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Abstract

Dose finding studies often compare several doses of a new compound with a mar-

keted standard treatment as an active control. In the past, however, research has

focused mostly on experimental designs for placebo-controlled dose finding studies. To

the best of our knowledge, optimal designs for dose finding studies with an active con-

trol have not been considered so far. As the statistical analysis for an active controlled

dose finding study can be formulated in terms of a mixture of two regression models,

the related design problem is different to what has been investigated before in the

literature. We present a rigorous approach to the problem of determining optimal de-

signs for estimating the smallest dose achieving the same treatment effect as the active

control. We determine explicitly the locally optimal designs for a broad class of mod-

els employed in such studies. We also discuss robust design strategies and determine

related Bayesian and standardized minimax optimal designs. We illustrate the results

by investigating alternative designs for a clinical trial which has recently appeared in

a consulting project of one of the authors.

Keywords and Phrases. minimax design, Bayesian optimal designs, dose response, dose es-

timation, active control
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1 Introduction

One of the critical steps in developing a medicinal drug is a proper understanding and char-

acterization of its dose response relationship. Failing to characterize well the dose response

relationship may have severe consequences once the drug is available to patients: selecting

too high doses may lead to unacceptable safety problems, while selecting too low doses may

lead to insufficient efficacy. Further applications, where dose response modeling is of partic-

ular importance, include the investigation of a new herbicide or fertilizer, a molecular entity,

an environmental toxin, or an industrial chemical.

Much literature is available on dose response studies including a placebo group (see Ruberg

(1995), Ting (2006), Bretz et al. (2008) among many others). However, in some drug devel-

opment programs the dose dependent efficacy relative to a standard treatment is of major

interest, especially in preparation for an active-controlled confirmatory non-inferiority trial.

In addition to regulatory requirements related to drug approval, health technology assess-

ments for national reimbursement decisions may be improved by dose finding studies that

evaluate the incremental dose effect as compared to the standard treatment. Furthermore,

in many situations the use of placebo could be considered unethical or unfeasible, even in

a Phase II dose finding study. If no placebo is used the extrapolation of the dose response

from the lowest dose to the zero dose (i.e. placebo) becomes problematic and the use of an

active control could facilitate the assessment of the overall efficacy level of the dose response

curve.

The considerable interest by regulatory agencies in active-controlled studies becomes evident

from several related guidelines. For example, the tripartite ICH E4 guideline on dose finding

encourages the inclusion of an active comparator in a dose finding study to improve assay

sensitivity of the trial as well as to generate better data on comparative effectiveness and

safety (ICH, 1994). In addition, several international disease-specific regulatory guidelines

recommend the use of an active comparator in pivotal Phase III studies (EMEA, 2006, 2011).

In a more general context, the EMEA guideline on the choice of a non-inferiority margin

states that a placebo-controlled trial is usually not sufficient and that the comparison between

test and reference will often be of importance in its own right (EMEA, 2005). It thus becomes

evident that due to the regulatory requirements on active-controlled Phase III trials, dose

finding studies with an active control contribute significantly to the proper choice of a dose to

be used in Phase III and lead to a better risk-benefit profile in comparison with a marketed

drug.

The research in the present paper is motivated by an active-controlled dose-finding Phase

II study to determine the optimal dose of the new compound for the management of acute

flare in gout adult patients who are refractory or contraindicated to standard therapies. The

primary objective is to determine the target dose of the new compound, which is the dose

that leads to the same efficacy as the active control. It will be identified by assessing the dose

response relationship of various doses of the new compound with regard to pain intensity

in the target joint at 72 hours (Day 4) post-dose measured on a 0 − 100mm Visual Analog
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Scale (VAS). Approximately 200 patients will be included in the study. Patients who meet

the entry criteria will be randomized to receive either the active control or one dose of the

new compound. An important problem consists in specifying the dose levels for the new

compound as well as the allocation ratio of patients across all treatments arms in this study.

Once the optimal dose of the new compound is selected on the basis of this Phase II trial,

Phase III studies will be conducted to evaluate further the efficacy and safety of the new

compound in the respective patient population (either acute or chronic gout patients).

It is well known that optimal designs can substantially improve the efficiency of statistical

analyzes and numerous authors have worked on the problem of constructing optimal designs

for placebo-controlled dose response studies (see Miller et al. (2007), Dragalin et al. (2007),

Dette et al. (2008), Dette et al. (2010) among others). However, to our best knowledge,

optimal design problems for active controlled dose finding studies have not been considered

in the literature so far. In this paper we propose a strategy to obtain efficient designs for such

situations. In Section 2 we introduce the statistical model that includes an active control

together with several dose levels of the compound under investigation. Locally optimal

designs for estimating the target dose for the new compound are constructed explicitly. These

designs require a-priori information about the unknown model parameters [see Chernoff

(1953), Ford et al. (1992), Fang and Hedayat (2008)] and usually serve as benchmarks for

commonly used designs. In addition, locally optimal designs serve as basis for constructing

optimal designs with respect to more sophisticated optimality criteria, which are robust

against a misspecification of the unknown parameters [see Pronzato and Walter (1985) or

Chaloner and Verdinelli (1995), Dette (1997), Imhof (2001) among others]. In Section 3 we

consider standardized minimax and Bayesian optimal designs, which minimize the maximal

efficiency and average efficiency over a given range of the unknown parameters, respectively.

For several models, including the widely used EMAX model, it is demonstrated that the

robust designs are saturated (i.e. the number of different conditions coincides with the

number of parameters for the underlying model) and optimal designs with respect to these

criteria are determined explicitly. Several examples illustrating the results are presented in

Section 4, where we also study the efficiency of commonly used designs for the case study

described above. Finally, some conclusions and directions for further research are presented

in Section 5, while Section 6 contains the proofs of our main results.

2 A statistical model for active-controlled dose finding

studies

We assume that patients are treated either with an active control (a standard treatment

administered at a fixed dose level) or with the new drug for which the dose response re-

lationship is unknown. For a given total sample size, say n, the goal of an experimental

design is to allocate n1 and n2 = n − n1 patients to the new drug and the active control,

respectively, and to determine the dose levels under which the n1 patients are treated with
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the new drug.

For the statistical analysis we assume that the observations are realizations of independent

random variables Y1, . . . , Yn1 ,Z1, . . . , Zn2 according to the model

Yi = f(di, θ) + εi for 1 ≤ i ≤ n1,

Zi = µ+ εn1+i for 1 ≤ i ≤ n2,

where ε1, . . . , εn are independent and normally distributed with expectation 0 and variance

σ2. The random variable Yi corresponds to a patient receiving the new drug at dose level

di (i = 1, . . . , n1) and Zi corresponds to a patient receiving the active control (at a fixed single

dose level). Furthermore, µ is the expected effect for the active contol, θ = (ϑ0, . . . , ϑp)
T ∈

Θ ⊂ Rp+1 denotes a vector of unknown parameters and f is a given function which describes

the average response dose of the new drug at a given dose.

Let κ be an indicator, whether a patient receives the new drug (κ = 0) or the active control

(κ = 1). The design space is therefore given by the set

X = (XD × {0}) ∪ {(C, 1)},

where XD denotes the dose range for the new drug, C is the dose level of the active control

and the second component of an experimental condition (d, κ) determines the treatment

(κ = 0, 1). Straightforward calculation shows that the Fisher information at (d, κ) is given

by the matrix γ(d, κ)γT (d, κ) where the function γ : X → Rp+2 is defined by

γ ((d, κ), θ) =

{(
gT (d, θ), 0

)T
if κ = 0(

0T , 1
)T

if κ = 1
(2.1)

and

g(d, θ) =
(∂f(d, θ)

∂ϑ0

, . . . ,
∂f(d, θ)

∂ϑp

)T
(2.2)

denotes the gradient of the regression function f(d, θ) with respect to the vector θ. Through-

out this paper we consider approximate designs in the sense of Kiefer (1974), which are

defined as probability measures with finite support on the design space X . Therefore, an

experimental design is given by

ξ =

(
(d1, 0) . . . (dk, 0) (C, 1)

w1 . . . wk wk+1

)
where w1, . . . , wk+1 are positive weights, such that

∑k+1
j=1 wj = 1. The weight wk+1 denotes

the relative proportion of total observations treated with the active control, d1, . . . , dk the

different dose levels used for the new drug and wj the relative proportion of patients treated

at dose level dj (j = 1, . . . , k). The information matrix of an approximate design is given by
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the (p+ 2)× (p+ 2) matrix

M(ξ, θ) =

∫
X
γ((d, κ), θ)γT ((d, κ), θ)dξ(d, κ)

=
k∑

j=1

wj

(
g(dj, θ)

0

)(
gT (dj, θ), 0

)
+ wk+1

(
0 0

0 1

)
=

(
(1− wk+1)M̃(ξ̃, θ) 0

0 wk+1

)

where the (p+ 1)× (p+ 1) matrix M̃(ξ̃, θ) is defined by

M̃(ξ̃, θ) =

∫
XD

g(d, θ)gT (d, θ)dξ̃(d) (2.3)

and

ξ̃ =

(
d1 . . . dk
w̃1 . . . w̃k

)
(2.4)

denotes a design (on the design space XD) for the new drug with weights

w̃i =
wi

1− wk+1

, i = 1, . . . , k.

In the following we consider models of the form

f(d, θ) = ϑ0 + ϑ1fθ2(d) (2.5)

where θ2 = (ϑ2, . . . , ϑp)
T , the function fθ2 is assumed to be strictly increasing, see Bretz et al.

(2005). The aim is to estimate the target dose d∗ = d∗(θ, µ) = f−1(µ, θ) = f−1
θ2

(µ−ϑ0

ϑ1
) for a

fixed value of µ, i.e. the smallest dose of the new compound achieving the same treatment

effect as the active control. A natural estimate of d∗ is given by d̂∗ = f−1(µ̂, θ̂), where (θ̂, µ̂)

is the maximum likelihood estimate of the parameter θ̄ = (θ, µ). Standard calculation shows

that the variance of this estimator is approximately given by

Var(d̂∗) ≈ σ2

n
ψ(ξ, θ̄),

where the function ψ is defined by

ψ(ξ, θ̄) = ψ(ξ, θ, µ) = ∇d∗(θ, µ)M−(ξ, θ)∇d∗T (θ, µ) (2.6)

=
1

1− wk+1

∇θd
∗(θ, µ)M̃−(ξ̃, θ)∇θd

∗T (θ, µ) +

(
∂d∗(θ, µ)

∂µ

)2
1

wk+1

.

Here, ∇ denotes the gradient of the function d∗ with respect to the parameter θ̄ = (θ, µ),

∇θ the gradient with respect to θ, and M−(ξ, θ) and M̃−(ξ, θ) are generalized inverses of

the information matrices M(ξ, θ) and M̃(ξ, θ), respectively. A design ξ∗
θ̄
is called locally

AC-optimal design (for Active Control) if ∇d∗(θ, µ) ∈ Range(M(ξ, θ)) and if ξ∗
θ̄
minimizes
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the function ψ(ξ, θ̄) among all designs satisfying this condition. The identity in (2.6) holds,

because for a design with ∇d∗(θ, µ) ∈ Range(M(ξ, θ)) the variance is independent of the

choice of the general inverse [see Pukelsheim (2006)]. Therefore we choose a generalized

inverse with the same block structure as the information matrix. Note that the optimality

criterion (2.6) is a special case of the c-optimality criterion, which corresponds to minimizing

the expression

cTM−(ξ, θ)c, (2.7)

for a given vector c ∈ Rp+1 in the class of all design ξ, such that c is estimable by the given

design ξ, i.e. Range(c) ⊂ Range(M(ξ, θ)).

In the next result we determine locally AC-optimal designs for a broad class of nonlinear

regression models accounting for an active control by minimizing the criterion (2.6). These

designs serve as benchmarks for commonly used designs and are the basis for the construc-

tion of optimal designs with respect to more sophisticated optimality criteria, in particular

standardized minimax and Bayesian optimal designs discussed in the following section. Since

the seminal paper of Chernoff (1953) numerous authors have worked on the problem of con-

structing locally optimal designs for many regression problems [see for example Ford et al.

(1992), He et al. (1996), Fang and Hedayat (2008) or Yang (2010) among many others] but

- to the best knowledge of the authors - optimal design problems for active controlled dose

finding studies have not been considered in the literature. In the following result we show

that for all models of the form (2.5) there exist locally AC-optimal designs with two support

points independently of the dimension of the parameter vector θ. The proof is based on the

implicit function theorem and given in the Appendix.

Theorem 2.1 For a model of the form (2.5) the optimality criterion defined in (2.6) has

the representation

ψ(ξ, θ, µ) =

(
∂d∗(θ, µ)

∂µ

)2(
1

1− wk+1

gT (d∗, θ)M̃−(ξ̃, θ)g(d∗, θ) +
1

wk+1

)
,

where d∗ = d∗(θ, µ) = f−1
θ2

(µ−ϑ0

ϑ1
) and the matrix M̃(ξ̃, θ) and the design ξ̃ are defined by

(2.3) and (2.4), respectively. Moreover, for the model (2.5) with d∗ ∈ XD the design

ξ∗θ̄ =

(
(d∗, 0) (C, 1)

1
2

1
2

)
(2.8)

is a locally AC-optimal design. In particular, the minimum value of the criterion ψ defined

in (2.6) is given by

min
ξ
ψ(ξ, θ, µ) = ψ(ξ∗θ̄ , θ, µ) = 4

(∂d∗(θ, µ)
∂µ

)2
.

It is of interest to note that the locally optimal designs determined in Theorem 2.1 are not

necessarily unique. To see this we consider the case p = 1, where we use the notation fθ2 = f0

6



because the function fθ2 does not depend on the parameter θ2. In this case the model (2.5)

reduces to a linear model

f(d, θ) = ϑ0 + ϑ1f0(d), (2.9)

and there also exist locally AC-optimal designs with three or more support points.

Theorem 2.2 Let d1, . . . , dk ∈ XD and w̃1, . . . , w̃k ∈ (0, 1) such that

k∑
j=1

w̃j = 1 and
k∑

j=1

w̃jf0(dj) = f0(d
∗). (2.10)

Then the design with masses w̃1

2
, . . . , w̃k

2
and 1

2
at the points (d1, 0), . . . , (dk, 0) and (C, 1) is

a locally AC-optimal design for the model (2.9).

Note that Theorem 2.2 generalizes a result of Herzberg and Cox (1972), who considered

the special case f0(d) = d and showed that designs with masses 1
4
, 1

4
and 1

2
at the points

(d∗−x, 0), (d∗+x, 0) and (C, 1) are locally AC-optimal designs on the design space X = [L,R]

whenever x ≤ min { d∗ − L,R− d∗ }.

3 Robust optimal AC-optimal designs

Locally optimal designs are often sensitive with respect to misspecification of the initial

parameters and several alternative design strategies have been developed to address this

issue. The literature mainly differentiates between adaptive/sequential [see Chaudhuri and

Mykland (1995) or Dragalin et al. (2010) among others] and Bayesian/minimax optimal

designs [see for example Chaloner and Verdinelli (1995) and Dette (1997) among others].

In this section we will investigate two robust design strategies for active controlled dose

finding studies, namely minimax and Bayesian AC-optimal designs. To be precise let Θ

and M denote sets for the possible values for θ and µ, respectively. A design ξ∗ is called

standardized minimax AC-optimal design for the active control model with respect to the

set Θ̄ = {θ̄ = (θ, µ)|θ ∈ Θ, µ ∈ M} if ∇d∗(θ, µ) ∈ Range(M(ξ, θ)) for all (θ, µ) ∈ Θ̄ and if

ξ∗ minimizes the maximum efficiency

ΨM(ξ) = max{eff(ξ, θ̄) | θ̄ ∈ Θ̄} (3.1)

calculated over a given range Θ̄ of the parameters. The efficiency here is defined by

eff(ξ, θ̄) =
ψ(ξ, θ̄)

ψ(ξ∗
θ̄
, θ̄)

∈ [1,∞], (3.2)

where ψ(ξ, θ̄) denotes the criterion function introduced in (2.6) and ξ∗
θ̄
is the locally AC-

optimal design. The range Θ̄ denotes a given set specified by the experimenter which reflects
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its prior belief about the unknown vector of parameters. Therefore a design minimizing (3.1)

is expected to yield reasonable efficiencies for all values in the set Θ̄.

Similarly, the Bayesian AC-optimal design minimizes an average of the efficiencies. To be

precise let π denote a prior distribution with support given by Θ̄. Then a design ξ∗ is called

Bayesian AC-optimal design with respect to the prior π if ∇d∗(θ, µ) ∈ Range(M(ξ, θ)) for

all (θ, µ) ∈ Θ̄ and if ξ∗ minimizes a weighted average of the efficiencies (3.1), that is∫
Θ̄

eff(ξ, θ̄)dπ(θ̄) (3.3)

From Theorem 2.1 it follows that the efficiency in (3.1) and (3.3) is given by

eff(ξ, θ̄) =
1

4

(
1

1− wk+1

gT (d∗, θ)M̃−(ξ̃, θ)g(d∗, θ) +
1

wk+1

)
where d∗ = d∗(θ̄) = f−1

θ2
(µ−ϑ0

ϑ1
). In general, the determination of standardized minimax and

Bayesian optimal designs is a very difficult problem [see for example Imhof (2001) or Braess

and Dette (2007)] and in most cases these designs have to be found numerically. In the

following discussion we will describe some general properties of these designs and construct

robust optimal designs for some models in explicit form. For this purpose we consider again

model (2.5) and assume that for each parameter θ̄ ∈ Θ̄ the quantity d∗ = f−1
θ2

(µ−ϑ0

ϑ1
) is well

defined and an element of the design space, that is

X0 =
{
f−1
θ2

(µ− ϑ0

ϑ1

)
| θ̄ = (ϑ0, ϑ1, θ

T
2 , µ) ∈ Θ̄

}
⊂ XD. (3.4)

In other words, for any set of parameters θ̄ ∈ Θ̄ there exists a (unique) dose d∗ = d∗(θ, µ) ∈
XD, such that f(d∗, θ) = µ. In the following discussion we consider the criterion (3.1) and

(3.3), where the parameter space is of the form

Θ̄β = {θ̄ = (ϑ0, ϑ1, θ
T
2 , µ)

T ∈ Θ̄ | θT2 = β}

for some fixed vector β ∈ Rp−1. Throughout this section we assume that Θ̄ and Θ̄β contain at

least two points (otherwise we have a locally optimal criterion and the results of the previous

section are applicable). Similarly, if the prior π is supported on the set Θ̄β we reflect this in

our notation, i.e. π = πβ, and assume that πβ has at least two support points.

3.1 Standardized minimax optimal designs

For a fixed θ2 = β we introduce for a design of the form (2.4) an induced design on the

design space Z = { fβ(d) | d ∈ XD } by

η̃ =

(
z1 . . . zk
w̃1 . . . w̃k

)
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with zi = fβ(di) ∈ Z, i = 1, . . . , k. It is easy to see that condition (3.4) is equivalent to

Z0 = { fβ(d) | d ∈ X0 } =
{µ− ϑ0

ϑ1

| θ̄ = (ϑ0, ϑ1, θ2, µ)
T ∈ Θ̄β

}
⊂ Z. (3.5)

Observing that for the model (2.5) we have

d∗(θ̄) = f−1
β

(
µ− ϑ0

ϑ1

)
= f−1

β (z∗)

with an obvious definition of z∗ = z∗(θ̄) = fβ(d
∗(θ̄)) it follows that the efficiency in (3.2) is

given by

eff(ξ, θ̄) =
1

4

(
1

1− wk+1

h(z∗, θ)TM̃−(η̃, θ)h(z∗, θ) +
1

wk+1

)
,

where the vector h is defined by

h(z, θ) = g(f−1
β (z), θ) =

(
1, z,

∂f(d, θ)

∂ϑ2

∣∣∣
d=f−1

β (z)
, . . . ,

∂f(d, θ)

∂ϑp

∣∣∣
d=f−1

β (z)

)T
(3.6)

and M̃(η̃, θ) =
∑k

j=1 w̃jh(zj, θ)h
T (zj, θ). In model (2.5) we have ∂f

∂ϑ0
= 1, ∂f

∂ϑ1
= fβ,

∂f
∂ϑj

=

ϑ1
∂fβ
∂ϑj

for j ≥ 2 and consequently the expression hT (z, θ)M̃−(η̃, θ)h(z, θ) does not depend on

the parameters ϑ0, ϑ1 and µ. Because θ2 = β is assumed to be fixed, we reflect this property

by the notation

hT (z, θ)M̃−(η̃, θ)h(z, θ) = hT (z)M̃−(η̃)h(z) (3.7)

where the definition of h(z) and M̃(η) depend on the specific context. Therefore the opti-

mization problem for the standardized minimax AC-optimal design with respect to the set

Θβ reduces to

min
ξ

sup
θ̄∈Θ̄β

ψ(ξ, θ̄)

ψ(ξ∗
θ̄
, θ̄)

= min
wk+1∈(0,1)

min
η̃

sup
z∗∈Z0

1

4

(
1

1− wk+1

hT (z∗)M̃−(η̃)h(z∗) +
1

wk+1

)
. (3.8)

As a consequence, the solution of the standardized minimax optimal design can be found in

two steps. First, one determines a minimax optimal interpolation design η̃∗ in a regression

model with Fisher information h(z)hT (z) and design space Z, where the range of interpola-

tion is given by Z0, that is

η̃∗ = argmin
η̃

sup
z∗∈Z0

hT (z∗)M̃−(η̃)h(z∗). (3.9)

Secondly, one determines the optimal weight wk+1, which specifies the proportion of patients

treated with the control. Problems of the type (3.9) have been discussed by Kiefer and

Wolfowitz (1964a,b) for polynomial regression models and these papers indicated that explicit

solutions of (3.9) are extremely difficult to obtain. Additionally, Dette and O’Brien (1999)
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presented further examples. In particular these authors proved the following equivalence

Theorem, which can be used to check the optimality of a given design.

Theorem 3.1 For a design η̃ on the induced design space Z define

d(z, η̃) = hT (z)M−(η̃)h(z)

and

Π(η̃) =
{
z ∈ Z0 | d(z, η̃) = sup

x∈Z0

d(x, η̃)
}
.

Then the following two properties are equivalent:

1. η̃∗ minimizes supz∈Z0
d(z, η̃).

2. There exists a probability measure π on the set Π(η̃∗), such that for all x ∈ Z the

inequality ∫
Z0

d2(x, z, η̃∗)dπ(z) ≤ sup
z∈Z0

d(z, η̃∗) (3.10)

holds with d(x, z, η̃) = hT (x)M̃−(η̃)h(z). Moreover, in this case there is equality in

(3.10) for each support point of the design η̃∗.

In Subsection 3.3 and 3.4 we will use this result to identify standardized minimax AC-optimal

designs for the model (2.9) and the EMAX model.

3.2 Bayesian optimal designs

An analogue of (3.8) is obtained by similar arguments as in the previous section for the

Bayesian optimality criterion with respect to the prior πβ, that is

ΨB(ξ) =

∫
Θ̄

ψ(ξ, θ̄)

ψ(ξ∗
θ̄
, θ̄)

dπβ(θ̄)

=

∫
Θ̄β

1

4

(
1

1− wk+1

gT (d∗(θ̄), θ)M̃−(ξ̃, θ)g(d∗(θ̄), θ) +
1

wk+1

)
dπβ(θ̄)

=
1

4

(
1

1− wk+1

∫
Z0

hT (z)M̃−(η̃)h(z)dπZ0
β (z) +

1

wk+1

)
, (3.11)

where πZ0
β is the prior induced on the set Z0 by the transformation z = fβ ◦d∗. Consequently,

the Bayesian AC-optimal design problem can be solved, by first determining the design η̃

minimizing ∫
Z0

hT (z)M̃−(η̃)h(z)dπZ0
β (z) = tr(M̃−(η̃)A) (3.12)

and then determining the optimal weight w∗
k+1, where the matrix A is given by A =∫

Z0
h(z)hT (z)dπZ0

β (z). Note that the optimality criterion (3.12) is a classical A-optimality
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criterion which has been well studied in the literature. For example, the equivalence theorem

states that a design η̃ is A-optimal if and only if the inequality

hT (z)M̃−(η̃)AM̃−(η̃)h(z) ≤ tr(M̃−(η̃)A) (3.13)

holds for all z ∈ Z. Moreover, if η̃ is A-optimal, there is equality in (3.13) for all support

points of the design η̃.

3.3 Linear model

It follows from the definition of model (2.9) that the vector h(z, θ) in (3.7) is given by

h(z, θ) = (1, z)T . The following results show that standardized minimax and Bayesian AC-

optimal designs for model (2.9) are saturated. The proofs are given in the Appendix.

Theorem 3.2 If assumption (3.4) is satisfied, then the standardized minimax AC-optimal

design for model (2.9) has at most three support points. Moreover, if XD = [L,R] is an

interval, then the standardized minimax AC-optimal design with respect to the set Θ̄ is given

by

ξ∗ =

(
(L, 0) (R, 0) (C, 0)

√
ρ(2f0(R)−f0(dL)−f0(dR))

2(1+
√
ρ)(f0(R)−f0(L))

√
ρ(f0(dL)+f0(dR)−2f0(L))

2(1+
√
ρ)(f0(R)−f0(L))

1
1+

√
ρ

)
(3.14)

where dL = mind∈X0 d, dR = maxd∈X0 d, and the parameter ρ is given by

ρ =
2(2f0(dL)f0(dR)− f0(R)(f0(dL) + f0(dR))− f0(L)(f0(dL) + f0(dR)))

(f0(dL) + f0(dR)− 2f0(L))(f0(dL) + f0(dR)− 2f0(R))
.

Theorem 3.3 If assumption (3.4) is satisfied, then the standardized Bayesian AC-optimal

design with respect to the prior distribution π has at most three support points.

Moreover, if XD = [L,R] is an interval, then the standardized Bayesian AC-optimal design

with respect to the prior π on the set Θ̄ is given by

ξ∗ =

(
(L, 0) (R, 0) (C, 1)

p(1− w3) (1− p)(1− w3) w3

)
where

p =

√
1 + 2µ1 + µ2√

1 + 2µ1 + µ2 +
√
1− 2µ1 + µ2

, (3.15)

w3 =
1

1 + 1
2
(
√
1 + 2µ1 + µ2 +

√
1− 2µ1 + µ2)

and µ1 and µ2 denote the first and second moment of the induced prior distribution πZ0 on

the set Z0, respectively.
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3.4 EMAX model

In our second example we consider standardized minimax and Bayesian AC-optimal designs

for the EMAX model

f(d, θ) = ϑ0 +
ϑ1d

1 + ϑ2d
, (3.16)

for which an explicit determination of standardized minimax AC-optimal designs is substan-

tially harder. A straightforward calculation shows that for model (3.16) the gradient of the

regression function can be written in the form

g(d, θ) = h(fϑ2(d), θ) = (1, fϑ2(d),−ϑ1f
2
ϑ2
(d))T ,

where fϑ2(x) = x/(1 + ϑ2x). Observing the definition of the induced design space Z it

follows that the vector h in (3.6) is given by h(z, θ) = (1, z,−ϑ1z
2)T and (3.7) holds with

h(z) = (1, z, z2)T . The following results describe the standardized minimax and Bayesian

AC-optimal designs with respect to the set Θ̄β.

Theorem 3.4 If assumption (3.4) is satisfied, then the standardized minimax AC-optimal

design with respect to the set Θ̄β for the EMAX model (3.16) has at most four support points.

Moreover, if additionally XD = [L,R] and X0 = [dL, dR] are intervals and the set

Z0 =

{
d

1 + βd
| d ∈ X0

}
is symmetric with respect to the center of the interval Z = fβ([L,R]) the following statements

hold. If

a =
(dR − dL)(1 + βL)(1 + βR)

(R− L)(1 + βdL)(1 + βdR)
≥ a0 :=

√
1

6
(5−

√
13) ,

then the standardized minimax AC-optimal design is given by

ξ∗ =

(
(L, 0) L+R+2βLR

2+β(L+R)
(R, 0) (C, 1)

p(1− w4) (1− 2p)(1− w4) p(1− w4) w4

)
(3.17)

where p = 1
6
(1 + a2) and w4 =

(
1 +

√
3

2−a2

)−1

. Otherwise, if a ≤ a0, the standardized

minimax AC-optimal design is given by (3.17) where

p =
a2(1 + a2)− a(1− a2)

√
1 + a2

2(3a2 − 1)

and

w4 =
(
1 +

√
1− a2 + 2a4 + 2a(1− a2)

√
1 + a2

)−1

.

Theorem 3.5 If assumption (3.4) is satisfied, then the standardized Bayesian AC-optimal

design with respect to the prior distribution πβ has at most four support points.

12



Moreover, if XD = [L,R] is an interval and the induced prior distribution πZ0
β in (3.11) is

symmetric with respect to the center of the interval Z = fβ([L,R]), then the standardized

Bayesian AC-optimal design with respect to the prior πβ is given by

ξ∗ =

(
(L, 0) L+R+2βLR

2+β(L+R)
(R, 0) (C, 1)

p(1− w4) (1− 2p)(1− w4) p(1− w4) w4

)
, (3.18)

where

p =

√
µ2 + µ4

2(
√
1 + 2µ2 + µ4 +

√
µ2 + µ4)

,

w4 =
1

1 +
√
1 + 2µ2 + µ4 +

√
µ2 + µ4

,

and µj =
∫
Z0
zjdπZ0

β (z) denotes the jth moment of the induced prior distribution πZ0
β (j =

2, 4).

4 Examples

In this section we illustrate the methodology by calculating several AC-optimal designs

and investigate the efficiency of two designs considered by the clinical team for the active

controlled dose-finding study described in Section 1.

4.1 AC-optimal designs

We determine various AC-optimal designs for the EMAX model (3.16), where the dose range

XD is given by the interval [10, 150]. Information available at the design stage of the dose

finding study led to best guesses of the model parameters, namely ϑ2 = 0.025, ϑ1 = 1.125,

ϑ0 = 2.5 and µ = 22.5. By Theorem 2.1 the corresponding locally AC-optimal design is

given by (32, 0) and (C, 1). That is, 50% of the patients are treated with the new drug (at

dose level 32) and the control, respectively. Table 1 displays the locally AC-optimal design

for other parameter constellations, as obtained from Theorem 2.1. For each configuration,

the corresponding locally AC-optimal design advises the experimenter to treat 50% of the

patients with the control and 50% with the new drug at the dose level listed in the table.

ϑ2 ϑ1 ϑ0 µ local ϑ2 ϑ1 ϑ0 µ local

0.025 1.145 2.5 22.5 31.0 0.0283 1.145 2.5 22.5 34.5
0.025 1.12 2.5 23.25 34.2 0.0283 1.12 2.5 23.25 38.6
0.025 1.085 2.5 23.5 37.5 0.0283 1.085 2.5 23.5 42.8

Table 1: Locally AC-optimal designs for various parameter specifications.

The locally AC-optimal designs considered in Table 1 were calculated under the assumption

13



that the elicited parameter values would be the true ones. In order to account for the

uncertainty about the parameter values, we next determine several standardized minimax

and Bayesian AC-optimal designs. We initially keep the parameter ϑ2 = 0.025 fixed and

allow some uncertainty for the other parameters. Table 2 displays the results for ϑ0 ∈ [1, 4]

and different example intervals for ϑ1 and µ. We only show the dose levels and corresponding

weights for the new drug, because the proportion of patients treated with the active control

is easily calculated from these quantities. For example, if

ϑ2 = 0.025, ϑ1 ∈ [0.91, 1.33], µ ∈ [21.5, 25], (4.1)

and the standardized minimax optimal design is used, we obtain from the corresponding

row in Table 2 that 12.5%, 32% and 12.5% of the patients should be treated with the new

drug at dose levels 10, 39.2 and 150, while the remaining 43% of the patients are treated

with the standard treatment. The AC-robust designs reported in Table 2 correspond to a

set Z0 which is symmetric with respect to the center of the induced design space Z. The

Bayesian AC-optimal designs have been calculated with respect to the uniform distribution

on X0 and were determined numerically, even when assuming a fixed parameter ϑ2 = 0.025,

because the induced prior distribution is not symmetric. The corresponding standardized

minimax AC-optimal designs in Table 2, however, were calculated using Theorem 3.4. For

example, in the scenario (4.1) the set X0 defined in (3.4) is given by X0 = [19.61, 77.83]

which yields L = 10, R = 150 and dL = 19.61, dR = 77.83. The induced design space is given

by Z = [8, 31.58] and we obtain Z0 = fϑ2(X0) = [13.16, 26.42]. Therefore, the standardized

AC-optimal design can be directly obtained by an application of Theorem 3.4.

In order to obtain efficient designs which are robust against misspecification of ϑ2, Table 2

also displays the results under the assumption that an interval for the parameter ϑ2 is

specified, more specifically that ϑ2 ∈ [0.023, 0.027] and ϑ2 ∈ [0.016, , 0.025]. In this case,

the standardized minimax AC-optimal designs have to be determined numerically as well.

A comparison of the standardized minimax optimal designs shows only minor differences

between the cases ϑ2 ∈ [0.023, 0.027] and ϑ2 = 0.025. However, if ϑ2 ∈ [0.016, 0.025] the

smallest dose level 10 receives more weight while the highest dose level 150 received less

weight. Moreover, the dose level in the interior design space XD is larger. It is interesting to

note that the proportion of patients treated with the active control is essentially not changing

if there is more uncertainty about the parameter ϑ2. Similar observations can also be made

for the Bayesian AC-optimal designs.

If the set Z0 is not symmetric all designs have to be calculated numerically, even in the case

where the parameter ϑ2 is fixed. Table 3 displays results for some examples in this case.

There are no major differences between the Bayesian AC-optimal designs for ϑ2 = 0.025 and

ϑ2 ∈ [0.023, 0.027]. The differences between the standardized minimax AC-optimal designs

are more pronounced. The lowest dose level receives approximately three times more weight

if uncertainty about the parameter ϑ2 is taken into account in the optimality criterion. In

addition, the weight at the dose level in the interior design space is decreased by 25%.
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ϑ2 ϑ1 µ Bayes minimax

10 35.2 150 10 39.2 150
[0.86, 1.43] [19, 26]

0.09 0.41 0.05 0.16 0.28 0.16
10 36.5 150 10 39.2 150{0.025} [0.91, 1.33] [21.5, 25]
0.06 0.44 0.04 0.125 0.32 0.125
10 38.0 150 10 39.2 150

[0.97, 1.20] [23, 24]
0.03 0.47 0.03 0.08 0.39 0.08

10 35.2 150 10 37.1 150
[0.86, 1.43] [19, 26]

0.09 0.41 0.06 0.15 0.26 0.19
10 36.6 150 10 39.7 150[0.023, 0.027] [0.91, 1.33] [21.5, 25]
0.06 0.44 0.04 0.14 0.32 0.11
10 38.1 150 10 39.2 150

[0.97, 1.20] [23, 24]
0.03 0.47 0.03 0.08 0.38 0.10

10 33.9 150 10 42.9 150
[0.86, 1.43] [19, 26]

0.11 0.40 0.04 0.19 0.27 0.14
10 34.1 150 10 43.1 150[0.016, 0.025] [0.91, 1.33] [21.5, 25]
0.08 0.43 0.03 0.17 0.32 0.09
10 34.6 150 10 41.1 150

[0.97, 1.20] [23, 24]
0.05 0.46 0.02 0.13 0.37 0.07

Table 2: Bayesian and standardized minimax AC-optimal designs for various specifications
for the parameter ϑ1, ϑ2 and µ where the intercept satisfies ϑ0 ∈ [1, 4]. The set Z0 defined in
(3.5) is symmetric with respect to the center of the induced space Z. First row: dose levels
of the new compound. Second row: proportion of patients treated at these dose levels.

Again the proportion of patients treated with the control is essentially the same in all three

scenarios, regardless of whether a Bayesian or standardized minimax approach is employed.

Note that the intermediate dose level for the Bayesain AC-optimal is smaller than for the

standardized minimax AC-optimal design. Moreover, the weights at the dose levels 10 and

150 are mostly smaller for the Bayesian designs compared with the minimax designs.

4.2 Relative efficiencies

In this section we investigate the relative efficiencies of the robust designs determined in

Section 4.1 in comparison with two designs considered by the clinical team at the planning

stage of the dose finding study. These two standard designs S1 and S2 reflect the current

practice of allocating patients equally across several doses, which are often chosen to be

equally distant in the original or in a logarithmic scale, that is

ξS1 =

(
(10, 0) (45, 0) (80, 0) (115, 0) (150, 0) (C, 1)

1
6

1
6

1
6

1
6

1
6

1
6

)
, (4.2)

ξS2 =

(
(10, 0) (20, 0) (39, 0) (76, 0) (150, 0) (C, 1)

1
6

1
6

1
6

1
6

1
6

1
6

)
. (4.3)
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ϑ2 Bayes minimax

10 34.0 150 10 39.2 150{0.025} ξB1 0.07 0.44 0.03
ξM1 0.05 0.44 0.05

10 33.9 150 10 39.9 150
[0.023, 0.027] ξB2 0.07 0.44 0.03

ξM2 0.14 0.33 0.10

10 31.9 150 10 43.4 150
[0.016, , 0.025] ξB3 0.09 0.42 0.02

ξM3 0.18 0.34 0.05

Table 3: Bayesian and standardized minimax AC-optimal designs under the assumption that
ϑ0 ∈ [1, 2], ϑ1 ∈ [0.92, 1.38] and µ ∈ [20, 23]. The range for the parameter ϑ2 is shown in
the first column. The induced space Z0 defined in (3.5) is not symmetric with respect to the
center of the induced design space Z. First row: dose levels of the new compound. Second
row: proportion of patients treated at these dose levels.

It follows from the discussion in Section 3 that the relative efficiencies depend on the unknown

parameter θ̄ only through the target dose d∗ = f−1
ϑ2

(µ−ϑ0

ϑ1
). Table 4 exemplarily displays the

relative efficiencies of various designs for estimating the target dose d∗ = 32. A design is

better if its relative efficiency (which is always larger or equal than 1) is closer to 1. As

seen from Table 4 the robust designs achieve considerably better relative efficiencies than

the two standard designs. The Bayesian AC-optimal designs usually yield better relative

efficiencies for estimating the target dose than the minimax AC-optimal designs. However,

this observation depends on the specific target dose (in our case d∗ = 32). This can be seen

in Figure 1, where we exemplarily show the relative efficiency of the standardized minimax

AC-optimal design ξM3 and Bayesian AC-optimal design ξB3 for various values of the target

dose d∗ and the parameter ϑ2 (these are determined by the specification of the set Θ̄). We

observe that the relative efficiencies of the standardized minimax AC-optimal designs vary

between 1.6 and 2.0, while the range of efficiencies obtained from the Bayesian AC-optimal

design is considerably larger, namely [1.4, 3.9]. If, for example, the target does is d∗ = 45,

the standardized minimax AC-optimal design performs better than the Bayesian AC-optimal

design.

Finally, we compare these surface with the corresponding relative efficiencies obtained from

the two standard designs, as displayed in Figure 2. Both standard designs perform uniformly

worse than the standardized minimax AC-optimal design. The efficiency of the equidistant

design ξS1 varies between 2.5 and 2.9, while the efficiency of the design ξS2 is smaller and

varies between 2.1 and 2.5. On the other hand the Bayesian AC-optimal design outperforms

the two standard designs whenever the target does is less than 45 and larger than 20. If

ξS1 ξS2 ξB1 ξB2 ξB3 ξM1 ξM2 ξM3

eff(ξ, θ̄) 2.94 2.40 1.58 1.58 1.66 1.68 1.89 1.95

Table 4: Relative efficiencies of reference and robust designs for estimating the target dose
d∗ = 32.
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Figure 1: Relative efficiencies of the designs ξB3 and ξM3 with varying parameter ϑ2 ∈
[0.016, , 0.025] and target dose d∗ ∈ [16.7, 59.5].

Figure 2: Relative efficiencies of the references designs ξS1 and ξS2 with varying parameter
ϑ2 ∈ [0.016, , 0.025] and target dose d∗ ∈ [16.7, 59.5].

d∗ < 20 there are no substantial differences between the Bayesian AC-optimal and the two

standard designs, while the latter have a better performance if d∗ > 45. On the basis of these

calculations (and similar results for other parameter specifications, which are omitted here

for the sake of brevity), we recommend using a standardized minimax AC-optimal design.

5 Conclusion

In this paper we present a rigorous approach for the construction of optimal designs for dose

finding studies with an active control. Despite of their practical importance, optimal design

problems of this type have not been studied in the literature so far to our best knowledge.

Locally optimal designs for estimating the target dose are derived explicitly. These designs

are used for the construction of robust designs which require much less prior knowledge

about the parameters of the model used for describing the dose response relationship. It is

demonstrated that the new designs outperform several standard designs which are currently

used in clinical practice.
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A challenging future research project in this context is the important problem of model

uncertainty which typically appears in this type of investigations, because in many appli-

cations it is very difficult to specify an adequate nonlinear model for the description of the

dose response relationship. In most cases there exist several competing models (e.g. EMAX,

log-linear and logistic) for this purpose. A typical strategy to obtain a good model for the

description of the dose response relationship is to test the null hypothesis of a constant

dose-response curve at a significance level of, say 5% (adjusted for multiplicity), against the

alternative hypothesis of a non-constant dose response curve for each of the four candidate

models. Among those models where the null hypothesis is rejected, the model with the

highest value of the AIC (Akaike information criterion) will be selected for the estimation of

the target dose, see e.g. Bretz et al. (2005). In a recent paper Dette et al. (2008) proposed

model robust designs for MED estimation for a class of “classical” dose finding models by

maximizing multiple objective criteria [see for example Cook and Wong (1994)]. In the fu-

ture we plan to adapt this methodology to the problem of constructing AC-optimal designs

for several competing active control models [see also Bornkamp et al. (2011) for a Bayesian

approach to address model uncertainty in a “classical” dose finding study].

In this paper we focused on one possibility of estimating a target dose that takes the treat-

ment effect of an active control into account. However, alternative target dose definitions

might be used in special situations. For example, if the safety profile of the new compound is

better than that of the active control, one might be interested in estimating the smallest dose

that is not relevantly inferior, i.e. d∗ = d∗(θ, µ, δ) = f−1(µ, θ, δ) = f−1
θ2

(µ−δ−ϑ0

ϑ1
) for a fixed

non-inferiority margin δ > 0. Yet a different alternative target dose arises in dose finding

studies which include both an active control and placebo. In such situations, one might be

interested in a combined objective by estimating the smallest dose that is not worse than

the active control and is still better than placebo by a certain clinically relevant amount.

A careful inspection of the proofs in Section 6 shows that the methodology can directly be

applied to this problem by replacing µ with µ− δ; details are left to the reader.

A different line of research is to derive optimal designs for endpoints that do not follow a

normal distribution. For example, in chronic gout studies (which is a different situation than

the acute gout study considered in Section 1) the primary endpoint is often defined as the

number of flares occurring per subject within 16 weeks of randomization. These flares can

be modeled using a negative binomial distribution and a common overdispersion (variance

divided by expectation minus 1) for all treatment arms. The logarithm of the expectation

of the number of flares during 16 weeks is then described by a regression model for the dose-

response relationship between the (single) dose groups of the new compound and a constant

parameter for the comparator. Again, we leave the determination of optimal designs in such

situations for future research.
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6 Appendix. Technical details

Proof of Theorem 2.1: We will show at the end of this proof that for the models under

consideration we have
∂d∗(θ, µ)

∂µ
g(d∗, θ) = −∇θd

∗(θ, µ), (6.1)

where ∇θ denotes the gradient with respect to the parameter θ. Therefore we obtain for the

gradient with respect to θ̄ = (θ, µ)

∇d∗(θ, µ) =
(
∇T

θ d
∗(θ, µ),

∂d∗(θ, µ)

∂µ

)T
=
∂d∗(θ, µ)

∂µ

(
−gT (d∗, θ), 1

)T
,

and the optimality criterion defined in (2.6) is in fact a special case of the c-optimality

criterion (2.7) with the vector

c = (−gT (d∗, θ), 1)T . (6.2)

It can be shown [see Pukelsheim (2006)] that a design ξ minimizes cTM−(ξ, θ)c if and only

if there exists a generalized inverse G of M−(ξ, θ) such that for all (d, κ) ∈ X the inequality

cTM−(ξ, θ)c ≥
(
γT ((d, κ), θ)Gc

)2
(6.3)

is satisfied. Moreover, equality holds in (6.3) for all support points of any locally c-optimal

design. Therefore a design ξ∗
θ̄
is a locally optimal AC-design if and only if there exists a

generalized inverse of the matrix M(ξ∗
θ̄
, θ), such that the inequalities

cTM−(ξ∗θ̄ , θ)c ≥
(
(gT (d, θ), 0)Gc

)2
(6.4)

cTM−(ξ∗θ̄ , θ)c ≥ ((0, 1)Gc)2 (6.5)

hold for all d ∈ XD, where the vector c is given by (6.2). Note that the inequalities (6.4) and

(6.5) correspond to the case κ = 0 and κ = 1 in (2.7), respectively. The information matrix

of the candidate design ξ∗
θ̄
defined in (2.8) is obtained as

M(ξ∗θ̄ , θ) =
1

2

(
g(d∗, θ)gT (d∗, θ) 0

0 1

)
.

Observing that in model (2.5) the first coordinate of the vector g(d, θ) is given by 1 it

now follows by a straightforward calculation that the matrix G = 2
(
e1e

T
1 + ep+2e

T
p+2

)
is

a generalized inverse of the information matrix M(ξ∗
θ̄
, θ), where ei ∈ Rp+2 denotes the i-

th unit vector. Using this generalized inverse in the equivalence theorem with the vector

c = (−g(d∗, θ)T , 1)T it follows that the design ξ∗
θ̄
fulfills the inequalities (6.4) and (6.5)

because both sides are equal to 4.

We conclude the proof showing the relation (6.1) which is essential for the argument above.
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For this purpose we recall the definition of the vector θ̄ = (θ, µ)T ∈ Rp+2 and consider the

function

F (θ̄, d) = µ− f(d, θ).

By assumption there exists a solution, say d∗(θ̄) = d∗(θ, µ) of the equation F (θ̄, d) = 0

with respect to d and ∂f(d,θ)
∂d

̸= 0. Therefore the implicit function theorem implies that the

function θ̄ → d∗(θ̄) is differentiable with derivative

∂d∗(θ̄)

∂θ̄
= −

(
∂F (θ̄, d)

∂d

∣∣∣
d=d∗(θ̄)

)−1
∂F (θ̄, d)

∂θ̄

∣∣∣
d=d∗(θ̄)

= −
(
∂F (θ̄, d)

∂d

∣∣∣
d=d∗(θ̄)

)−1

(−gT (d∗, θ), 1)T .

This yields

∇θd
∗(θ̄) =

(
∂F (θ̄, d)

∂d

∣∣∣
d=d∗(θ̄)

)−1

g(d∗, θ),
∂d∗(θ̄)

∂µ
= −

(
∂F (θ̄, d)

∂d

∣∣∣
d=d∗(θ̄)

)−1

,

and proves (6.1), which completes the proof of Theorem 2.1. �

Proof of Theorem 2.2: In model (2.9) the gradient in (2.2) is given by g(d, θ) = (1, f0(d))
T

and we obtain from (2.10) and Elfving’s theorem [see Elfving (1952)] that the design ξ̃

defined in (2.4) minimizes gT (d∗, θ)M̃−(ξ̃, θ)g(d∗, θ) where the minimum value is given by 1.

Therefore it follows from Theorem 2.1 that the design ξ∗
θ̄
defined in Theorem 2.2 is locally

AC-optimal. �

Proof of Theorem 3.2: We first show that the optimal design η̃∗ defined by (3.9) is

supported at at most 2 points, which implies the statement regarding the number of support

points. For this purpose we apply Theorem 3.1 and recall that for model (2.9) the vector h

in this criterion is given by h(z, θ) = (1, z)T . Consequently, it is easy to see that the left

hand side of inequality (3.10) is a polynomial of degree 2. Because equality holds in (3.10)

for all support points of η̃∗ this implies that the optimal design η̃∗ has at most 2 support

points. Consequently, the standardized minimax AC-optimal design has at most 3 support

points.

We will also use Theorem 3.1 to show that the design η̃∗ minimizing (3.9) is of the form

η̃∗ =

(
zL zR

zl+zr−2zR
2(zL−zR)

1− zl+zr−2zR
2(zL−zR)

)
(6.6)

where the points zL, zR, zl and zr are defined by zL = f0(L) = mind∈XD
f0(d), zR = f0(R) =

maxd∈XD
f0(d), zl = f0(dL) = mind∈X0 f0(d) and zr = f0(dR) = maxd∈X0 f0(d), respectively.

For this purpose we note that a straightforward but tedious calculation gives Π(η̃∗) = {zl, zr}
in Theorem 3.1. Equivalently, hT (zl)M̃

−1(η̃∗)h(zl) = hT (zr)M̃
−1(η̃∗)h(zr), where h(z) =
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(1, z)T and M̃(η̃∗) =
∫
h(z)hT (z)dη̃∗(z). This yields

sup
z∈Z0

d(z, η̃∗) = d(zl, η̃
∗) = 1− (zl − zr)

2

(zl + zr − 2zL)(zl + zr − 2zR)

and

d2(x, z, η̃∗) =
4(x(2z − zl − zr)− z(zl + zr) + zL(zl + zr) + (zl + zr − 2zL)zR)

2

(−2zL + zl + zr)2(−2zR + zl + zr)2
.

If π is a prior distribution on the set Π(η̃∗) with weights p and 1− p at the points zl and zr,

respectively, we have∫
z∈Z0

d2(x, z, η̃∗)dπ(z) = pd2(x, zl, η̃
∗) + (1− p)d2(x, zr, η̃

∗) = P2(x).

If the design η̃∗ in (6.6) was optimal, then it follows from Theorem 3.1 that for x = zL there

must be equality in (3.10) which determines the weight p, that is

p =
1

2

(
2 +

zL − zl
zr + zl − 2zL

+
zR − zl

zr + zl − 2zR

)
.

The function P2(x) is a polynomial of degree two, with positive leading coefficient

4(zl − zr)
2

(−2zL + zl + zr)2(−2zR + zl + zr)2

and minimum at the point zL+zR
2

. Therefore it attains maxima in the set Z at the points

zL and zR with value d(zl, η̃
∗) and by Theorem 3.1 the design η̃∗ is optimal i.e. it minimizes

(3.9). For the determination of the standardized minimax AC-optimal design it remains to

determine the weight w3. Inserting η̃
∗ into (3.8) leads to

k(w3) =
1

1− w3

h(z∗)M̃−1(η̃∗)h(z∗) +
1

w3

=
ρ

1− w3

+
1

w3

,

where

ρ =
2(2zlzr − zR(zl + zr)− zL(zl + zr − 2zR))

(zl + zr − 2zL)(zl + zr − 2zR)
.

The function k is minimal for w3 =
1

1+
√
ρ
and with definition (2.4) it follows that

w1 =

√
ρ(2zR − zl − zr)

2(1 +
√
ρ)(zR − zL)

and w2 =

√
ρ(zl + zr − 2zL)

2(1 +
√
ρ)(zR − zL)

.

Resubstitution of zl, zr, zL and zR shows that the design given by (3.14) is standardized

minimax AC-optimal. �
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Proof of Theorem 3.3: It follows from the discussion in Section 3.2 that the Bayesian

AC-optimal design can be found by solving the A-optimal design problem (3.12), where

A = (µi+j)i,j=0,1 = (
∫
Z0
zi+jdπZ0

β (z))i,j=0,1 and h(z) = (1, z)T . The statement regarding the

support points is obtained in the same way as given in the proof of Theorem 3.2 using the

inequality (3.13). A further application of (3.13) shows that the design η̃∗ with masses p

and 1 − p at the points −1 and 1 minimizes (3.12), where the weight p is given by (3.15).

The corresponding minimal value is given by

tr(M−1(η̃∗)A) =
1

4

(√
1− 2µ1 + µ2 +

√
1 + 2µ1 + µ2

)2
Therefore the assertion follows by minimizing the expression (3.11) with respect to the

remaining weight w3 and transforming the design η̃∗ onto the design space XD. �

Proof of Theorem 3.4: The statement regarding the number of support points follows

along the lines given in the proof of Theorem 3.2, where in this case the vector h in (3.7)

is given by h(z) = (1, z,−z2). In order to prove the second part of the result we note that

the set Z0 is an interval and consequently the design η∗ minimizing (3.9) has a nonsingular

information matrix M(η̃∗) and has therefore exactly 3 support points. Note also that the

criterion d(z, η̃∗) = hT (z)M−1(η̃∗)h(z) is invariant with respect to linear transformations of

the form z → αz+β of the set Z0 and Z and therefore we assume without loss of generality

that Z = [−1, 1] and Z0 = [−a, a]. From a standard convexity argument it follows that the

design η̃∗ minimizing

max
z∈[−a,a]

hT (z)M̃−1(η̃)h(z)

is symmetric with masses p, 1− 2p, p at the points −1, 0, 1 and inverse information matrix

M̃−1(η̃∗) =
1

2p(1− 2p)

 2p 0 −2p

0 1− 2p 0

−2p 0 1

 .

Recalling the definition of the optimization problem (3.8) we obtain that the function z →
hT (z)M̃−1(η̃∗)h(z) is a symmetric polynomial of degree 4 with positive leading coefficient.

Therefore the maximum in (3.9) is attained at most at the two boundary points of the set Z0

and one interior point of Z0, and it follows by symmetry that we have to distinguish three

cases for the set Π(η̃∗) in Theorem 3.1, that is

(1) Π(η̃∗) = {−a, 0, a}, (2) Π(η̃∗) = {−a, a}, (3) Π(η̃∗) = {0}.

In the first case we note that the identity d(a, η̃∗) = d(0, η∗) determines the weight p, i.e.

p = 1
6
(1 + a2) with value

max
z∈[−a,a]

d(z, η̃∗) = d(0, η∗) =
3

2− a2
. (6.7)
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In the second case the condition

d(−a, η̃∗) = d(a, η̃∗) =
2p+ (1− 6p)a2 + a4

2p(1− 2p)
(6.8)

is satisfied for any symmetric design and cannot be used to determine p directly. However,

the optimal design would minimize maxz∈[−a,a] d(z, η̃) = d(a, η̃), and this yields

p =
a2 + a4 −

√
a2(1− a2)(1− a4)

2(−1 + 3a2)
(6.9)

with value

max
z∈[−a,a]

d(z, η̃∗) = d(±a, η̃∗) = 1− a2 + 2a4 + 2a(1− a2)
√
1 + a2. (6.10)

Finally, for the third case note that by (6.8) the inequality (1− 2p)−1 = d(0, η̃∗) > d(±a, η̃∗)
is equivalent to the inequality p ≥ (1 + a2)/6. Therefore minimizing (1− 2p)−1 with respect

to this condition gives p = (1+ a2)/6 and a design satisfying (1), that is Π(η̃∗) = {−a, 0, a}.
Consequently, the third case can not occur and we only have to compare the results corre-

sponding to cases (1) and (2), for which the optimal values are given by (6.7) and (6.10),

respectively. A simple calculation shows that the inequality

3

2− a2
≤ 1− 2a2 + 2a4 + 2a(1− a2)

√
1 + a2

holds in the interval [0, 1] if and only if the inequality a ≥ a0 =
√

(5−
√
13)/6 ≈ 0.482087

is satisfied. It follows that the criterion (3.9) is minimized for the design η̃∗ with masses

p, 1 − 2p, p at the points −1, 0, 1, respectively, where the weight p is given by (1 + a2)/6 if

a ≥ a0 and (6.9) if a < a0. The assertion of Theorem 3.4 finally follows by transforming

these results to the original design space (note that the transformation is nonlinear). �

Proof of Theorem 3.5: We may assume without loss of generality that Z = [−1, 1].

Now by assumption the induced prior distribution is symmetric and as a consequence the

elements in the matrix A = (
∫
Z0
zi+jdπZ0

β (z))2i,j=0 vanish, whenever i + j is odd. Therefore

a standard argument shows that there exists a symmetric design η̃∗ minimizing (3.12) and

in the following we will investigate if a symmetric design supported at the points −1, 0, and

1 is optimal. For such a design the optimal weights can be computed using a result from

chapter 8 in Pukelsheim (2006), which gives for the corresponding weights

w̃1 = w̃3 =

√
µ2 + µ4

2(
√
1 + 2µ2 + µ4 +

√
µ2 + µ4)

, w̃2 =

√
1 + 2µ2 + µ4√

1 + 2µ2 + µ4 +
√
µ2 + µ4

,

respectively, where µj denotes the jth moment of the distribution πZ0
β . Finally, a straightfor-

ward application of the equivalence theorem (3.13) shows that the design with weights w̃1, w̃2
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and w̃3 at the points −1, 0 and 1 is in fact minimizing (3.12). The value of the corresponding

criterion in (3.12) is given by
(√

1 + 2µ2 + µ4 +
√
µ2 + µ4

)2
. Minimizing the criterion (3.11)

with respect to the remaining weight w4 and transforming the support points from the in-

duced design space Z to the given design space XD shows that the Bayesian AC-optimal

design with respect to the prior πβ is given by (3.18), which completes the proof of Theorem

3.5. �
Disclaimer for Norbert Benda: The views expressed in this article are views of the

author and do not necessarily reflect the views of the BfArM.
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