψ

3
nx

3
n = 1, and Condition 4 from the assumption that mn = O(n1/4−a). Lemma 6.8

therefore applies, yielding

P
(
‖Sn,ω‖∞ ≥ A

√
n log n

)
≤ P

(
‖Sn,ω‖∞ ≥ 2

√
6xnµn

)
≤ 4 exp(−4 log n) = 4n−4,
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where xnµn = xn(B2
n + ψ2

n(nm2
nx

3
n)2/3)1/2 = xn(B2

n + n)1/2 = O(
√
n log n). Consequently, the

constant A can always be chosen in such a way that, for n sufficiently large,

A
√
n log n ≥ 2

√
6xn(B2

n + ψ2
n(nm2

nx
3
n)2/3)1/2 = 2

√
6xnµn.

The claim follows. 2

Lemma 6.3 For the Fourier frequencies ωj,n ∈ Fn, let Γn(δ; τ, ωj,n) :=
∑n

t=1Ht(δ; τ, ωj,n),
where

Ht(δ; τ, ωj,n) :=

∫ n−1/2c′t(ωj,n)δ

0
(I{Xt,n ≤ s+ qn,τ} − I{Xt,n ≤ qn,τ})ds.

Then, E[Γn(δ; τ, ωj,n)] = fn,X(qn,τ )(2n)−1
∑n

t=1(c′t(ωj,n)δ)2 + r1(τ, ωj,n), where |r1(ωj,n, τ)| ≤
C4‖δ‖3n−1/2 for some finite constant C4. Moreover, if ‖δ‖ ≤ A log n, there exists a positive
constant C1 such that, for sufficiently large n, any τ and ωj,n,

Var(Γn(δ; τ, ωj,n)) ≤ n−1/2C1‖δ‖3.

Proof. Assumption (A2) guarantees that all calculations that follow still hold when distributions
depend on n. Due to mn-dependence,

Var(Γn(δ; τ, ω)) =
n∑
t=1

Var(Ht(δ; τ, ω)) +
n∑

t1=1

n∑
1≤t2 6=t1≤n
|t2−t1|≤mn

Cov(Ht1(δ; τ, ω), Ht2(δ; τ, ω)).

Note that

E
[
Ht(δ; τ, ωj,n)2

]
= E

[ ∫ n−1/2c′t(ωj,n)δ

0

∫ n−1/2c′t(ωj,n)δ

0
(I{Xt,n ≤ u+ qn,τ} − I{Xt,n ≤ qn,τ})

× (I{Xt,n ≤ v + qn,τ} − I{Xt,n ≤ qn,τ}) dudv
]

= E
[ ∫ n−1/2c′t(ωj,n)δ

0

∫ n−1/2c′t(ωj,n)δ

0
(I{Xt,n ≤ (u ∧ v) + qn,τ} − I{Xt,n ≤ (u ∧ 0) + qn,τ}

−I{Xt,n ≤ (v ∧ 0) + qn,τ}+ I{Xt,n ≤ qn,τ})dudv
]

=

∫ n−1/2c′t(ωj,n)δ

0

∫ n−1/2c′t(ωj,n)δ

0
(u ∧ v − u ∧ 0− v ∧ 0) fn,X(qn,τ ) + r2(u, v, τ)dudv (6.4)

= 3−1n−3/2fn,X(qn,τ )
∣∣c′t(ωj,n)δ

∣∣3 + r3(ωj,n, τ), (6.5)

where |r2(u, v, τ)| ≤ C1(u2 + v2), hence |r3(ωj,n, τ)| ≤ C2‖δ‖4n−2. Equality (6.4) follows via
a Taylor expansion, (6.5) from the fact that

∫ x
0

∫ x
0 (u ∧ v − u ∧ 0− v ∧ 0) dudv = 1

3 |x|
3. Similarly,

E
[
Ht(δ; τ, ωj,n)

]
= E

[ ∫ n−1/2c′t(ωj,n)δ

0
(I{Xt,n ≤ u+ qn,τ} − I{Xt,n ≤ qn,τ})

]
du (6.6)

=

∫ n−1/2c′t(ωj,n)δ

0
(fn,X(qn,τ )u+ r4(u, τ)) du =

fn,X(qn,τ )

2n
(c′t(ωj,n)δ)2 + r1(τ, ωj,n)
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where |r4(u, τ)| ≤ C3u
2, hence |r1(ωj,n, τ)| ≤ C4‖δ‖3n−3/2. Thus,

E[Ht(δ; τ, ωj,n)]2 = n−2
(1

2
fn,X(qn,τ )(c′t(ωj,n)δ)2

)2
+ r5(ωj,n, τ),

where |r5(ωj,n, τ)| ≤ C5(‖δ‖5 + ‖δ‖6)n−5/2. For the covariances, we have

E
[
Ht1(δ; τ, ωj,n)Ht2(δ; τ, ωj,n)

]
= E

[ ∫ n−1/2c′t1
(ωj,n)δ

0

∫ n−1/2c′t2
(ωj,n)δ

0
(I{Xt1,n ≤ u+ qn,τ} − I{Xt1,n ≤ qn,τ})

× (I{Xt2,n ≤ v + qn,τ} − I{Xt2,n ≤ qn,τ}) dudv
]

=

∫ n−1/2c′t1
(ωj,n)δ

0

∫ n−1/2c′t2
(ωj,n)δ

0
Ft2−t1,n,X(u+ qn,τ , v + qn,τ )− Ft2−t1,n,X(qn,τ , v + qn,τ )

−Ft2−t1,n,X(u+ qn,τ , qn,τ ) + Ft2−t1,n,X(qn,τ , qn,τ )dudv

=

∫ n−1/2c′t1
(ωj,n)δ

0

∫ n−1/2c′t1
(ωj,n)δ

0
r6(u, v, τ)dudv (6.7)

= r7(ωj,n, τ),

where |r6(u, v, τ)| ≤ C6(u2 + v2), hence |r7(u, v, τ)| ≤ C7‖δ‖4n−2; equality (6.7) follows via a
Taylor expansion and some straightforward algebra. From (6.4), (6.5) and (6.7), we obtain

Var(Γn(δ; τ, ωj,n)) =
1

n3/2
fn,X(qn,τ )

n∑
t=1

∣∣c′t(ωj,n)δ
∣∣3 +Rn,

with |Rn| ≤ C3‖δ‖4mnn
−1 for sufficiently large n, and

n∑
t=1

∣∣c′t(ωj,n)δ
∣∣3 ≤ n∑

t=1

∣∣∣‖ct(ωj,n)‖∞
√

3‖δ‖
∣∣∣3 ≤ 33/2

n∑
t=1

‖δ‖3 = 33/2n‖δ‖3.

This completes the proof. 2

6.1.2 Proof of (3.14)

Applying Knight’s identity (Knight [1998]; see p. 121 of Koenker [2005]) to (3.6) and (3.7),
we obtain

Ẑn,τ,ω(δ) = Ẑn,τ,ω,1(δ) + Ẑn,τ,ω,2(δ) and ẐXn,τ,ω(δ) = ẐXn,τ,ω,1(δ) + ẐXn,τ,ω,2(δ),

where

Ẑn,τ,ω,1(δ) = −δ′n−1/2
n∑
t=1

ct(ω)(τ − I{Yt ≤ qτ}),

Ẑn,τ,ω,2(δ) =

n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Yt ≤ qτ + s} − I{Yt ≤ qτ}

)
ds,

ẐXn,τ,ω,1(δ) = −δ′n−1/2
n∑
t=1

ct(ω)(τ − I{Xt,n ≤ qn,τ}),

ẐXn,τ,ω,2(δ) =
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Xt,n ≤ qn,τ + s} − I{Xt,n ≤ qn,τ}

)
ds.
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Let us show that Ẑn,τ,ω,i and ẐXn,τ,ω,i, i = 1, 2, are uniformly close in probability. For i = 1, note
that, with probability tending to one, for any sequence of positive real numbers ηn, uniformly
over ‖δ‖ ≤ A

√
log n,

|Ẑn,τ,ω,1(δ)− ẐXn,τ,ω,1(δ)| = n−1/2
∣∣∣δ′ n∑

t=1

ct(ω)(I{Xt,n ≤ qτ −Dt,n} − I{Xt,n ≤ qn,τ})
∣∣∣

≤ A
√
n log n

1

n

n∑
t=1

(
I{|Dt,n| > ηn}+ I{|Xt,n − qn,τ | ≤ ηn + |qτ − qn,τ |}

)
,

since I{Xt,n ≤ qτ −Dt,n} − I{Xt,n ≤ qn,τ} 6= 0 implies |Xt,n − qn,τ | ≤ |Dt,n|+ |qτ − qn,τ | which,
in turn, implies |Xt,n− qn,τ | ≤ ηn + |qτ − qn,τ | or |Dt,n| > ηn. Taking expectations, part (3.2) of
Assumption (A1), the strict stationarity of (Dt,n) and (Xt,n), and a Taylor expansion yield

E|Ẑn,τ,ω,1(δ)− ẐXn,τ,ω,1(δ)| ≤ A
√
n log nO(κn + ηn + |qτ − qn,τ |).

Using similar arguments and the same reasoning as in Section 6.2.1, we obtain

sup
‖δ‖≤A

√
logn

|Ẑn,τ,ω,2(δ)− ẐXn,τ,ω,2(δ)| = OP

(
(κn + ηn + rn(O(κn + ηn),mn))

√
n log n

)
,

where the function rn is defined by

rn(an,mn) := C2n
−1/2

(
mnan +

(mn

n
∨ an

)2/3
m4/3
n n−1/3(log n)3

)1/2
(log n)1/2. (6.8)

In order to complete the proof, let us show that |qτ − qn,τ | = O(ηn + κn). Observe that

|P(X1,n +D1,n ≤ t)− P(X1,n ≤ t)| ≤ E[I{|X1,n − t| ≤ ηn}+ I{|D1,n| > ηn}] = O(ηn + κn).

Thus, ‖FY − Fn,X‖∞ = O(ηn + κn). Let g be strictly increasing, and h increasing, on [a, b],
with |g(x)− g(y)| ≥ c|x− y| for some c > 0 and supt∈[a,b] |g(t)− h(t)| ≤ L. Denote by h−1 the

generalized inverse of h on [a, b] (namely, h−1(p) := inf{t|h(t) ≥ p}). Then,

sup
t∈[g(a)+2L/c,g(b)−2L/c]

|h−1(t)− g−1(t)| ≤ 2L/c.

Letting g = Fn,X , h = FY , and taking into account the fact that fn,X > 0, hence Fn,X strictly
increasing, on [F−1

n,X(τ)− d, F−1
n,X(τ) + d], we thus obtain

|qn,τ − qτ | = O(ηn + κn), (6.9)

which completes the proof. 2

6.1.3 Proof of (3.15)

Due to Knight’s identity, we have

K2n(δ; τ, ω) := ẐXn,τ,ω(δ)− ZXn,τ,ω(δ) =
n∑
t=1

Wt,n(ω, δ),

with

Wt,n(ω, δ) :=

∫ n−1/2c′t(ω)δ

0

(
I{Xt,n ≤ s+ qn,τ} − I{Xt,n ≤ qn,τ}

)
ds−

fn,X(qn,τ )

2n

(
δ′ct(ω)

)2
.
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Direct calculations yield, for some finite constants C1, C2, C3 and n large enough,

sup
ω∈Fn

sup
t
|E[Wt,n(ω, δ)]| ≤ C1‖δ‖3n−3/2, sup

ω∈Fn
sup
t
|Wt,n(ω, δ)| ≤ C2‖δ‖n−1/2 a.s., (6.10)

sup
ω∈Fn

sup
t

E[|Wt,n(ω, δ)|p] ≤ C3‖δ‖1+pn−(1+p)/2 (6.11)

and, for n ≥ n0 with n0 ∈ N independent of t and ω,

sup
ω∈Fn

|K2n(a; τ, ω)−K2n(b; τ, ω)| ≤ 3
√
n‖a− b‖.

It is obviously possible to construct N = o(n5) points d1, ..., dN (the dependence of the points
on n is not reflected in the notation) such that for every δ ∈ {δ : ‖δ‖∞ ≤ A

√
log n} there exists

an index j(δ) for which ‖δ − dj(δ)‖ ≤ n−3/2. The computations above then show that

sup
ω∈Fn

sup
‖δ‖∞≤A

√
logn

|K2n(δ; τ, ω)| ≤ sup
ω∈Fn

sup
j=1,...,N

|K2n(dj ; τ, ω)|+OP(n−1).

Since #Fn ≤ n,

P
(

sup
ω∈Fn

sup
j=1,...,N

|K2n(dj ; τ, ω)| ≥ an
)
≤ Nn sup

ω∈Fn
sup

j=1,...,N
P
(
|K2n(dj ; τ, ω)| ≥ an

)
. (6.12)

Let us show that, for a sequence an with an = o((n−1/4 ∨ n−1/3m
2/3
n )(log n)3), we can make

the probabilities in (6.12) tend to zero as fast as n−D, for any D ∈ N, which is fast enough to
compensate for the factor nN = o(n6) and hence will complete the proof.
For this purpose, we apply Lemma 6.8 again. Fix ω and dj , and observe that the collection of
random variables

Vt,n(ω, dj) := n1/2(log n)−1/2(Wt,n(ω, dj)− EWt,n(ω, dj)), t = 1, ..., n

are centered and mn-dependent. Note that, for ‖δ‖ ≤ A
√

log n, we have

sup
ω∈Fn

sup
t
|Vt,n(ω, δ)| ≤ AC2(1 + o(1)), sup

ω∈Fn
sup
t

E[|Vt,n(ω, δ)|3] ≤ A4C3n
−1/2(log n)1/2, (6.13)

and, as a consequence of (6.10), (6.11) and Lemma 6.3 in Section 6.1.1,

sup
ω∈Fn

sup
t

E
[(∑

t

Vt,n(ω, δ)
)2]
≤ A3C4n

1/2(log n)1/2(1 + o(1)).

Let xn = D
√

log(n) and ψn = (n−1/3m
1/3
n ∨ supt(E|Vt,n(ω, δ)|3)1/3) log n. Since n−1/3m

1/3
n is

O(n−1/4−a/3) and supt(E|Vt,n(ω, δ)|3)1/3 is O(n−1/6(log n)1/6), ψn is O(n−1/6(log n)7/6), hence
o(1). In view of (6.13), the sufficient condition in part (ii) of Lemma 6.8 is satisfied, so that
Conditions 1 and 3 of Lemma 6.8 hold. Obviously, Condition 2 also follows from (6.13). Because
of the definition of xn and the assumption that mn = O(n1/4−a), Condition 4 holds as well. It
thus follows from Lemma 6.8 that there exists a finite constant CD such that, for sufficiently
large n,

P
(∣∣∣∑

t

Vt,n(ω, dj)
∣∣∣ ≥ CD((n log n)1/2 ∨ (n1/3m4/3

n (log n)10/3)
)1/2) ≤ 4n−D(1 + o(1)).
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Setting

an := n−1/2(log n)1/2CD
(
(n log n)1/2 ∨ (n1/3m4/3

n (log n)10/3)
)1/2

,

we have an = o((n−1/4 ∨ n−1/3m
2/3
n )(log n)3); it thus follows that

P (|K2n(dj ; τ, ω)| ≥ an) ≤ P
(∣∣∣∑

t

(Wt,n(ω, dj)− EWt,n(ω, dj))
∣∣∣ ≥ an − n sup

t
|EWt,n(ω, dj)|

)
≤ P

(∣∣∣∑
t

Vt,n(ω, dj)
∣∣∣ ≥ n1/2(log n)−1/2an −O(log n)

)
≤ 4n−D(1 + o(1)).

This completes the proof. 2

6.2 Details for the proof of (3.25)

Subsections 6.2.1–6.2.3 contain the proofs of (3.27) - (3.29) that were basic in establishing (3.25).
Some auxiliary results used in the proofs are collected in Section 6.2.4. Denote by F̂n,Y and F̂n,X
the empirical distribution functions of Y1, . . . , Yn and X1,n, . . . , Xn,n, respectively. Throughout
this section, the notation from the proof of Theorem 3.3 is used.

6.2.1 Proof of (3.27)

From Knight’s identity, we have

Ẑ˜n,τ,ω(δ) = Ẑ˜n,τ,ω,1(δ) + Ẑ˜n,τ,ω,2(δ) and Ẑ˜Xn,τ,ω(δ) = Ẑ˜Xn,τ,ω,1(δ) + Ẑ˜Xn,τ,ω,2(δ),

where

Ẑ˜n,τ,ω,1(δ) := −δ′n−1/2
n∑
t=1

ct(ω)(τ − I{Yt ≤ F̂−1
n,Y (τ)}),

Ẑ˜n,τ,ω,2(δ) :=
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Yt ≤ F̂−1

n,Y (s+ τ)} − I{Yt ≤ F̂−1
n,Y (τ)}

)
ds,

Ẑ˜Xn,τ,ω,1(δ) := −δ′n−1/2
n∑
t=1

ct(ω)(τ − I{Xt,n ≤ F̂−1
n,Y (τ)})

Ẑ˜Xn,τ,ω,2(δ) :=
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Xt,n ≤ F̂−1

n,Y (s+ τ)} − I{Xt,n ≤ F̂−1
n,Y (τ)}

)
ds.

The assertion in (3.27) follows if we can show that Ẑ˜n,τ,ω,i and Ẑ˜Xn,τ,ω,i are uniformly close for

i = 1, 2. For i = 1, note that, with probability tending to one, we have, for any ε > 0,

|Ẑ˜n,τ,ω,1(δ)− Ẑ˜Xn,τ,ω,1(δ)|

=
∣∣∣ δ′√
n

n∑
t=1

ct(ω)(I{Xt,n ≤ F̂−1
n,Y (τ)−Dt,n} − I{Xt,n ≤ F̂−1

n,Y (τ)})
∣∣∣

≤ A
√
n−1 log n

( n∑
t=1

I{|Dt,n| > ηn}+ sup
|s−F−1

n,X(τ)|≤ε

n∑
t=1

I{|Xt,n − s| ≤ ηn}
)

(6.14)

for any sequence of real numbers (ηn), where the inequality is due to the fact that
I{Yt ≤ F̂−1

n,Y (τ)} − I{Xt,n ≤ F̂−1
n,Y (τ)} 6= 0 implies |Dt,n| > ηn or |Xt,n − F̂−1

n,Y (τ)| ≤ ηn, along
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with the fact that, by Lemma 6.4, Fn,X(F−1
n,Y (τ))− τ = oP(1). By (3.2) in Assumption (A1) and

the strict stationarity of the process (Dt,n), the first sum in (6.14) is of order OP(κn
√
n log n).

The absolute value of the second sum in (6.14) is bounded by

A
√
n log n sup

|s−F−1
n,X(τ)|≤ε

1

n

n∑
t=1

(
I{Xt,n ≤ s+ ηn} − I{Xt,n < s− ηn}

)
≤ A

√
n log n sup

|s−F−1
n,X(τ)|≤ε

sup
x:|x|≤2ηn

∣∣F̂n,X(s+ x)− F̂n,X(y)− Fn,X(s+ x) + Fn,X(y)
∣∣ (6.15)

+
√
n log n sup

|s−F−1
n,X(τ)|≤ε

∣∣∣Fn,X(s+ 2ηn)− Fn,X(s− 2ηn)
∣∣∣. (6.16)

Therefore, it follows from Lemma 6.9 that (6.15) is of the order
√
n log n rn(2ηn,mn). For

the second term, a Taylor expansion yields the order O(ηn
√
n log n). For i = 2, note that

|Ẑ˜n,τ,ω,2(δ)− Ẑ˜Xn,τ,ω,2(δ)| =
∣∣A(1)

n,τ,ω(δ)−A(2)
n,τ,ω(δ)

∣∣ ≤ ∣∣A(1)
n,τ,ω(δ)

∣∣+
∣∣A(2)

n,τ,ω(δ)
∣∣

where

A(1)
n,τ,ω(δ) :=

n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Yt ≤ F̂−1

n,Y (s+ τ)} − I{Xt,n ≤ F̂−1
n,Y (s+ τ)}

)
ds

=

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

(
I{Yt ≤ F̂−1

n,Y (n−1/2s+ τ)} − I{Xt,n ≤ F̂−1
n,Y (n−1/2s+ τ)}

)
×
(
I{0 ≤ s ≤ c′t(ω)δ} − I{0 ≥ s ≥ c′t(ω)δ}

)
ds,

A(2)
n,τ,ω(δ) :=

c′t(ω)δ√
n

n∑
t=1

(
I{Yt ≤ F̂−1

n,Y (τ)} − I{Xt,n ≤ F̂−1
n,Y (τ)}

)
.

For any ε > 0 we have, with probability tending to one,

|A(1)
n,τ,ω(δ)| ≤

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

(
I{|Dt,n| > ηn}+ I{|Xt,n − F̂−1

n,Y (τ + sn−1/2)| ≤ ηn}
)
ds

≤ 4‖δ‖
(
n−1/2

n∑
t=1

I{|Dt,n| > ηn}+ n−1/2 sup
|w−F−1

n,X(τ)|≤ε

n∑
t=1

I{|Xt,n − w| ≤ ηn}
)

and

|A(2)
n,τ,ω(δ)| ≤ ‖δ‖√

n

n∑
t=1

∣∣I{Xt,n ≤ F̂−1
n,Y (τ)−Dt,n} − I{Xt,n ≤ F̂−1

n,Y (τ)}
∣∣

≤ ‖δ‖
(
n−1/2

n∑
t=1

I{|Dt,n| > ηn}+ n−1/2 sup
|w−F−1

n,X(τ)|≤ε

n∑
t=1

I{|Xt,n − w| ≤ ηn}
)
.

Since the supremum in (3.27) is over ‖δ‖ ≤ A
√

log n, the upper bound for |A(1)
n,τ,ω(δ)| and |A(2)

n,τ,ω(δ)|
is of the same order as for |Ẑ˜n,τ,ω,1(δ)− Ẑ˜Xn,τ,ω,1(δ)| above. This completes the proof. 2
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6.2.2 Proof of (3.28)

Plugging into (3.28) the definition of Ẑ˜Xn,τ,ω,1(δ), it remains to show that [recall that ct,1(ω) = 1]

max
k=2,3

sup
ω∈Fn

∣∣∣n−1/2
n∑
t=1

ct,k(ω)
(
I{Ut,n ≤ Fn,X(F̂−1

n,Y (τ))} − I{Ut,n ≤ τ}
)∣∣∣

= OP(n−1/4m1/2
n (log n)3/2) (6.17)

and ∣∣∣n−1/2
n∑
t=1

(I{Ut,n ≤ Fn,X(F̂−1
n,Y (τ))} − I{Ut,n ≤ τ})−

√
n(Fn,X(F̂−1

n,Y (τ))− τ)
∣∣∣

= OP(n−1/4m1/2
n (log n)3/2). (6.18)

First consider (6.17). Since, by Lemma 6.4, |Fn,X(F̂−1
n,Y (τ))− τ | = OP(n−1/2

√
log n), we obtain

sup
ω∈Fn

∣∣∣n−1/2
n∑
t=1

ct,k(ω)(I{Ut,n ≤ Fn,X(F̂−1
n,Y (τ))} − I{Ut,n ≤ τ})

∣∣∣
≤ sup

ω∈Fn
n−1/2 sup

|x−τ |≤n−1/2 logn

∣∣∣ n∑
t=1

ct,k(ω)(I{Ut,n ≤ x} − I{Ut,n ≤ τ} − (x− τ))
∣∣∣

+ sup
ω∈Fn

n−1 log n
∣∣∣ n∑
t=1

ct,k(ω)
∣∣∣ (6.19)

for k = 2, 3, with probability tending to one. The second term in (6.19) vanishes, because,
for all ω ∈ Fn,

∑n
t=1 cos(ωt) =

∑n
t=1 sin(ωt) = 0. In order to bound the first term, cover the

set Z := {u : |u− τ | ≤ n−1/2 log n} with N < n balls of radius 1/n and centers u1, ..., uN ∈ Z,
and define Gn,ω,k(u) := n−1/2

∑n
t=1 ct,k(ω)(I{Ut,n ≤ u} − u). Then,

sup
j

sup
ω∈Fn

sup
|u−uj |≤n−1

∣∣∣Gn,ω,k(u)−Gn,ω,k(uj)
∣∣∣

≤ sup
u∈Z

n−1/2
n∑
t=1

(
I{Ut,n ≤ u+ 2n−1} − I{Ut,n ≤ u− 2n−1}+ 4n−1

)
+O(n−1/2)

≤
√
n sup
j=1,...,N

∣∣∣F̂n,U (uj + 2n−1)− F̂n,U (uj − 2n−1)− 4n−1
∣∣∣+O(n−1/2),

where the latter bound, in view of Lemma 6.9, is oP(n−1/4) since
√
nrn(4n−1,mn) is of order

o(mnn
−1/2(log n)3). Thus,

sup
j

sup
ω∈Fn

sup
|u−uj |≤n−1

∣∣∣Gn,ω,k(u)−Gn,ω,k(uj)
∣∣∣ = oP(n−1/4), k = 2, 3,

and therefore

max
k=2,3

sup
ω∈Fn

∣∣∣n−1/2
n∑
t=1

ct,k(ω)(I{Ut,n ≤ Fn,X(F−1
n,Y (τ))} − I{Ut,n ≤ τ})

∣∣∣
≤ max

k=2,3
sup

j=1,...,N
sup
ω∈Fn

∣∣∣Gn,ω,k(uj)−Gn,ω,k(τ)
∣∣∣+ oP(n−1/4). (6.20)
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Now, by construction, maxj |uj − τ | ≤ n−1/2 log n. Moreover,

Gn,ω,k(uj)−Gn,ω,k(τ) = n−1/2
n∑
t=1

Vn,t,ω,k(uj , τ),

where Vn,t,ω,k(uj , τ) := ct,k(ω)
(
I{Ut,mn ≤ uj} − I{Ut,n ≤ τ} − (uj − τ)

)
are centered, mn-

dependent random variables. Direct calculations show that, for some finite constant C indepen-
dent of n, ω, τ and j,

|Vn,t,ω,k(uj , τ)| ≤ 2 a.s., E|Vn,t,ω,k(uj , τ)|3 ≤ C|uj − τ | ≤ Cn−1/2 log n,

and

E
[( n∑

t=1

Vn,t,ω,k(uj , τ)
)2] ≤ Cn1/2mn log n.

An application of Lemma 6.8 with xn = A
√

log n and ψn = C1/3n−1/6 log n thus yields, for
k = 1, 2, some finite constant C̃ and n sufficiently large,

sup
ω∈Fn

sup
j=1,...,N

P
(
n−1/2

∣∣ n∑
t=1

Vn,t,ω,k(uj , τ)
∣∣ > C̃n−1/2

√
log n(n1/2mn log n)1/2

)
≤ 4e−3 logn.

Hence, in view of the fact that N ≤ n and #Fn ≤ n,

max
k=2,3

sup
j=1,...,N

sup
ω∈Fn

∣∣∣Gn,ω,k(uj)−Gn,ω,k(τ)
∣∣∣ = OP(n−1/4m1/2

n (log n)3/2).

Together with (6.20) this yields (6.17). Turning to (6.18), Lemma 6.9 yields∣∣∣n−1/2
n∑
t=1

(
I{Ut,n ≤ Fn,X(F̂−1

n,Y (τ))} − I{Ut,n ≤ τ} − (Fn,X(F̂−1
n,Y (τ))− τ)

)∣∣∣
≤ sup
|u−τ |≤n−1/2 logn

∣∣∣n−1/2
n∑
t=1

(
I{Ut,n ≤ u} − I{Ut,n ≤ τ} − (u− τ)

)∣∣∣
= n1/2 sup

|u−τ |≤n−1/2 logn

∣∣F̂n,U (u)− F̂n,U (τ)− (u− τ)
∣∣ = OP(n−1/4m1/2

n (log n)3/2). 2

6.2.3 Proof of (3.29)

Observe the decomposition

Ẑ˜Xn,τ,ω,2(δ)−
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Ut,n ≤ s+ τ} − I{Ut,n ≤ τ}

)
ds

=
n∑
t=1

∫ n−1/2c′t(ω)δ

0

(
I{Ut,n ≤ Fn,X(F̂−1

n,Y (s+ τ))} − I{Ut,n ≤ Fn,X(F̂−1
n,Y (τ))} − I{Ut,n ≤ s+ τ}

+ I{Ut,n ≤ τ}
)
ds

=

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

(
I{Ut,n ≤ Fn,X(F̂−1

n,Y (n−1/2s+ τ))} − I{Ut,n ≤ Fn,X(F̂−1
n,Y (τ))}

− I{Ut,n ≤ n−1/2s+ τ}+ I{Ut,n ≤ τ}
)(
I{0 ≤ s ≤ c′t(ω)δ} − I{0 ≥ s ≥ c′t(ω)δ}

)
ds

= A(1)
n −A(2)

n −A(3)
n +A(4)

n , say,
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where

A(1)
n =:

∫ 2‖δ‖

−2‖δ‖

(
S

(+)
n,ω,δ(Fn,X(F̂−1

n,Y (n−1/2s+ τ)), n−1/2s+ τ ; s)− S(+)
n,ω,δ(Fn,X(F̂−1

n,Y (τ)), τ ; s)
)
ds

A(2)
n =:

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

[
(Fn,X(F̂−1

n,Y (n−1/2s+ τ))− (n−1/2s+ τ))− (Fn,X(F̂−1
n,Y (τ))− τ)

]
× I{0 ≤ s ≤ c′t(ω)δ}ds

A(3)
n =:

∫ 2‖δ‖

−2‖δ‖

(
S

(−)
n,ω,δ(Fn,X(F̂−1

n,Y (n−1/2s+ τ)), n−1/2s+ τ ; s)− S(−)
n,ω,δ(Fn,X(F̂−1

n,Y (τ)), τ ; s)
)
ds

A(4)
n =:

∫ 2‖δ‖

−2‖δ‖
n−1/2

n∑
t=1

[
(Fn,X(F̂−1

n,Y (n−1/2s+ τ))− (n−1/2s+ τ))− (Fn,X(F̂−1
n,Y (τ))− τ)

]
× I{0 ≥ s ≥ c′t(ω)δ}ds

and

S
(+)
n,ω,δ(u, v; s) := n−1/2

n∑
t=1

(
I{Ut,n ≤ u} − I{Ut,n ≤ v} − (u− v)

)
I{0 ≤ s ≤ c′t(ω)δ},

S
(−)
n,ω,δ(u, v; s) := n−1/2

n∑
t=1

(
I{Ut,n ≤ u} − I{Ut,n ≤ v} − (u− v)

)
I{0 ≥ s ≥ c′t(ω)δ}.

First note that, in view of Lemma 6.4,

|A(2)
n | ≤ 4‖δ‖

√
n sup
|u−τ |≤2‖δ‖/

√
n

|Fn,X(F̂−1
n,Y (u))− u− (Fn,X(F̂−1

n,Y (τ))− τ)| = oP(βn
√
n log n),

with βn := κn + ηn + rn(ηn,mn) + O(n−3/4m
1/2
n log n). A similar bound can be obtained for

A
(4)
n . Next, for sufficiently large n, still in view of Lemma 6.4,∫ 2‖δ‖

−2‖δ‖

∣∣S(+)
n,ω,δ(Fn,X(F̂−1

n,Y (n−1/2s+ τ)), n−1/2s+ τ ; s)
∣∣ds

≤
∫ 2‖δ‖

−2‖δ‖
sup

v:|v−τ |≤2‖δ‖/
√
n

∣∣S(+)
n,ω,δ(Fn,X(F̂−1

n,Y (v)), v; s)
∣∣ds

≤
∫ 2‖δ‖

−2‖δ‖
sup

v:|v−τ |≤2‖δ‖/
√
n

sup
u:|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)

∣∣ds
≤ 4‖δ‖ sup

s:|s|≤2‖δ‖
sup

v:|v−τ |≤2‖δ‖/
√
n

sup
u:|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)

∣∣.
Similar inequalities hold for

∫ 2‖δ‖
−2‖δ‖

∣∣S(+)
n,ω,δ(Fn,X(F̂−1

n,Y (τ)), τ ; s)
∣∣ds. Let us show that

sup
ω∈Fn

sup
δ:‖δ‖≤A

√
logn

sup
s:|s|≤2‖δ‖

sup
(u,v):|v−τ |≤2‖δ‖/

√
n

|u−v|≤n−1/2 logn

∣∣S(+)
n,ω,δ(u, v; s)

∣∣ = OP(n−1/4m1/2
n log n). (6.21)

For any C > 0 we have I{0 ≤ s ≤ c′tδ} = I{0 ≤ Cs ≤ Cc′tδ}. Thus, it is sufficient to consider
vectors δ satisfying ‖δ‖2 = 1. Since by definition ‖ct(ω)‖2 =

√
2, it also is sufficient to consider
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values of s in the interval [0,
√

2]. Finally, note that if I{0 ≤ s1 ≤ c′tδ1} = I{0 ≤ s2 ≤ c′tδ2} for

all t = 1, ..., n, then also S
(+)
n,ω,δ1

(u, v; s1) = S
(+)
n,ω,δ2

(u, v; s2). We thus can rewrite (6.21) as

Gn := sup
T∈Mn

sup
(u,v):|v−τ |≤2‖δ‖/

√
n

|u−v|≤n−1/2 logn

|S̃(+)
n (u, v;T )| = OP(n−1/4m1/2

n log n) (6.22)

where
Mn :=

{
T = {t ∈ {1, ..., n} : 0 ≤ s ≤ c′tδ}

∣∣ω ∈ Fn, s ∈ [0,
√

2], ‖δ‖ = 1
}

(6.23)

and

S̄(+)
n (u, v;T ) := n−1/2

∑
t∈T

(
I{Ut,n ≤ u} − u− (I{Ut,n ≤ v} − v)

)
=: n−1/2

∑
t∈T

Vt,n(u, v).

In order to prove (6.21) (or (6.22)), define the set

Z :=
{

(u, v) ∈ R2 : |u− v| ≤ n−1/2 log n, |v − τ | ≤ 2An−1/2
√

log n
}

and cover it with N < n2 balls of radius 1/n with centers z1, ..., zN ∈ Z. For any (u, v) ∈ Z
there exists an index j such that ‖(u, v)− (z1j , z2j)‖∞ ≤ 1/n and, letting zj := (z1j , z2j),

ρ(u, v, zj) :=|S̄(+)
n (u, v;T )− S̄(+)

n (z1j , z2j ;T )|

≤ n−1/2
n∑
t=1

(
I{|Ut,n − z1j | ≤ n−1}+ I{|Ut,n − z2j | ≤ n−1}+ |u− z1j |+ |v − z2j |

)
≤ 2n−1/2 + n−1/2

n∑
t=1

(
I{|Ut,n − z1j | ≤ n−1}+ I{|Ut,n − z2j | ≤ n−1}

)
≤ 2n−1/2 + n−1/2

n∑
t=1

(
I{Ut,n ≤ z1j + n−1} − I{Ut,n < z1j − n−1}

+ I{Ut,n ≤ z2j + n−1} − I{Ut,n < z2j − n−1}
)

≤ n1/2
(
F̂n,U (z1j + 2n−1)− (z1j + 2n−1)−

(
F̂n,U (z1j − 2n−1)− (z1j − 2n−1)

)
+ F̂n,U (z2j + 2n−1)− (z2j + 2n−1)−

(
F̂n,U (z2j − 2n−1)− (z2j − 2n−1)

))
+O(n−1/2)

where F̂n,U denotes the empirical distribution function of U1,n, . . . , Un,n. From Lemma 6.9,

sup
z1,...,zN

sup
(u,v)∈[0,1]2

‖zj−(u,v)‖∞<n−1

|ρ(u, v, zj)| ≤ n1/2 sup
zj∈Z

∣∣F̂n,U (z1j + 2n−1)− F̂n,U (z1j − 2n−1)− 4n−1
∣∣

+ n1/2 sup
zj∈Z

∣∣F̂n,U (z2j + 2n−1)− F̂n,U (z2j − 2n−1)− 4n−1
∣∣+O(n−1/2)

= O
(
mnn

−1/2 log n
)
.

With this, we have, for Gn defined in (6.22),

Gn ≤ sup
T∈Mn

sup
z1,...,zN

|S̄(+)
n (z1j , z2j ;T )|+OP

(
mnn

−1/2 log n
)
.

Because |Mn| ≤ (n+ 1)4 by Lemma 6.5 and N < n2 by construction, it follows that
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P
(

sup
T∈Mn

sup
z1,...,zN

|S̄(+)
n (z1j , z2j ;T )| > n−1/4m1/2

n log n
)

≤ (n+ 1)4n2 sup
T∈Mn

sup
z1,...,zN

P
(
|S̄(+)
n (z1j , z2j ;T )| > n−1/4m1/2

n log n
)
.

It therefore suffices to show that for some D > 6 and finite constant C independent of T and zj ,

P
(
|S̄(+)
n (z1j , z2j ;T )| ≥ Cn−1/4m1/2

n log n
)
≤ e−D logn (6.24)

for every T ∈ Mn and zj ∈ Z. To this end, note that n1/2S̄
(+)
n (z1j , z2j ;T ) is a sum of centered

mn-dependent random variables Vt,n(z1j , z2j). Simple computations yield (recall that zj ∈ Z)

sup
ω∈Fn

sup
t
|Vt,n(z1j , z2j)| ≤ 2, (6.25)

sup
ω∈Fn

sup
t

E[|Vt,n(z1j , z2j)|3] ≤ 8|z1j − z2j | = O(n−1/2 log n), (6.26)

sup
ω∈Fn

E
[(∑

t

Vt,n(z1j , z2j)
)2]

= O((#T )mn|z1j − z2j |) = O(mnn
1/2 log n). (6.27)

We now apply Lemma 6.8 with xn = D
√

log n. Because of (6.25) and (6.26), part (ii) of
Lemma 6.8 implies that Conditions 1–3 hold if we choose

ψn :=
(
n−1/3m1/3

n ∨
(

sup
t

E|Vt,n(u, v)|3
)1/3)

(log n)2/3 = O
(
n−1/6 log n

)
.

Condition 4 follows because mn = O(n1/4−a). Therefore (6.24) follows from Lemma 6.8, since

2
√

6ADn−1/2
√

log n(B2
n + ψ2

nn
2/3m4/3

n x2
n)1/2 = O

(
n−1/4m1/2

n log n
)
.

A similar result can be derived for S
(−)
n,ω,δ. This completes the proof. 2

6.2.4 Two auxiliary Lemmas

Lemma 6.4 (i) If κn+ηn+rn(2ηn,mn) = o(n−1/2) and, for any δ > 0 such that [α−δ, β−δ] ⊂
(0, 1), infu∈[α−δ,β+δ] fn,X(F−1

n,X(u)) > 0, then

sup
u∈[α,β]

|Fn,X(F̂−1
n,Y (u))− u| = OP(n−1/2

√
log n).

(ii) If, moreover, κn + ηn + rn(2ηn,mn) + rn(an,mn) = o(an), then

sup
u,v∈[α,β],|u−v|≤an

|Fn,X(F̂−1
n,Y (u))−Fn,X(F̂−1

n,Y (v))−(u−v)| = OP

(
κn+ηn+rn(2ηn,mn)+rn(2an,mn)

)
.

Proof. (i) Elementary analytic considerations show that, for any non-decreasing function g,
supw∈[u,v] |g(w) − w| ≤ an implies supw∈[u+2an,v−2an] |g−1(w) − w| ≤ an. This, for g(w) =

F̂n,Y (F−1
n,X(w)), u = α − δ, v = β + δ, in combination with Lemmas 6.9 and 6.10, yields the

desired result.
(ii) By Lemmas 6.9 and 6.10, for any bounded Y ⊂ R,

sup
y∈Y

sup
|x|≤an

|F̂n,Y (y + x)− F̂n,Y (y)− Fn,X(x+ y) + Fn,X(y)|

= OP(κn + ηn + rn(2ηn,mn) + rn(an,mn)).
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Since, for any A ⊂ [0, 1], supu,v∈A |F−1
n,X(u)−F−1

n,X(v)| ≤ CA|u−v| for some positive constant CA,

sup
u,v∈[α−δ,β+δ],|u−v|≤an

|F̂n,Y (F−1
n,X(u))− F̂n,Y (F−1

n,X(v))− (u− v)|

= OP(κn + ηn + rn(2ηn,mn) + rn(an,mn)).

We now apply Lemma 3.5 from Wendler [2011], with F (w) = F̂n,Y (F−1
n,X(w)), l = an,

c = D(κn + ηn + rn(2ηn,mn) + rn(an,mn)), C1 = F̂n,Y (F−1
n,X(α − δ)), C2 = F̂n,Y (F−1

n,X(β + δ)).
By assumption,

l + 2c = an + 2D(κn + ηn + rn(2ηn,mn) + rn(an,mn)) ≤ 2an

for sufficiently large n. By Lemma 6.9 and 6.10, we have C1 = α+ δ+ oP(1), C2 = β− δ+ oP(1)
and, for any strictly increasing continuous function G, (F ◦ G−1)−1 = G ◦ F−1 (see Exercise 3
in Chapter 1 of Shorack and Wellner [1986]); moreover, by part (i) of the present lemma,
Fn,X(F̂−1

n,Y (u)) is uniformly close to u for large n. Hence,

sup
u,v∈[α,β],|u−v|≤2an

|Fn,X(F̂−1
n,Y (u))−Fn,X(F̂−1

n,Y (v))−(u−v)| > D(κn+ηn+rn(2ηn,mn)+rn(2an,mn))

implies
sup

u,v∈[α−δ,β+δ],|u−v|≤an
|F̂n,Y (F−1

n,X(u))−F̂n,Y (F−1
n,X(v))−(u−v)| > D(κn+ηn+rn(2ηn,mn)+rn(an,mn));

part (ii) of the Lemma follows on letting D tend to infinity. 2

Lemma 6.5 The cardinality of the set Mn defined in (6.23) is at most (n+ 1)4.

Proof. Fix a Fourier frequency ωj,n = 2πj/n ∈ Fn and note that

ct(ωj,n)′δ = δ1 + δ2 cos(ωj,nt) + δ3 sin(ωj,nt) = δ1 +
√
δ2

2 + δ2
3 cos(ωj,nt+ φ(δ2, δ3))

where φ(δ2, δ3) ∈ [0, 2π] denotes a phase shift. Moreover, for any v ∈ [0, 1], noting that x 7→
cos(ωj,nx+ φ) is n/j-periodic,{

t ∈ {1, ..., n}
∣∣0 ≤ v ≤ δ1 +

√
δ2

2 + δ2
3 cos(ωj,nt+ φ)

}
=

{nk
j

+ w
∣∣w ∈ [C1,φ,v,δ − C0,φ,v,δ, C1,φ,v,δ + C0,φ,v,δ], k = 0, ..., n

}
∩ {1, ..., n}

where C0,φ,v,δ and C1,φ,v,δ denote two real-valued constants (depending on φ, v, δ) with C0,φ,v,δ ∈
[0, n/2j] and C1,φ,v,δ ∈ [0, n/j]. Now, we have{nk
j

+ v
∣∣v ∈ [a1, b1], k = 0, 1, ..., n

}
∩ {1, ..., n} =

{nk
j

+ v
∣∣v ∈ [a2, b2], k = 0, 1, ..., n

}
∩ {1, ..., n}

provided that dja1e = dja2e, djb1e = djb2e where dae denotes the smallest integer larger or equal
than a. The argument above holds for any Fourier frequency. In particular, it implies that

Mn ⊂
{
T =

{
t ∈ {1, ..., n} ∩

{kn
j

+ v
∣∣∣v ∈ [

a− b
j

,
a+ b

j
]
}}∣∣∣

b = 0, ..., dn/2e, a, k = 0, ..., n, j = 1, ..., n
}
.

Since the set (of sets) on the right-hand side of the above equality contains less than (n + 1)4

elements, the proof is complete. 2
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6.3 Five basic lemmas

Lemma 6.6 Let (Xj,n)j=1,...,n be a triangular array of uniformly bounded p-variate random
variables, p ∈ N, such that the sequences (Xj,n)j=1,...,n are mn-dependent for every n ∈ N.
Let Σn be the covariance matrix of Sn :=

∑n
t=1Xtn and assume that the limit Σ0 := limn→∞

1
nΣn,

possibly singular, exists. If mn = O(nδ), for some δ ∈ [0, 0.25), then n−1/2(Sn−E(Sn)) is asymp-
totically Np(0,Σ0).

Proof. For the proof of the assertion consider λ′Sn and apply the Cramér-Wold device. The
degenerate case is proved by applying Chebyshev’s inequality to establish λ′Sn = oP(1). For the
nondegenerate case we apply a modification of the Central Limit Theorem 7.3.1 for uniformly
bounded m-dependent random variables in Chung [1968] that holds also if m varies with n, such
that mn = O(nδ), for some δ ∈ [0, 0.25), and n−2(1+2δ)/3 Var(Sn) → ∞. For a proof use the
blocking factor kn := bn2(1−δ)/3c as suggested by Li [2007]. 2

Lemma 6.7 Let X1,n, X2,n, ..., Xn,n be a triangular array of centered, mn-dependent, real-
valued random variables. Define Sn :=

∑n
t=1Xt,n and B2

n := E[S2
n], denote by xn ≥ 1 a sequence

of real numbers and assume that

mn sup
t
|Xt,n| < Bn/xn a.s., sup

t
E|Xt,n|3 <∞ for all n, and (6.28)

nm2
nx

3
n max

t
E|Xt,n|3B−3

n = o(1) as n→∞. (6.29)

Then, denoting by Φ the standard normal distribution function,

1− P(Sn ≤ Bnxn) = (1− Φ(xn))
(
1 +O

(
nm2

nx
3
n max

t
E|Xt,n|3B−3

n

))
.

Proof. The assertion directly follows from Lemma 2 of Heinrich [1985]. Define the new
variables Yk,n := X(k−1)mn,n + ... + Xkmn−1,n for k = 1, ..., bn/mnc, and Ybn/mnc,n as the sum
of the remaining Xj,n’s. Direct calculations show that the conditions stated above imply the
conditions of Lemma 2 of Heinrich [1985]. 2

Lemma 6.7 cannot be applied when condition (6.29) does not hold, i.e. when E|Xj,n|3 is too
large compared to B2

n. A slight modification of the result above allows to handle those situations
by replacing B2

n with a larger quantity.

Lemma 6.8 (i) Let X1,n, X2,n, ..., Xn,n be a triangular array of centered, mn-dependent, real-
valued random variables. Define Sn :=

∑n
j=1Xj,n and B2

n := E[S2
n], denote by xn ≥ 1 and

ψn ≥ 0 sequences of real numbers, and assume that

(1) xnmn

(
supj |Xj,n|+

√
3ψn(n−1/2m2

nx
3
n)1/3

)
< µn :=

(
B2
n + ψ2

n(nm2
nx

3
n)2/3

)1/2
a.s.,

(2) supj E|Xj,n|3 <∞ for every fixed n,

(3) supj E|Xj,n|3/ψ3
n → 0 and n−1/2m2

nψ
3
nx

3
n = O(1),

(4) m2
nx

3
nn
−1/2 = o(1) as n tends to infinity.
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Then,
P(|Sn| ≥ 2

√
6xnµn) ≤ 4 exp(−x2

n)
(
1 +O

(
nm2

nx
3
n sup

j
E|Xj,n|3/µ3

n

))
.

In particular, the O(...) quantity does not depend on any property of the distribution of the
random variables X1,n, X2,n, ..., Xn,n other than nm2

nx
3
n maxj E|Xj,n|3/µ3

n. Moreover, the as-
sumptions of the Lemma imply that O(nm2

nx
3
n maxj E|Xj,n|3/µ3

n) = o(1).

(ii) It is sufficient, for Conditions (1) and (3) to hold for n large enough, with ψn =
(
(n−1/3m

1/3
n )∨

(supj E|Xj,n|3)1/3
)
αn for any αn →∞ such that ψn = o(1), that supn supj |Xj,n| <∞ a.s. and

supj E|Xj,n|3 = o(1) as n→∞.

Proof. Define W1,n,W2,n, ...,Wn,n as a collection of i.i.d. random variables (for every n) that are
independent of X1,n, X2,n, ..., Xn,n and have distribution ψn(n−1/2m2

nx
3
n)1/3U [−

√
3,
√

3] where

the constant
√

3 is chosen in such a way that Var(U [−
√

3,
√

3]) = 1. Define X
(A)
j,n := Xj,n +

Wj,n, j = 1, ..., n and S
(A)
n :=

∑n
t=1X

(A)
t,n . The quantities X

(A)
1,n , X

(A)
2,n , ..., X

(A)
n,n form a triangular

array of mn-dependent random variables with the following properties:
(a) (B

(A)
n )2 := E[(S

(A)
n )2] = B2

n + ψ2
n(nm2

nx
3
n)2/3;

(b) supj |X
(A)
j,n | ≤ supj |Xj,n|+ ψn

√
3(n−1/2m2

nx
3
n)1/3;

(c) supj E|X(A)
j,n |3 ≤ 7

(
supj E|Xj,n|3 + 33/2ψ3

nn
−1/2m2

nx
3
n

)
.

Let us show that the results of Lemma 6.7 apply to X
(A)
1,n , X

(A)
2,n , ..., X

(A)
n,n . From (a), (b) and (1)

which we obtain the first condition of (6.28) of Lemma 6.7. Condition (2) together with (c)
yields the second condition of (6.28) of Lemma 6.7. Finally, note that

nm2
nx

3
n supj E|X(A)

j,n |3

(B
(A)
n )3

≤
7nm2

nx
3
n

(
maxj E|Xj,n|3 + 33/2ψ3

nn
−1/2m2

nx
3
n

)
µ3
n

= o(1)

where the first inequality follows from (c) and the last identity from Conditions 3 and 4. Thus
Lemma 6.7 yields

P
(
S(A)
n ≥ B(A)

n xn
)

= (1− Φ(xn))
(
1 +O

(
nm2

nx
3
n max

j
E|Xj,n|3(B(A)

n )−3
))
.

Next, observe that Sn = S
(A)
n −

∑n
k=1Wk,n. Thus

P
(
Sn ≥ B(A)

n xn
)
≤ P

({
S(A)
n ≥ B(A)

n xn/2
}
∪
{
−

n∑
k=1

Wk,n ≥ B(A)
n xn/2

})
≤ P

(
S(A)
n ≥ B(A)

n xn/2
)

+ P
(
−

n∑
k=1

Wk,n ≥ B(A)
n xn/2

)
.

For the second probability, Hoeffding’s inequality [see e.g. Pollard (1984), Appendix B] yields

P
(
−

n∑
k=1

Wk,n ≥ An
)
≤ exp

(
− A2

n

6nψ2
n(n−1/2m2

nx
3
n)2/3

)
= exp(−6−1A2

nψ
−2
n n−2/3m−4/3

n x−2
n ).

Setting An =
√

6x2
nψnn

1/3m
2/3
n , the right-hand side becomes exp(−x2

n). Finally, repeat all the
arguments so far with Xj,n and Wj,n replaced by −Xj,n and −Wj,n, respectively. Straightforward
calculations yield

P
(
|Sn| ≥ 2

√
6B(A)

n xn
)
≤ 4 exp(−x2

n)
(
1 +O

(
nm2

nx
3
n max

j
E|Xj,n|3(B(A)

n )−3
))
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and thus the proof of the first part of Lemma 6.8 is complete.
For a proof of the second part, in order to see that Condition 1 holds, it suffices to ver-

ify that mnxn < ψnn
1/3m

2/3
n xn since by assumption ψn(n−1/2m2

nx
3
n)1/3 = o(1). Now mnxn <

ψnn
1/3m

2/3
n xn holds iff ψn > n−1/3m

1/3
n does. Condition 3 holds by construction. 2

In the next two Lemmas, we denote by F̂n,Y and F̂n,X the empirical distribution functions
of the random variables Y1, . . . , Yn and X1,n, . . . , Xn,n, respectively.

Lemma 6.9 Let Assumptions (A1) and (A2) hold.

(i) For any bounded set Y ⊂ R, there exist finite constants C1, C2 such that, for any sequence
an = o((log n)−1) and sufficiently large n,

P
(

sup
y∈Y

sup
|x|≤an

|F̂n,X(y+x)−F̂n,X(y)−Fn,X(x+y)+Fn,X(y)| ≥ D2rn(an,mn)
)
≤ C1n

2e−D
2 logn

where the function rn is defined in (6.8). It follows that

sup
y∈Y

sup
|x|≤an

|F̂n,X(y + x)− F̂n,X(y)− Fn,X(x+ y) + Fn,X(y)| = OP(rn(an,mn)).

(ii) For any bounded Y ⊂ R, supx∈Y |F̂n,X(x)− Fn,X(x)| = OP(n−1/2
√

log n).

Proof. Observe that

F̂n,X(y + x)− F̂n,X(y)− Fn,X(x+ y) + Fn,X(y) =
1

n

n∑
t=1

Wn,t(x, y)

with centered, mn-dependent random variables Wn,t(x, y) that satisfy (with probability one)
supn,t,x,y |Wn,t(x, y)| ≤ 2, supn,t,y E|Wn,t(x, y)|3 ≤ C|x|, and

sup
y

E
[( n∑

t=1

Wn,t(x, y)
)2] ≤ nmnC|x|

for some finite constant C independent of mn. Set ψn := ((n−1mn) ∨ an)1/3 log n and xn =
D
√

log n. Part Lemma 6.8 implies that, for sufficiently large n,

sup
y∈R

sup
|v|≤an

P
(∣∣∣ n∑

t=1

Wn,t(v, y)
∣∣∣ ≥ nD2rn(an,mn)

)
≤ 6 exp(−D2 log n). (6.30)

Next, cover the bounded set Z := {(x, y) ∈ R2|y ∈ Y, |x| ≤ an} with N = O(n2) spheres of
radius 1

2n
−1 with centers (z1j , z2j) ∈ Z, j = 1, ..., N . A Taylor expansion yields

sup
‖(x,y)−(z1j ,z2j)‖∞≤1/2n

|Wn,t(x, y)−Wn,t(z1j , z2j)|

≤ I{|Xt,n − z2j | ≤ n−1}+ I{|Xt,n − (z1j + z2j)| ≤ n−1}+ C3n
−1 =: Vt,j .

The random variables Vt,j are mn-dependent, uniformly bounded, and have an expectation of
order O(n−1). Define Ṽt,j := Vt,j − E[Vt,j ]. It is easy to see that E|Ṽt,j |p ≤ C̃pn

−1 for finite

constants C̃p, p = 2, 3, and B2
n := E

[(∑n
t=1 Ṽt,j

)2]
= O(mn). Setting ψn = n−1/3m

1/3
n log n
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and xn = D
√

log n, we thus see that (B2
n + ψ2

n(nm2
nx

3
n)2/3)1/2 ≤ C4mn(log n)3/2 for sufficiently

large n. Lemma 6.8 thus yields, for sufficiently large n,

sup
j=1,...,N

P
(

sup
‖(x,y)−(z1j ,z2j)‖∞≤n−1

∣∣∣ n∑
t=1

Wn,t(x, y)−Wn,t(z1j , z2j)
∣∣∣ ≥ D2C5(log n)2mn

)
≤ 6 exp(−D2 log n).

Now (6.30) yields P
(

supj=1,...,N

∣∣∣∑n
t=1Wn,t(z1j , z2j)

∣∣∣ ≥ nD2rn(an,mn)
)
≤ 6N exp(−D2 log n).

In particular, choosing D large enough, the right-hand side of the expression above is o(1).
Combining these results with the fact that, by after enlarging C2 if necessary, nD2rn(an,mn) ≥
D2(log n)2mn for sufficiently large n, we obtain the first part of the Lemma. The second part
follows along the same lines. 2

Lemma 6.10 Let Assumptions (A1) and (A2) hold. Then, for any bounded Y ⊂ R,

sup
s∈Y
|F̂n,Y (s)− F̂n,X(s)| = OP(κn + ηn + rn(2ηn,mn))

with rn(ηn,mn) defined in (6.8).

Proof. Observe that |I{Yt ≤ s} − I{Xt,n ≤ s}| ≤ I{|Dt,n| ≥ ηn}+ I{|Yt − s| ≤ ηn}. Thus,

sup
s∈Y
|F̂n,Y (s)− F̂n,X(s)| ≤ 1

n

n∑
t=1

I{|Dt,n| ≥ ηn}+ sup
s∈Y

∣∣∣F̂n,X(s+ 2ηn)− F̂n,X(s− 2ηn)
∣∣∣. (6.31)

The first term on the right-hand side of (6.31) is a.s. non negative; its expected value is bounded
by κn, and thus the term is of order OP(κn). As for the second term, we have (recall that, by
assumption, Fn,X has uniformly bounded derivative)

sup
s∈Y

∣∣F̂n,X(s+ 2ηn)− F̂n,X(s− 2ηn)
∣∣

≤ sup
s∈Y

∣∣F̂n,X(s+ 2ηn)− F̂n,X(s− 2ηn)− (Fn,X(s+ 2ηn)− Fn,X(s− 2ηn))
∣∣+O(ηn)

= OP(rn(2ηn,mn)) +O(ηn),

where the last identity follows from Lemma 6.9. This completes the proof. 2

7 Appendix B: Technical details for the proof of Theorem 4.1

7.1 Proof of (4.4)

As a first step, let us show that the vectors n1/2bXn,τ,ωj,n appearing in the linearity result in
(3.12) can be approximated by a similar vector with Xt,n replaced by Yt and qn,τ replaced by qτ .
More precisely we show that

n1/2 sup
ωj,n∈Ωn

‖bXn,τ,ωj,n − bn,τ,ωj,n‖ = OP(
√

log n|f(qτ )− fn,X(qn,τ )|+
√
n(κn + ηn)). (7.1)
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To see this, note that

n1/2(bXn,τ,ωj,n − bn,τ,ωj,n) = 2
fY (qτ )− fn,X(qn,τ )

fY (qτ )
n1/2bXn,τ,ωj,n

− 1

fY (qτ )
2n−1/2

n∑
t=1

(
cos(ωj,nt)
sin(ωj,nt)

)
(I{Yt ≤ qτ} − I{Xt,n ≤ qn,τ}) (7.2)

Since n1/2bXn,τ,ωj,n , by Lemma 6.2, is OP(
√

log n), uniformly in ωj,n, the norm of the first term

in (7.2) is OP(
√

log n|fY (qτ )−fn,X(qn,τ )|). For the norm of the second term, the argument used
in the proof of (3.14) together with (6.9) yields an order OP(

√
n(κn + ηn)); (7.1) follows.

Next, note that by (3.12) we have

n1/2 sup
ωj,n∈Ωn

‖b̂n,τ,ωj,n − bXn,τ,ωj,n‖ = oP

(
(n−1/8 ∨ n−1/6m1/3

n )(log n)3/2
)
.

Putting

4n−1∆̃n := (b̂n,τ,ωj,n − bn,τ,ωj,n)′
(

1 −i
i 1

)
bn,τ,ωj,n + (bn,τ,ωj,n)′

(
1 −i
i 1

)
(b̂n,τ,ωj,n − bn,τ,ωj,n)

+(b̂n,τ,ωj,n − bn,τ,ωj,n)′
(

1 −i
i 1

)
(b̂n,τ,ωj,n − bn,τ,ωj,n),

we obtain, from the definition of the Laplace periodogram,

Ln,τ1,τ2(ωj,n) :=
n

4
(b̂n,τ,ωj,n)′

(
1 −i
i 1

)
b̂n,τ,ωj,n =

n

4
(bn,τ,ωj,n)′

(
1 −i
i 1

)
bn,τ,ωj,n + ∆̃n

=
1

fY (qτ1)fY (qτ2)

(
n−1dn(τ1, ωj,n)dn(τ2,−ωj,n)

)
+ ∆̃n.

Note that, for τ ∈ {τ1, τ2},

n1/2 sup
ωj,n∈Fn

‖b̂n,τ,ωj,n − bn,τ,ωj,n‖

≤n1/2 sup
ωj,n∈Fn

‖b̂n,τ,ωj,n − bXn,τ,ωj,n‖+ n1/2 sup
ωj,n∈Fn

‖bXn,τ,ωj,n − bn,τ,ωj,n‖

=oP

(
(n−1/8 ∨ n−1/6m1/3

n )(log n)3/2
)

+OP(
√

log n|f(qτ )− fn,X(qn,τ )|+
√
n(κn + ηn)).

Lemma 6.2 and (7.1) imply n1/2 supωj,n∈Fn ‖bn,τ,ωj,n‖ = n1/2 supωj,n∈Fn ‖b
X
n,τ,ωj,n‖ + oP(1) =

OP(
√

log n), so that ‖∆̃n‖ = OP(n‖b̂n,τ,ωj,n − bn,τ,ωj,n‖ · ‖bn,τ,ωj,n‖) = OP(Rn). 2

7.2 Proof of (4.5)

Note that Ln,τ1,τ2(ωj,n) is the cross-periodogram of the bivariate time series(
τ1 − I{Yt ≤ qτ1}, τ2 − I{Yt ≤ qτ2}

)
. (7.3)

Let ωj,n, ωkn ∈ (0, π) be two Fourier frequencies. From Corollary 7.2.2 in Brillinger [1975], we
know that

Var(Ln,τ1,τ2(ωj,n)) = f1,1(ωj,n)f2,2(ωj,n) +
2π

n
f1,2,1,2(ωj,n,−ωj,n,−ωk,n) +O(1/n) (7.4)
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and, for ωj,n 6= ωkn,

Cov (Ln,τ1,τ2(ωj,n), Ln,τ1,τ2(ωk,n)) =
2π

n
f1,2,1,2(ωj,n,−ωj,n,−ωk,n) +O(1/n2), (7.5)

where f1,1, f2,2 and f1,2,1,2 are the spectra and cumulant spectra of the bivariate time series (7.3),
which exist by Assumption (A6). Note that the orders O(1/n) and O(1/n2) of the remainders
in (7.4) and (7.5) hold uniformly with respect to the frequencies. The aforementioned spectra
coincide with the Laplace spectra fτ1,τ1 , and fτ2,τ2 and the cumulant spectra are also bounded
(see Brillinger [1975], p. 26). Therefore,

Cov (Ln,τ1,τ2(ωj,n), Ln,τ1,τ2(ωk,n)) =

{
fτ1,τ1(ωj,n)fτ2,τ2(ωj,n) + R̄n ωj,n = ωk,n

R̄n ωj,n 6= ωk,n,

where R̄n = O(1/n) does not depend on the frequencies. The assertion follows by the fact that
the variance and the bias of the random variable Kn in (4.5) both are of the order O(1/n). For
the variance, note that

Var(Kn) =
1

f2
Y (qτ1)f2

Y (qτ2)

[ ∑
|k|≤Nn

W 2
n(k) Var (Ln,τ1,τ2(ωj+k,n))

+
∑
|k1|≤Nn

Wn(k1)
∑
|k2|≤Nn
k2 6=k1

Wn(k2) Cov (Ln,τ1,τ2(ωj+k1,n), Ln,τ1,τ2(ωj+k2,n))
]

= O(1/n),

due to the second part of Assumption (A5) and (7.5). As for the bias, E[Kn] = O(1/n) due to
the fact that ELn,τ1,τ2(ωj+k,n) =

∑∞
k=−∞ γk(qτ1 , qτ2)e−iωj+k,nk +O(1/n) uniformly with respect

to the frequencies (see Theorem 4.3.2 in Brillinger [1975]). 2
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