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Abstract

The problem of constructing optimal designs for a class of regression models is consid-

ered. We investigate a version of the Tp-optimality criterion as introduced by Atkinson and

Fedorov (1975b) and demonstrate that optimal designs with respect to this type of criteria

can be obtained by solving (nonlinear) vector-valued approximation problems. We provide

a characterization of the best approximations in this context and use these results to de-

velop an efficient algorithm for the determination of the optimal discriminating designs.

The results are illustrated by fnumerical examples.
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1 Introduction

An important problem in optimal design theory is the construction of efficient designs for model

identification in a nonlinear relation of the form

Y = η(x, θ) + ε.(1.1)

Often there exist several plausible models which may be appropriate for a fit to the data. A typical

example are dose-finding studies, where various models have been developed for describing the
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dose-response relation [see Dette et al. (2008)]. In these and similar cases the first step of the data

analysis consists in the identification of an appropriate model from a class of competing regression

models. The optimal design problem for a situation of this type has a long history. Early work

on discriminating designs is found in Stigler (1971) and Studden (1982), who determined designs

for discriminating between two nested univariate polynomials by minimizing the volume of the

confidence ellipsoid for the parameters corresponding to the extension of the smaller model.

Several authors have continued to work on this approach in various other models [Spruill (1990),

Dette (1994), Dette and Haller (1998), Song and Wong (1999), Zen and Tsai (2002) or Zen and

Tsai (2004) among others].

In a pioneering paper Atkinson and Fedorov (1975a) proposed an alternative criterion, called T -

optimality criterion, which provides a design such that the sum of squares for a lack of fit test is

large. This optimality criterion has found considerable attention in the statistical literature [see

e.g. Fedorov (1981), Denisov et al. (1981), Fedorov and Khabarov (1986) for early and Ucinski

and Bogacka (2005), López-Fidalgo et al. (2007), Atkinson (2008b), Atkinson (2008a), Tommasi

(2009) or Wiens (2009) for some more recent references]. Atkinson and Fedorov (1975b) extended

their approach later to designs for discriminating between a class of given regression models, say

M = {η1, η2, . . . , ηk}, k ≥ 2. In general, the problem of finding T -optimal designs, either

analytically or numerically, is a very hard and challenging one. Recently Dette and Titoff (2009)

considered the case k = 2. They explored the relation between the two concepts of discriminating

designs by relating the T -optimal design problem to a problem in approximation theory, which

indicate the difficulties.

In the present paper we construct optimal discriminating designs for k ≥ 3 competing regression

models where none of the models is selected in advance to be tested against all other models.

We consider a weighted T -optimality criterion which is a slight modification of the criterion in-

troduced by Atkinson and Fedorov (1975b). It is demonstrated that these design problems are

closely related to vector-valued approximation problems. In particular, we show that the support

points of optimal discriminating designs are contained in the set of extreme points of a best

approximation, and the optimal design can be determined with the knowledge of these points.

Vector-valued approximation theory has not been studied intensively in the literature, and we

are only aware of the investigations of Brosowski (1968) who considered some special nonlinear

families. Therefore we study this approximation problem in Section 4 and provide a characteriza-

tion of the best vector-valued approximation that generalizes the classical Kolmogorov criterion

[Kolmogorov (1948) or Meinardus (1967)]. In Sections 5 and 6 we use these results to develop

an efficient algorithm for the calculation of best approximations which provide the T -optimal

discriminating designs. Finally, in Section 7 we illustrate our approach by several numerical ex-

amples. The algorithm solves the corresponding approximation problem in less than 20 iterations

and determines simultaneously the optimal design. Details of the main step of the algorithm are

given in Section 8.
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2 Preliminaries

Following Kiefer (1974) we consider approximate designs that are defined as probability measures

with finite support on a compact design space X . The support points of an (approximate) design

ξ give the locations where observations are to be taken, while the weights give the correspond-

ing relative proportions of observations at these points. Let the design ξ have positive masses

w1, . . . , wν at the distinct points x1, . . . , xν , respectively, and assume that N observations can

be made by the experimenter. In this case the quantities wiN are rounded to integers, say Ni,

satisfying
∑ν

i=1Ni = N . The experimenter takes Ni observations at the location xi (i = 1, . . . , ν).

Let M = {η1, . . . , ηk} denote a class of possible models for the regression function η in (1.1),

where θ(j) denotes the vector of parameters in model ηj, which varies in the set Θ(j) (j = 1, . . . , k).

Atkinson and Fedorov (1975b) proposed to fix one model inM, say η1 with vector of parameters

ρ(1), and to determine a discriminating design by maximizing

(2.1)
k

min
j=2

∆1,j(ξ) where ∆1,j(ξ) = inf
θ(j)∈Θ(j)

∫
X
[η1(x, ρ(1))− ηj(x, θ(j))]2dξ(x).

If the competing regression models η1, . . . , ηk are not nested, it is not clear which model is

to be fixed in this approach, and it is useful to have more “symmetry” in the concept. For

illustration consider the case of two competing models, say ηi(x, θ(1)), ηj(x, θ(2)), and assume that

the experimenter can fix a parameter for each model, say ρ(1) and ρ(2). In this case for a given

design ξ there exist two T -optimality criteria, say ∆1,2 and ∆2,1, corresponding to the specification

of the model η1 or η2, respectively, where

∆i,j(ξ) = inf
θ(i,j)∈Θ(j)

∆i,j(θ(i,j), ξ) = inf
θ(i,j)∈Θ(j)

∫
X
[ηi(x, ρ(i))− ηj(x, θ(i,j))]2dξ(x)(2.2)

(i ̸= j). The first index i in the term ∆i,j corresponds to the fixed model ηi(x, ρ(i)), while the

minimum in (2.2) is taken with respect to the parameter of the model specified by the index j.

The parameter corresponding to the minimum is denoted as

(2.3) θ∗(i,j)(ξ) = argmin
θ(i,j)∈Θ(j)

∆i,j(θ(i,j), ξ).

We assume its existence, and the dependence of this parameter on the value ρ(i) is not reflected in

our notation. If a discriminating design has to be constructed for k competing models, there exist

k(k−1) expressions of the form (2.2). Let pi,j be given nonnegative weights satisfying
∑

i ̸=j pi,j =

1. Following Atkinson and Fedorov (1975b) a design ξ∗ is called Tp-optimal discriminating for

the class of modelsM = {η1, . . . , ηk} if it maximizes the functional

∆(ξ) =
∑

1≤i ̸=j≤k

pi,j∆i,j(ξ).(2.4)
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Throughout this paper, we will denote the parameter θ∗(i,j)(ξ
∗) defined in (2.3) by θ∗(i,j) whenever

there is no danger of confusion. For the choice

(2.5) pi,j > 0 (j = 2, . . . , k), pi,j = 0 (i = 2, . . . , k, j = 2, . . . , k; i ̸= j),

the criterion (2.4) reduces to a similar optimality criterion as considered by Atkinson and Fedorov

(1975b) in the special case (2.1). The criterion (2.4) provides a symmetric formulation of the

general discriminating design problem. It has also been investigated by Tommasi and López-

Fidalgo (2010) among others for k = 2 competing regression models.

Remark 2.1 In the case k = 2 Tommasi and López-Fidalgo (2010) proposed to maximize a

weighted mean of efficiencies that yields in the situation considered here the criterion

(2.6)
∑

1≤i ̸=j≤k

p̃i,j
∆i,j(ξ)

∆i,j(ξ∗i,j)
,

where ξ∗i,j denotes the design maximizing the criterion ∆i,j defined in (2.2). Both criteria are

equivalent if the weights are chosen as

pi,j =
p̃i,j

∆i,j(ξ∗i,j)
p̄−1

and p̃ =
∑

1≤i̸=j≤k p̃i,j. For sake of a simple notation we consider the criterion (2.4) throughout

this paper, but in applications standardization should be taken into account [see Dette (1997)].

We will relate the optimal discriminating design problem to a nonlinear vector-valued approxi-

mation problem. To be precise, let the weights pi,j for the criterion (2.4) be given, denote the set

of indices corresponding to the positive weights

I :=
{
(i, j) | pi,j > 0; 1 ≤ i ̸= j ≤ k

}
.

We assume without loss of generality that I can be decomposed in p ≤ k subsets I1, . . . , Ip of

the form Ii := {(i, j) ∈ I | 1 ≤ j ≤ k}. This means that for each model ηi, (i = 1, 2, . . . , p), a

parameter is fixed and it is to be discriminated from the other ones in the set Ii. Define

λi = #Ii, d =

p∑
i=1

λi(2.7)

as the cardinality of Ii and I, respectively, and consider the space of vector-valued functions

defined on X , i.e., Fd = {g : X → Rd}. Given a function

g = (gij)(ij)∈I ∈ Fd ,
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we define a maximum norm by

∥g∥ = sup
x∈X
|g(x)|(2.8)

where |g(x)|2 =
∑p

i=1

∑
j∈Ii pi,j g

2
ij(x) denotes a weighted Euclidean norm on Rd. In this frame-

work, given two functions f, g ∈ Fd, their distance is ∥f − g∥. Next, define the d-dimensional

vector-valued function

f(x) =
(
η1(x, ρ(1)), . . . , η1(x, ρ(1))︸ ︷︷ ︸

λ1

, . . . , ηp(x, ρ(p)), . . . , ηp(x, ρ(p))︸ ︷︷ ︸
λp

)T

,(2.9)

where each function ηj(x, ρ(j)) appears λj times in the vector η(x), and consider the vector-valued

approximating functions

η(x, θ) =
(
(ηj(x, θ(1,j)))j∈I1︸ ︷︷ ︸

λ1

, . . . , (ηj(x, θ(p,j)))j∈Ip︸ ︷︷ ︸
λp

)
∈ Fd .(2.10)

The corresponding parameters are collected in the vector

θ =
(
(θ(1,j))j∈I1 , . . . , (θ(p,j))j∈Ip

)
∈ Θ = ⊗p

i=1 ⊗j∈Ii Θ
(j).(2.11)

Hence,

dimΘ = n :=

p∑
i=1

∑
j∈Ii

dimΘ(j).

The following examples illustrate this general notation.

Example 2.2 Consider the case k = 3 and assume that all weights in the criterion (2.4) are

positive. Here no model is preferred as basis model. In this case we address for 6 possible

pairwise comparisons, and we have p = k = 3,

I = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)},
I1 = {(1, 2), (1, 3)}, I2 = {(2, 1), (2, 3)}, I3 = {(3, 1), (3, 3)},

which gives λ1 = λ2 = λ3 = 2, d = 6. We obtain for the vectors in (2.9) and (2.10)

η(x) =
(
η1(x, ρ(1)), η1(x, ρ(1)), η2(x, ρ(2)), η2(x, ρ(2)), η3(x, ρ(3)), η3(x, ρ(3))

)T
,

η(x, θ) =
(
η2(x, θ(1,2)), η3(x, θ(1,3)), η1(x, θ(2,1)), η3(x, θ(2,3)), η1(x, θ(3,1)), η2(x, θ(3,2))

)T
,

with

θ =
(
θT(1,2), θ

T
(1,3), θ

T
(2,1), θ

T
(2,3), θ

T
(3,1), θ

T
(3,2)

)T

∈ Θ(2) ×Θ(3) ×Θ(1) ×Θ(3) ×Θ(1) ×Θ(2).
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Example 2.3 Consider the discrimination between k = 3 nested polynomial models, e.g.,

η1(x, θ(1)) = θ10 + θ11x,

η2(x, θ(2)) = θ20 + θ21x+ θ22x
2,(2.12)

η3(x, θ(3)) = θ30 + θ31x+ θ32x
2 + θ33x

3.

It is appropriate to choose only the weights p2,1 and p3,2 in the criterion (2.4) as positive numbers

in order to obtain a design for identifying the degree of the polynomial, which yields

I = {(2, 1), (3, 2)}, I1 = {(2, 1)}, I2 = {(3, 2)}.

Thus we have p = 2, λ1 = 1, λ2 = 1, d = 2. The functions f and η(·, θ) are given by

f(x) =
(
η2(x, ρ(2)), η3(x, ρ(3))

)T

,

η(x, θ) =
(
η1(x, θ(2,1)), η2(x, θ(3,2))

)T

= (θ10 + θ11x, θ20 + θ21x+ θ22x
2)T ,

respectively, where θ = (θ(2,1), θ(3,2)) ∈ R5.

3 Characterization of optimal designs

The Tp-optimality of a given design ξ can be checked by an equivalence theorem that can be

proved by the same arguments as used by Atkinson and Fedorov (1975b) in the situation (2.1).

As usual, the following properties are silently assumed to hold (note that the assumptions are

always satisfied by linear models).

A1. The regression functions ηi(x, θ(i)) are differentiable with respect to θ(i) (i = 1, . . . , k)

A2. Let ξ∗ be a Tp-optimal discriminating design. The parameter

θ∗ = (θ∗(i,j))(i,j)∈I

defined by (2.3) exists, is unique and an interior point of Θ.

Theorem 3.1 (Equivalence theorem) A design ξ is a Tp-optimal discriminating design for the

class of modelsM if and only if for all x ∈ X

ψ(x, ξ) =
∑

(i,j)∈I

pi,j[ηi(x, ρi)− ηj(x, θ∗(i,j))]2 ≤ ∆(ξ),(3.1)

where θ∗(i,j) = θ∗(i,j)(ξ) is defined by (2.3) for (i, j) ∈ I. Moreover, if ξ is a Tp-optimal discrimi-

nating design, then equality holds in (3.1) for all support points of ξ.
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The following result shows that the Tp-optimal design problem is intimately related to a nonlinear

vector-valued approximation problem with respect to the norm (2.8).

Theorem 3.2 For the criterion (2.4), we have

sup
ξ

∆(ξ) = inf
θ∈Θ
∥η − η(·, θ)∥2.(3.2)

Moreover, if ξ∗ maximizes the criterion (2.4), then we have for the vector θ∗ = (θ∗(i,j))(i,j)∈I defined

in (2.3)

∥η(x)− η(x, θ∗)∥ = inf
θ∈Θ
∥η(x)− η(x, θ)∥ = ∆(ξ∗).(3.3)

Remark 3.3 Condition (3.3) means that the parameter θ∗ defined in (2.3) corresponds to the

best approximation of the function η in (2.9) by functions of the form (2.10) with respect to the

norm (2.8). Moreover, the support of the Tp-optimal discriminating design ξ∗ for the class M
satisfies

supp(ξ∗) ⊂
{
x ∈ X

∣∣∣ |η(x)− η(x, θ∗)| = ∥η − η(·, θ∗)∥} =: A.(3.4)

Proof of Theorem 3.2 and Remark 3.3. Let θ̃ ∈ Θ. We obtain from (2.2), (2.4), and
∫
X dξ = 1:

∆(ξ) =
∑

(i,j)∈I

pi,j inf
θ(i,j)∈Θ(j)

∫
X
[ηi(x, ρ(i))− ηj(x, θ(i,j))]2dξ(x)

≤
∑

(i,j)∈I

pi,j

∫
X
[ηi(x, ρ(i))− ηj(x, θ̃(i,j))]2dξ(x)

=

∫
X

∣∣η(x)− η(x, θ̃)∣∣2dξ(x) ≤ ∥η − η(·, θ̃)∥2.
Since θ̃ is an arbitrary parameter in Θ, if follows that ∆(ξ) ≤ infθ∈Θ ∥η − η(·, θ)∥2, and

(3.5) sup
ξ

∆(ξ) ≤ inf
θ∈Θ
∥η − η(·, θ)∥2.

Now the characterization of Tp-optimality in Theorem 3.1 and the definition of θ∗ = (θ∗(i,j))(i,j)∈I
in Theorem 3.1 yields for the Tp-optimal discriminating design

∆(ξ∗) = sup
ξ

∆(ξ) ≤ inf
θ∈Θ
∥η − η(·, θ)∥2 ≤ ∥η − η(·, θ∗)∥2

= sup
x∈X

∑
(i,j)∈I

pi,j[ηi(x, ρ(i))− ηj(x, θ∗(i,j))]2

≤ ∆(ξ∗)

which proves Theorem 3.2. The statement on the support points of ξ∗ in Remark 3.3 follows

directly from these considerations.
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Example 3.4 Consider the situation in Example 2.2, where we investigated discriminating de-

sign problems for 3 rival models η1, η2, η3 and all weights in the optimality criterion are positive.

By Theorem 3.2 the support of the Tp-optimal design problem can be found by solving the

nonlinear vector-valued approximation problem

inf
θ∈Θ
∥η − η(·, θ)∥2 = inf

{
sup
x∈X

∑
1≤i̸=j≤3

pi,j|ηi(x, ρ(i))− ηj(x, θ(i,j))|2
∣∣∣ θ(i,j) ∈ Θ(j); 1 ≤ i ̸= j ≤ 3

}
.

Example 3.5 Consider the situation in Example 2.3 where we are interested in the problem of

discriminating between linear and quadratic and between a quadratic and cubic model. In this

case we have p2,1 > 0 and p3,2 > 0, and the corresponding approximation problem is given by

inf
{
sup
x∈X

(
p2,1|ρ20 + ρ21x+ ρ22x

2 − θ10 − θ11x|2(3.6)

+ p3,2|ρ30 + ρ31x+ ρ32x
2 + ρ33x

3 − θ20 − θ21x− θ22x2|2
)∣∣∣θ10, θ11, θ20, θ21, θ22 ∈ R

}
,

where ρ(2) = (ρ20, ρ21, ρ22) and ρ(3) = (ρ30, ρ31, ρ32, ρ33) denote the fixed parameters for the models

η2 and η3, respectively.

Now we turn to the situation that the nonlinear approximation problem has been solved and that

we know the parameter θ̄ =
(
(θ̄(i,j))j∈I1 , . . . , (θ̄(p,j))j∈Ip

)
corresponding to the best approximation,

i.e.,

(3.7) ∥η − η(·, θ̄)∥2 = min
θ∈Θ
∥η − η(·, θ)∥2.

By Theorem 3.2 and Remark 3.3 the support of the Tp-optimal discriminating design is contained

in the set A defined in (3.4). The associated design (more precisely the weights at the support

points) has still to be determined.

Corollary 3.6 Assume that a parameter θ̄ defined in (3.7) exists and is an interior point of Θ.

Moreover assume that the n derivatives

∇θ(i,j)ηj(x, θ(i,j)), (i, j) ∈ I,

span an n-dimensional subspace of Fd.

(a) If a design ξ is a Tp-optimal discriminating design for the classM, then

(3.8)

∫
A

(
ηi(x, ρ(i))− ηj(x, θ̄(i,j))

)
∇θ(i,j)ηj(x, θ(i,j))

∣∣∣
θ(i,j)=θ̄(i,j)

dξ(x) = 0

holds for all (i, j) ∈ I, where ∇θ(i,j) denotes the gradient with respect θ(i,j).
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(b) Conversely, if ξ satisfies (3.8), supp(ξ) ⊂ A, and the function

(3.9) θ −→
∫
A

∑
i,j∈I

pi,j[ηi(x, ρ(i))− ηj(x, θ(i,j))]2dξ(x)

has a unique minimum, then ξ is a Tp-optimal discriminating design for the classM.

Futhermore, the uniqueness assumptions can be dropped if all the competing models are linear.

Sketch of a proof. If condition (3.8) is not satisfied, there is a direction such that the expression

on the right-hand side of (3.9) decreases. Thus (3.8) is a necessary condition. From Theorem

3.2 we know that the best approximation gives rise to a Tp-optimal design, and it follows from a

uniqueness argument that the condition is here also sufficient.

Remark 3.7 If there are at least n + 1 extreme points in the set A, an optimal design can be

calculated by the n equations (3.8) together with the normalization
∫
A dξ(x) = 1. This theoretical

argument, however, is not applicable for the numerical solution of optimal designs for real-life

problems. In most cases the number of extreme points is smaller than n + 1, which complicates

the determination of the set A and the corresponding design substantially.

The numerical examples in Section 7 and the consideration of Example 4.5 will show that practical

problems lead to Tp-optimal designs with less than n+ 1 points in most cases. This is true even

if the competing models are linear. We need more information on the approximation problem

in order to deal with the mentioned degeneracy when Tp-optimal designs are determined by

numerical methods.

4 Chebyshev Approximation of d-Variate Functions

By Theorem 3.2 a Tp-optimal discriminating design can be determined by solving an approxima-

tion problem in the space of d-variate functions on the compact design space X . In this section

we will investigate these problems in more detail for the case of linear models in order to be

prepared for the computation and evaluation of the efficiency of (nearly) best approximations.

We will see that there always exists a Tp-optimal discriminating design with at most n + 1 sup-

port points and demonstrate that the number of support points is often less than n + 1. This

degeneracy confirms the nonlinearity of the approximation problem. Numerical algorithms for

the computation of best approximations cannot proceed like the Remez algorithm, which is the

common tool to solve the approximation problem in the case d = 1 [see Cheney (1966)].

We will avoid double indices throughout this section because the main purpose here is to gain

more insight in the approximation problem corresponding to the optimal design problem. To be
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precise, assume that the function f = (f1, . . . , fd) defined by (2.9) is an element of the set

Fd = C(X )d

of d-variate continuous functions on a compact set X .

In the case of linear models, equation (2.10) defines an n-dimensional linear subspace

(4.1) V =
{
v =

n∑
m=1

θmvm

∣∣∣ θ = (θ1, θ2, . . . , θn) ∈ Rn
}
⊂ Fd ,

where v1, v2, . . . , vn ∈ Fd denotes a basis of V . Theorem 3.2 relates the Tp-optimal discriminating

design problem to the problem of determining the best Chebyshev approximation u∗ of the

function f by elements of the subspace V , i.e.,

(4.2) ∥f − u∗∥ = min
v∈V
∥f − v∥.

As stated in (2.8), the norm ∥ · ∥ refers to the maximum-norm on X , ∥g∥ := supx∈X |g(x)|, where
the weighted Euclidean norm | · | and the corresponding inner product in Rd

(4.3) |r|2 :=
d∑

l=1

pl |rl|2, ⟨r̃, r⟩ :=
d∑

l=1

pl r̃lrl, r, r̃ ∈ Rd.

are now written with single indices. Specifically, the function values f(x) and v(x) for v ∈ V

are d-dimensional vectors. The family V defined in (4.1) is a linear space, and the classical

Kolmogorov criterion [see Meinardus (1967)] can be generalized for d-variate functions. This

generalization will be denoted as Kolmogorov criterion again. Note that the nonlinear character

of the procedures for determining best approximations does not matter here.

Lemma 4.1 (Kolmogorov criterion for vector-valued approximation problems)

Let u ∈ V and

(4.4) A := {x ∈ X | |ε(x)| = ∥ε∥}.

be the set of extreme points of the error function

(4.5) ε := f − u .

The d-variate function u is a best approximation to f in V if and only if

(4.6) min
x∈A
⟨ε(x), v(x)⟩ ≤ 0 for all v ∈ V.
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Proof. Let u ∈ V and assume that (4.6) holds. Given v ∈ V , there exists a point x0 ∈ A such

that ⟨ε(x0), v(x0)⟩ ≤ 0. Hence,

|(f − u− v)(x0)|2 = |ε(x0)|2 − 2 ⟨ε(x0), v(x0)⟩+ |v(x0)|2 ≥ |ε(x0)|2,

and u is a best approximation.

In order to prove the converse, assume that u is a best approximation and that there exists v0 ∈ V
such that

(4.7) ⟨ε(x), v0(x)⟩ > 0 ∀ x ∈ A.

Since the set A is compact, we have δ := 2 infx∈A ⟨ε(x), v0(x)⟩ > 0, which yields ⟨ε(x), v0(x)⟩ > δ

for all x in some open neighborhood Ã of A. If t ≤ δ/∥v∥2, it follows from this relation that

|f(x)− u(x)− tv0(x)|2 = |f(x)− u(x)|2 − 2t ⟨ε(x), v0(x)⟩+ t2|v0(x)|2

≤ |f(x)− u(x)|2 − 2tδ + tδ ≤ ∥f − u∥2 − tδ, x ∈ Ã.

If t is sufficiently small, the error is smaller on the compact set X\Ã as well, and u is not a best

approximation. Therefore, the proof is complete.

Now we turn to the consideration of inconsistent inequalities and specifically to the case that

the system (4.7) is not solvable. Let v1, v2, . . . , vn be a basis of V . Assume that u is a best

approximation of the function f . Lemma 3.1 and the representation

(4.8) v(x) =
n∑

m=1

αmvm(x)

lead to the unsolvable system for α = (α1, α2, . . . , αn)
T ∈ Rn:

(4.9)
n∑

m=1

αmrm(x) > 0 ∀ x ∈ A ,

where we use the notation rm(x) := ⟨ε(x), vm(x)⟩. These numbers are considered as the compo-

nents of a vector r(x), and we make use of the following lemma. An elementary proof is provided

on p. 19 in the book by Cheney (1966).

Lemma 4.2 (Lemma on linear inequalities)

Let M ⊂ Rn be a compact set. Then the following statements are equivalent:

(i) The system of inequalities

⟨r, y⟩ > 0 for all r ∈M

has no solution y ∈ Rn.

(ii) The convex hull of M contains the origin.
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It follows from Lemma 4.2 that (4.9) is not solvable if the origin in Rn is an element of the convex

hull of the vectors

{r(x) = (r1(x), . . . , rn(x))
T , x ∈ A}.

By Carathéodory’s theorem there are ν ≤ n+1 points x1, . . . , xν ∈ A and numbers w1, . . . , wν ≥ 0

such that
∑ν

i=1wi = 1 and

(4.10)
ν∑

i=1

wir(xi) =
ν∑

i=1

wi ⟨ε(xi), v(xi)⟩ = 0 ∀ v ∈ V.

Theorem 4.3 (Characterization Theorem)

Let u ∈ V and A be the set of extreme points of ε = f − u. The following statements are

equivalent:

(i) u is a best approximation to f in V .

(ii) There exist ν ≤ n+ 1 points x1, x2, . . . , xν ∈ A such that

(4.11) min
1≤i≤ν

⟨ε(xi), v(xi)⟩ ≤ 0 ∀v ∈ V.

(iii) There exist ν ≤ n+1 points x1, x2, . . . , xν ∈ A and weights w1, w2, . . . , wν ≥ 0,
∑ν

i=1wi = 1

such that the functional

(4.12) ℓ(g) :=
1

∥ε∥

ν∑
i=1

wi ⟨ε(xi), g(xi)⟩

satisfies

(4.13) ℓ(ε) = ∥ε∥, ∥ℓ∥ = 1, and V ⊂ ker(ℓ).

Furthermore u remains a best approximation if the domain of the approximation problem is re-

duced to the finite set of points {xi}νi=1.

Proof. The equivalence of (i) and (ii) follows from the Kolmogorov criterion.

To verify the equivalence with condition (iii), let u∗ be a best approximation and ε∗ = f − u∗.
Define the functional (4.12) with the parameters xi and wi from (4.10). By the Cauchy–Schwarz

inequality we obtain ⟨ε∗(xi), g(xi)⟩ ≤ |ε∗(xi)| |g(xi)| ≤ ∥ε∗∥ ∥g∥ with equality if g = ε∗. Since∑
iwi = 1, it follows that ℓ(g) ≤ ∥g∥, again with equality if g = ε∗, and the properties in (4.13)

are verified.

Finally, assume that u ∈ V and a functional with the properties (4.13) exists. We have for any

v ∈ V
∥f − v∥ = ∥ℓ∥ ∥f − v∥ ≥ ℓ(f − v) = ℓ(f − u) + ℓ(u− v) = ∥f − u∥+ 0,

and u is a best approximation.

12



Remark 4.4 Note that part (iii) of Theorem 4.3 is in the spirit of Theorem 1.1 in Singer (1970).

This characterization is closely related to condition (3.8) in Corollary 3.6. To be precise assume

that (iii) in Theorem 4.3 is satisfied and consider a design ξ∗ with weights w1, . . . , wν at the points

x1, . . . , xν . It follows for all v ∈ V that

∥ε∗∥ ℓ(v) =
∫
A
⟨f(x)− u∗(x), v(x)⟩ dξ∗(x) = 0,

and by inserting the elements v1, v2, . . . , vn of the basis of V we obtain precisely condition (3.8).

As we will see in the following discussion, functions satisfying only some of the properties in

Theorem 4.3(iii) will also play an important role. Moreover, because of the linearity assumption

it is easy to see that the solution of the optimization problem

inf
u∈V

∫
|f(x)− u(x)|2dξ∗(x)

is unique. Therefore Corollary 3.6 shows that ξ∗ with masses wi at the points xi (i = 1, . . . , ν) is

a Tp-optimal discriminating design, and this design has at most n+ 1 support points.

Following the terminology in optimization theory we call the case ν = n+1 the generic case; this

means that this case is usually encountered. The next example, however, shows that degeneracy

(i.e., ν < n+ 1) occurs already in simple cases.

Example 4.5 We reconsider Example 3.5 for the polynomial regression models (2.12). The

weights p2,1 and p3,2 are chosen as positive numbers. Since all functions are polynomials, we

may assume X = [−1,+1] without loss of generality. The approximation problem is specified

in (3.6). A quadratic polynomial f1 is to be approximated by linear polynomials in the first

component, and a cubic polynomial f2 is to be approximated by quadratic polynomials in the

second component. Therefore, V = P1 × P2, where Pk denotes the set of polynomials of degree

≤ k.

We note that the character of the approximation problem does not change if we subtract a

linear polynomial from f1 and a quadratic polynomial from f2. Therefore we can assume that

f(x) = (ρ2x
2, ρ3x

3)T . Symmetry arguments show that the best approximating functions will be

polynomials with the same symmetry, and we may investigate the reduced problem

min
θ1,θ2∈R

sup
x∈[−1,1]

(p2,1|ρ2x2 − θ1|2 + p3,2|ρ3x3 − θ2x|2).

Only 2 parameters are active, and by the Characterization Theorem there are optimal designs

with at most 3 extreme points.
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We now fix the given parameters ρ2 = ρ3 = 1 and the weights in the Tp-optimality criterion as

p2,1 = p3,2 = 1/2 . The best approximation is

u∗(x) = (1/2, x)T ,

i.e., the first component is the best approximation of the univariate function f1, and the second

component interpolates f2 at the extreme points of f1 − u∗1. The function ψ(x) = |f(x) −
u∗(x)|2 = (x6−x4+1/4)/2 is depicted in the left part of Figure 1. The support of the Tp-optimal

discriminating design ξ∗ is a subset of the set of extreme points A = {−1, 0,+1} of the function

|f − u∗|2. The linear functional ℓ(g) in Theorem 4.3 is given by

ℓ(g) =
√
2
(1
4
g(−1)− 1

2
g(0) +

1

4
g(1)

)
.

By the Characterization Theorem the associated Tp-optimal discriminating design is

(4.14) ξ∗ =

{
−1 0 1
1
4

1
2

1
4

}
,

where the first line provides the support and the second one the associated masses. The degen-

eracy is now obvious. We have n = 5, but only 3 extreme points. This degeneracy is counter

intuitive. When univariate functions are approximated by polynomials in P2, then by Cheby-

shev’s theorem there are at least 4 extreme points. Although our approximation problem with

2-variate functions contains both more functions and more parameters, the number of extreme

points is smaller.

Note also that the second component is determined by interpolation and not by a direct opti-

mization. The same designs are obtained, whenever

(4.15) p2,1ρ
2
2 ≥ p3.2ρ

2
3.

If condition (4.15) does not hold, we may have 4 extreme points, as shown in the right part of

Figure 1 for the choice ρ2 = 1; ρ3 = 4. The location of the support points depends on the value of

ρ3. In the mentioned case we obtain (subject to rounding) the Tp-optimal discriminating design

ξ∗ =

{
−1 −0.48 +0.48 +1

0.18 0.32 0.32 0.18

}
.

5 Concept of an algorithm – linearization

The characterization of best approximations in the previous section conceals that we have a

nonlinear problem in the case of d ≥ 2 from the viewpoint of their numerical construction. We

14
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Figure 1: Error functions ψ(x) = |f(x) − u∗(x)|2 in the equivalence theorem for Example 4.5.

Left panel: ρ2 = ρ3 = 1; right panel: ρ2 = 1, ρ3 = 4.

will develop an algorithm that provides a Tp-optimal discriminating design in terms of the masses

wi and of the support points xi. We restrict ourselves to linear models not only for the sake of

simplicity. We want to emphasize in this way that the nonlinearities and the possible degeneracies

are already encountered with linear models. The extension of the algorithm to nonlinear models

is straightforward and will be given in Remark 6.2 below.

We propose a descent algorithm for the computation of a best approximation. During the iteration

there will not only be a sequence of functions in the family V computed, but also a set of weights

{w1, . . . , wν} and points {x1, . . . , xν}. The collection of those points in an iteration step is denoted

as reference set. The set {x1, . . . , xν} converges to a set which contains the setA of extreme points

and by Remark 3.3 the support of the optimal design. The weight wi corresponding to a point

xi converges to 0, whenever xi belongs to a sequence that converges to a point in X\A. The

iteration contains two kinds of updates.

(A) For a given reference set S = {x1, . . . , xν} (ν ≥ n+1) the approximating function is updated

while the reference set is kept. In particular, the differences between the errors |ε(xi)| at
the ν points of the reference set is reduced. This procedure is denoted as an approximate

equilibration or equilibration, for short. The result of these calculations is an “improved”

approximating function, say u.

Additionally we obtain the weights for a design ξ with support S by solving a dual linear

program. The computation of the quantity ∆(ξ) (cf, Remark 5.3 below) yields a lower

bound of the Tp-efficiency

EffTp(ξ) =
∆(ξ)

supη ∆(η)
≥ ∆(ξ)

∥ε∥2
(5.1)

where ε = f − u. In particular, this provides a stopping criterion for the algorithm. The

iteration will be stopped if the lower bound is close to 1.
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(B) The reference set is updated while the approximating function is kept. Candidates for the

new set are points in the domain for which the error is larger than the error on the actual

reference set. Points at which the error is small can be dropped in the reference set.

Looking at the Characterization Theorem one expects that reference sets with n + 1 points are

a good choice. However, situations as shown in Example 4.5 are typical. Frequently we find

degeneracies, and therefore we have to care for robustness of the procedures. Robustness is more

easily achieved if reference sets S with more than n + 1 points are admitted. This means that

there may exist points which do not contribute to the sum in (4.10). These points can be dropped

in Step (B) when new points are inserted.

The error curve |f−u|may be shown on the screen of the computer after each update of u. Usually

it is not difficult to decide whether and how the reference set is to be improved. Therefore we

focus on Step (A) and the equilibration, since this is the more involved part of the iteration.

Moreover, usually several steps of type (A) are performed between updates of the reference set

with steps of type (B); cf. the tables in Section 7.

We proceed in the spirit of Newton’s method and ignore temporarily the quadratic term of the

correction v in the Binomial formula. Specifically, given a finite reference set S and a guess u for

the approximating function, we replace the optimization problem

(5.2) max
xi∈S

∣∣f(xi)− u(xi)− v(xi)∣∣2 = max
xi∈S

{
|ε(xi)|2 − 2 ⟨ε(xi), v(xi)⟩+ |v(xi)|2

}
→ min

v∈V
!

by the linear program

(5.3) max
xi∈S

{
|ε(xi)|2 − 2 ⟨ε(xi), v(xi)⟩

}
→ min

v∈V
!

While the left-hand side of (5.2) is obviously bounded from below, this is not always true for the

optimization problem (5.3). The boundedness, however, is essential for the algorithm.

Definition 5.1 A function u ∈ V is called dual feasible for the set S, if the left-hand side of

(5.3) is bounded from below.

The notation of dual feasibility will be clear from the dual linear program (5.5) and Lemma 5.2.

We will also see in Remark 5.3 that dual feasible functions are associated to a design in the spirit

of (2.2).

The minimization of a linearized functional on a finite set S = {xi}νi=1 with ν ≥ n + 1 as in

(5.3) will be the basis of our algorithm. We will get more insight from the dual programs. In

particular, we obtain the masses wi of the optimal discriminating designs and (equivalently) of

the functional (4.12) defined in Theorem 4.3.
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For a given actual error function ε and a reference set with ν points x1, . . . , xν we may use the

representation (4.8) and rewrite the (primal) linear program (5.3) as a linear program for the

n+ 1 variables E,α1, α2, . . . , αn

(5.4)

E → min!

2
n∑

m=1

αm ⟨ε(xi), vm(xi)⟩+ E ≥ |ε(xi)|2, i = 1, 2, . . . , ν.

Obviously, there exists a feasible point for this linear program, since the inequalities are satisfied

by α1 = α2 = . . . = αn = 0 and E = ∥ε∥2.

The dual program to (5.4) contains the equations for the ν weights w1, w2, . . . , wν with the adjoint

matrix, where we can drop the factor of 2

(5.5)

ν∑
i=0

wi|ε(xi)|2 → max!

ν∑
i=0

wi ⟨ε(xi), v(xi)⟩ = 0, ∀ v ∈ V,
ν∑

i=0

wi = 1, wi ≥ 0, i = 1, 2, . . . , ν.

The following result of duality theory will play an important role [for a proof see Papadimitriou

and Steiglitz (1998)].

Lemma 5.2 The linear program (5.5) has a feasible point and a solution if and only if the target

functional in the linear program (5.4) is bounded from below, i.e.,

min
v∈V

max
0≤i≤n

⟨ε(xi), v(xi)⟩ > −∞.

Since V is a linear space, this condition is equivalent to

min
v∈V

max
0≤i≤n

⟨ε(xi), v(xi)⟩ ≥ 0.

Remark 5.3 If the linear program (5.5) has a feasible point, there is a solution for which at

most n + 1 of the wi are positive. We obtain a linear functional ℓ of the form (4.12) with these

parameters that satisfies

∥ℓ∥ = 1 and V ⊂ ker(ℓ).

We have ℓ(ε) < ∥ε∥ as long as we have not reached a best approximation. Since the values of

the primal program (5.4) and the dual program (5.5) coincide, we have also E =
∑m

i=0wi|ε(xi)|2.
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Moreover, we obtain a lower bound for the degree of approximation. To be precise, let ξ be the

measure with masses wi at the points xi. From Theorem 3.2 and (5.5) it follows that

inf
v∈V
∥f − v∥2 ≥ ∆(ξ) =

∑
i

wi inf
v∈V
|(f − u− v)(xi)|2

= inf
v∈V

∑
i

wi

(
|ε(xi)|2 − 2 ⟨ε(xi), v(xi)⟩+ |v(xi)|2

)
= inf

v∈V

∑
i

wi

(
|ε(xi)|2 + |v(xi)|2

)
=

∑
i

wi|ε(xi)|2.(5.6)

We emphasize that more information is provided by (5.6) since the infimum in the last line of

(5.6) is attained at v = 0. Given a dual feasible function u = η(·, θ), we have θ = θ∗(ξ) for the

design ξ specified above. We have found a design ξ to which u is associated in the spirit of the

characterization (2.2).

Example 5.4 For the sake of transparency, we illustrate the existence of dual infeasible functions

by an example with univariate functions on the interval [−1, 1]. Let V be the set of linear

polynomials and f(x) := 1 + x + x3. The function u = 0 is not dual feasible for the set S =

{−1, 0,+1}. Indeed, we have a relation as in (5.5) with a negative weight,

3

8
ε(−1)v(−1) + 6

8
ε(0)v(0)− 1

8
ε(+1)v(+1) = 0 ∀v ∈ V,

and there does not exist such a relation with positive weights. By the Kolmogorov criterion, this

is in accordance with the fact that the function v0 := 1 + 2x satisfies

ε(xi)v0(xi) > 0 for i = 0, 1, 2,

and consequently the function u = 0 is not dual feasible.

6 Newton’s Method and its Adaptation

The improvement of the approximation on a given reference set S will be done iteratively by

Newton’s method. In order to avoid the introduction of one more symbol for the specific iteration,

we focus on one step of the iteration for the given input u0 and corresponding error function ε0.

The following algorithm looks natural, it is however only the basis of our algorithm:

Given u0 and S, find a solution of the linear program (5.4) for u = u0, set v =
∑

m αmvm, and

u1 = u0 + v is the result of the Newton step.

In order to achieve a robust procedure, we have to modify it into three directions, which will be

explained in the following discussion. The damping as in item (2) is a standard tool in modern

18



algorithms, but the other modifications are specific for the optimal design problem. From the

discussion in the previous section we already know that we have to admit a function u0 in the

input of an iteration step which is not necessarily dual feasible. The degeneracy of the support

of the optimal design makes it also difficult to find a dual feasible approximation.

For convenience, we use the notation ∥g∥S := supx∈S |g(x)|.

(1) Choose a bound ᾱ and add the restriction

n∑
m=1

|αm| ≤ ᾱ

to the linear program (5.4). Now the domain of the feasible vectors α is bounded, and there

always exists a solution even if the original input corresponds to a dual infeasible problem.

– The parameter ᾱ will also be updated; cf. the next item.

(2) The Newton correction v will be multiplied by a damping factor t. Obviously we have only

to care for the case that u0 is not yet a best approximation. By definition of the Newton

method,

max
x∈S
{|ε0(x)|2 − 2 ⟨ε0(xi), v(xi)⟩ < ∥ε0∥2S .

Since

|(f − u0 − tv)(xi)|2 = |ε0(xi)|2 − 2t ⟨ε0(xi), v(xi)⟩+O(t2),

it follows that ∥f − u0 − tv)∥2S < ∥ε0∥2S for sufficiently small positive factors t and for this

choice an improvement is generated. Let T := {2, 1, 2−1, 2−2, 2−3, 2−4, . . . , 0} and determine

(6.1) t = argmin
t∈T

∥f − u0 − tv∥S .

The standard set of damping factors: 1, 2−1, 2−2, . . . has been augmented. The number

0 ∈ T guarantees that the new approximation is at least as good as the old one. If the

minimum is attained at t = 2, this is a hint that the bound ᾱ is too small. In any case, ᾱ

should be replaced in the next iteration step by a number between ᾱ and tᾱ.

Since the functions t → |(f − u0 − tv)(xi)|2 are quadratic polynomials, the execution of

(6.1) is very cheap.

(3) As illustrated in Example 4.5, the best approximations have less than n+1, say ν, extreme

points in many cases. Therefore it is natural to consider optimization problems also on ν-

dimensional subspaces. There is one more motivation. Given a design ξ, the minimization

of ∆(ξ) can be split into the d subproblems of minimizing ∆(i,j)(ξ) for (i, j) ∈ I. – Of
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course, the pairs (i, j) refer to the notation in Section 2.

Now we write the space of approximating functions as a sum of d subspaces

(6.2) V = ⊕(i,j)∈I V(i,j) ,

where V(i,j) contains those functions in V that correspond to {ηj(·, θ(i,j)) | θ(i,j) ∈ Θ(i,j)}. In
addition to the optimization (5.4), we solve the d optimization problems with V replaced

by the subspaces V(i,j), (i, j) ∈ I.

Remark 6.1 As was just noted, the support of the optimal design consists of less than n + 1

points in many cases of actual interest. This has another consequence. We cannot decide by

a simple inspection of the error curve during the iteration whether we are already close to the

optimum or not. We may do it by comparing the upper bound for the degree of approximation

∥ε∥ = ∥f − u∥ with the lower bound ∆(ξ) for an appropriate ξ. This gives the lower bound

(5.1), which can be used as a stopping criterion of the algorithm. If u is dual feasible, we get an

associated ξ from the dual program (5.5) and (5.6). Otherwise we will relax the dual program

and solve (8.2) below. The points with negative weights are dropped, and the posivive weights

are renormalized to have
∑
wi = 1. We obtain a reasonable ξ, at least in the neighborhood of

an optimum. The negative weights will be small there, and the procedure above implies only

small changes. Thus designs and their corresponding efficiencies are computed simultaneously by

solving the approximation problem iteratively.

A detailed code is postponed to Section 8.

Remark 6.2 (Remark on the adaptation to nonlinear models)

If the models η1, η2, . . . , ηk depend nonlinear on the parameters, the approximating function

u(x, θ) depends in a (possibly) nonlinear way on θ, and the linear program (5.4) has to be

replaced by the linear program

(6.3)

E → min!

2
n∑

m=1

αm

⟨
ε(xi),

∂

∂θm
u(xi)

⟩
+ E ≥ |ε(xi)|2, i = 1, 2, . . . , ν.

The solution α yields the update of θ. The adaptation of the Newton method described at

the beginning of this section is performed also here in an obvious way, and we illustrate the

application of the algorithm in the context of nonlinear regression models in Example 7.2.
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Table 1: The results of the algorithm for Example 7.1. The fourth column shows the lower bound

for the efficiency defined in (5.1).

j ∥εj∥2 ∆(ξj)
∆lin(ξj)

∥εj∥2
dual feasible t extras

0 12.5 0.0168 0.0013 no ᾱ← 1

1 4 0.0444 0.011 no 1

2 0.6944 0.0204 0.0294 no 1

3 0.3209 0.0063 0.0196 no 0.5

4 0.2161 0.0356 0.1649 no 0.25 ᾱ← 0.5

5 0.1901 0.0689 0.3623 no 1

6 0.1684 0.0746 0.4432 no 0.5 S ← S ∪ {−0.2}
7 0.1501 0.0963 0.6417 no 1

8 0.1342 0.1138 0.848 yes 1

9 0.1318 0.1189 0.902 yes 0.25 ᾱ← 0.1

10 0.1283 0.1200 0.9348 no 1

11 0.1254 0.1223 0.9754 no 0.25 ᾱ← 0.05

12 0.1252 0.1229 0.9816 no 0.25

7 Numerical results

In this section we illustrate the algorithm described in the previous section in two examples with

linear and nonlinear regression functions. The first example considers the linear case.

Example 7.1 We consider once more the situation as in Example 3.5, fix p2,1 = p3,2 =
1
2
, set

f(x) = (η2(x, ρ(2)), η3(x, ρ(3)))
T = (1 + x+ x2, 1 + x+ x2 + x3)T ,

and start the Newton iteration with u0 = (0, 0)T , i.e., θ(2,1) = (0, 0), θ(3,2) = (0, 0, 0). The initial

guess u0 implies that the iterated functions do not have the symmetry properties discussed in

Example 4.5. The reference set at the start is S := {−1,−0.5,−0.1, 0, 0.1, 0.5, 1}, and the point

−0.2 was added in step 6 of the iteration.

The results of the algorithm are displayed in Table 1. After 12 iteration steps we obtain an

approximation such that the degree of approximation does not exceed the lower bound by more

than 2%, and the efficiency of the computed discriminating design is larger than 98%. In the first

part of the iteration the lower bound is very small and is of no use. Note also that the bound

is not monotonously increasing in the iterations. In Figure 2 we display the shape of the error

function in the first 3 iterations. We observe that the location of the extreme points changes

substantially in the first iteration steps. The final result in Figure 1 shows that afterwards there
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Figure 2: Error curve |f − u|2 in Example 7.1 in the first three iteration steps.

are no great changes of the shape. The resulting discriminating design

ξ∗ =

{
−1 0 0.1 1

0.2516 0.3392 0.1562 0.2530

}
,

[where θ(2,1) = (1.50005, 0.99991), θ(3,2) = (0.99998, 1.99041, 1.0057)] may be compared with the

exact optimal one given in (4.14). Note that the maximum in Figure 1.a is very flat. This and

the degeneracy yields two points 0 and 0.1 instead of one extreme point 0. If we would continue

with the iteration, the two points would eventually coalesce.

Table 2: The results of the algorithm for Example 7.2.

j ∥εj∥2 ∆lin(ξj)
∆lin(ξj)

∥εj∥2
dual feasible t extras

0 1.25301 0.0062 0.0049 no ᾱ← 1

1 0.07348 0.00401 0.0545 no 1

2 0.01632 0.00521 0.3189 no 1 S ← S ∪ {0.6}
3 0.00722 0.00642 0.8898 no 0.25 ᾱ← 0.25

4 0.00707 0.00672 0.9499 yes 0.0625 S ← S ∪ {0.5, 3.3}
5 0.00681 0.00671 0.9854 no 0.0625 ᾱ← 0.05

6 0.00680 0.00678 0.9965 no 0.125 S ← S ∪ {3.4, 3.5}
7 0.00679 0.00678 0.9992 no 0.25

Example 7.2 In order to demonstrate that the algorithm can be used for the calculation of

Tp-optimal discriminating designs in case of nonlinear regression models we consider two rival

models

η1(x, θ) =
θ11x

x+ θ12
, η2(x, θ) = θ21(1− e−θ22x)
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Figure 3: Error curve |f − u|2 in Example 7.2 in the first three iteration steps.

where ρ(1) = (2.0, 1.0) and ρ(2) = (2.5, 0.5). The weights in the criterion (2.6) are defined by

p1,2 = p2,1 = 1/2. The Newton method is started with θ(1,2) = (1, 1), θ(2,1) = (2, 0.5), and

S = {1, 2, 4, 6, 8, 10}. The error curves in Figure 3 show that the referencee set has to be updated

after the second iteration step. The degree of approximation is close to the optimum already

after 4 iteration steps. Further iteration steps improve the lower bound for the efficiency defined

in (5.1). The resulting design is

ξ∗ =

{
0.5 3.4 3.5 10.0

0.304 0.143 0.278 0.275

}
,

and the parameters corresponding to the best uniform approximation are given by (subject to

rounding) θ̄(1,2) = (3.006, 1.804), and θ̄(2,1) = (1.721, 0.868). The efficiency of 99% listed in Table

2 refers to the linearization and therefore to the consideration in the neighborhood of the solution.

Nevertheless we can use the equivalence Theorem 3.1 to check if this design is in fact Tp-optimal.

We have performed an extensive search for the parameter θ∗ defined in (2.3) and found that it

equals θ̄ subject to rounding, i.e. θ̄∗ = θ̄. The corresponding plot of the function ψ∗ in the

equivalence Theorem 3.1 is shown in Figure 4. We observe that the design ξ∗ is in fact a Tp-

optimal discriminating design.

Note that the support of the resulting design is much smaller than the reference sets during the

iteration. The degeneracy here has the effect that the second extreme point is split into the

two points 3.4 and 3.5. We observe that more damping of the Newton steps is required in this

example. It is known that approximation problems with exponential functions are ill conditioned

compared to polynomial problems.

8 Details of the algorithm

In this section we present one Newton step for the equilibration with its details. As usual, an

instruction A← B in the algorithm means that the value of A is to be replaced by B. The loops

over finite sets of indices, however, are written as in mathematical formulas and not as usually
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Figure 4: The function ψ in the equivalence Theorem 3.1 for Example 7.2.

in computer codes.

Algorithm 8.1 (One Newton step for the equilibration)

# Input

an approximation u0 =
∑n

m=1 γmvm, that need not be dual feasible,

a reference set S = {xi}νi=1 ,

a bound ᾱ for the correction of the vector γ = (γ1, . . . , γn)
T .

# Coefficients of the linear program
ε0(xi) ← f(xi)− u0(xi),
rim ← ⟨ε0(xi), vm(xi)⟩ , m = 1, 2, . . . , n,

bi ← |ε0(xi)|2,

 i = 1, 2, . . . , ν,

# Computation of the weights

Solve the linear program (with respect to w1, . . . , wν)

(8.1)

∑ν
i=1 biwi → max!∑ν

i=1 rimwi = 0, m = 1, 2, . . . , n,∑ν
i=1wi = 1, wi ≥ 0, i = 1, 2, . . . , ν.

print ’reference set’ S, ’actual error’ b, ’weights’ w.
If the linear program (8.1) has a solution, then

print ’lower bound of the degree of approximation’,
∑

iwi|ε0(xi)|2
else

{
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# How far are we from dual feasibility?

Solve the linear program [by setting wi = w+
i − w−

i , w
+
i ≥ 0, w−

i ≥ 0]∑ν
i=1 bi max(wi, 0) → max!∑ν

i=1 rimwi = 0, m = 1, 2, . . . , n,∑ν
i=1 |wi| = 1.

print ’relaxed weights’ w.

wi ← max{wi, 0}, i = 1, 2, . . . , ν,

Normalize weights to obtain
∑

iwi = 1.

Define ξ by xi, wi # and compute the lower bound ∆(ξ).

Bm ←
∑ν

i=1wirim,

AMm ←
∑ν

i=1wi ⟨vM(xi), vm(xi)⟩ ,M = 1, 2, . . . , n,

}
m = 1, 2, . . . , n.

Solve Aα = B,

∆(ξ)←
∑ν

i=1wi|ε0(xi)|2 −
∑n

m=1Bmαm.

print ’lower bound of the degree of approximation’, ∆(ξ).

}
# Computation of the basic Newton correction

Solve the linear program (with respect to E,α1, . . . , αn)

E → min!

2
n∑

m=1

αmrim + E ≥ |ε0(xi)|2, i = 1, 2, . . . , ν,

n∑
m=1

|αm| ≤ ᾱ.

# Newton correction δu (without damping).

δu←
∑n

m=1 αmvm,

# The degree of approximation is determined for several damping factors t:

# The errors are quadratic polynomials in t: |(f − u0 − tδu)(xi)|2 = pi(t).

Define pi(t) = (1− t)bi + eit+ qit
2.

ei ← bi − 2
∑n

m=1 rimαm,

qi ← |δu(xi)|2

}
i = 1, 2, . . . , ν,

print ’errors after the Newton step with quadratic terms ignored’, e.

T ← {2, 1, 1/2, 1/4, 1/8, 1/16, 0}.
b̃t ← max0≤i≤ν{pi(t)},
print ’new error with damping’, t, b̃t,

}
t ∈ T .

# Determine best damping factor.

t← argmin{b̃t},
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# Final update.

u0 ← u1 = u0 + tδu,

γm ← γm + tαm, m = 1, 2, . . . , n,

If (t > 0) then ᾱ← tᾱ .

print ’coefficients of new approximation’, γm, m = 1, . . . , n.
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