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Ruhr University at Bochum∗ and St.Petersburg State University†

The paper is devoted to the explicit construction of optimal de-
signs for discrimination between two polynomial regression models
of degree n − 2 and n. In a fundamental paper Atkinson and Fe-
dorov (1975a) proposed the T -optimality criterion for this purpose.
Recently Atkinson (2010) determined T -optimal designs for polyno-
mials up to degree 6 numerically and based on these results he conjec-
tured that the support points of the optimal design are cosines of the
angles that divide a half of the circle into equal parts if the coefficient
of xn−1 in the polynomial of larger degree vanishes. In the present
paper we give a strong justification of the conjecture and determine
all T -optimal designs explicitly for any degree n ∈ N. In particular,
we show that there exists a one-dimensional class of T -optimal de-
signs. Moreover, we also present a generalization to the case when the
ratio between the coefficients of xn−1 and xn is smaller than a certain
critical value. Because of the complexity of the optimization problem
T -optimal designs have only been determined numerically so far and
this paper provides the first explicit solution of the T -optimal design
problem since its introduction by Atkinson and Fedorov (1975a). Fi-
nally, for the remaining cases (where the ratio of coefficients is larger
than the critical value) we propose a numerical procedure to calculate
the T -optimal designs. The results are also illustrated in an example.

1. Introduction. The problem of identifying an appropriate model in a
class of competing regression models is of fundamental importance in regres-
sion analysis and occurs often in real experimental studies. It is nowadays
widely accepted that good experimental designs can improve the perfor-
mance of discrimination, and several authors have addressed the problem
of constructing optimal designs for this purpose [see Hunter and Reiner
(1965), Stigler (1971), Atkinson and Fedorov (1975a,b), Hill (1978), Fedorov
(1981), Denisov et al. (1981), Studden (1982), Fedorov and Khabarov (1986),
Spruill (1990), Dette (1994, 1995), Dette and Haller (1998), Song and Wong
(1999), Ucinski and Bogacka (2005), Wiens (2009, 2010) among many oth-
ers]. In a fundamental paper Atkinson and Fedorov (1975a) introduced the
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2 H. DETTE, V.B. MELAS, P. SHPILEV

T -optimality criterion for discriminating between two competing regression
models. As an example, these authors constructed T -optimal designs for a
constant and a quadratic model. Since its introduction the problem of de-
termining T -optimal designs has been considered by numerous authors [see
Atkinson and Fedorov (1975b), Ucinski and Bogacka (2005), Wiens (2009),
Tommasi and López-Fidalgo (2010) among others]. In order to demonstrate
the benefits of the T -optimal design we display in Table 1 the simulated
power of the F -test for the hypothesis H0 : θ2,2 = θ2,3 = 0 in the cubic
regression model η(x, θ) =

∑3
j=0 θ2jx

j on the interval [−1, 1] (with stan-
dard normal distributed errors), where observations are taken according to
two designs. The first design is the commonly used equidistant design with
12 observations at the four points −1,−1/3, 1/3 and 1, respectively, while
the second design is a T -optimal design as considered in this paper with 8
observations at the two points −1, 1 and 16 observations at the points two
−1/2, 1/2, respectively. We observe clear advantages (with respect to the
power of the F -test) for the T -optimal design.

θ2,3 0 0.5 1.0 1.5 2.0

T -optimal 0.051 0.104 0.301 0.641 0.896
equidistant 0.053 0.092 0.218 0.438 0.638

Table 1
Simulated power of the F -test in a cubic regression model

∑3
j=0 θ2jx

j for the hypothesis
of linear regression model for various values of θ2,3 and different designs (θ2,2 = 0).

Since its introduction T -optimal designs have found numerous applica-
tions including such important fields as chemistry of pharmacokinetics [see
Atkinson et al. (1998), Asprey and Macchietto (2000), Ucinski and Bogacka
(2005) or Foo and Duffull (2011) among others]. The T -optimal design prob-
lem is essentially a minimax problem and except for very simple models the
corresponding optimal designs are not easy to find and have to be deter-
mined numerically. In a recent paper Dette and Titoff (2009) discussed the
T -optimal design problem from a general point of view and related it to a
nonlinear problem in approximation theory. As an illustration, designs for
discriminating between a linear model and a cubic model without quadratic
term were presented and it was shown that T -optimal designs are in general
not unique.

Atkinson (2010) considered a similar problem of this type and studied
the problem of discriminating between two competing polynomial regression
models which differ in the degree by two. This author determined T -optimal
designs for polynomials up to degree 6 numerically where the coefficient of
xn−1 in the polynomial of larger degree (say n) vanishes. Based on these
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 3

results he conjectured that the support points of the T -optimal design are
cosines of angles dividing a half of circle into equal parts.

The present paper has two purposes. In particular, we prove the conjecture
raised in Atkinson (2010) and derive explicit solutions of the T -optimal
design problem for discriminating between polynomial regression models of
degree n−2 and n for any n ∈ N. Moreover, we also determine the T -optimal
designs analytically in the case when the ratio of the coefficients of the terms
xn−1 and xn is sufficiently small. The situation considered in Atkinson (2010)
corresponds to the case where this ratio vanishes, and in this case we show
that there exists a one-dimensional class of T -optimal designs. To our best
knowledge these results provide the first explicit solution of the T -optimal
design problem in a non-trivial situation. Our results provide further insight
into the complicated structure of the T -optimal design problem. Finally,
in the case where the coefficient exceeds the critical value we suggest a
procedure to determine the T -optimal design numerically.

2. The T -optimal design problem revisited. Consider the classical
regression model

(2.1) y = η(x) + ε,

where the explanatory variable x varies in the design space X and observa-
tions at different locations, say x and x′ are assumed to be uncorrelated with
the same variance. In (2.1) the quantity ε denotes a random variable with
mean 0 and variance σ2 and η is a function, which is called regression func-
tion in the literature. We assume that the experimenter has two parametric
models for this function in mind, that is

(2.2) η1(x, θ1) and η2(x, θ2)

and the first goal of the experiment is to discriminate between these two
models. In (2.2) the quantities θ1 and θ2 denote unknown parameters which
vary in compact parameter spaces, say Θ1 ⊂ Rm1 and Θ2 ⊂ Rm2 , and have
to be estimated from the data. In order to find “good” designs for discrim-
inating between the models η1 and η2 we consider approximate designs in
the sense of Kiefer (1974), which are defined as probability measures on the
design space X with finite support. The support points of an (approximate)
design ξ give the locations where observations are taken, while the weights
give the corresponding relative proportions of total observations to be taken
at these points. If the design ξ has masses ωi > 0 at the different points
xi (i = 1, . . . , k) and N observations can be made by the experimenter, the
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quantities ωiN are rounded to integers, say ni, satisfying
∑k

i=1 ni = N , and
the experimenter takes ni observations at each location xi (i = 1, . . . , k).

To determine a good design for discriminating between the models η1 and
η2 Atkinson and Fedorov (1975a) proposed in a fundamental paper to fix
one model, say η1 (more precisely its corresponding parameter θ1) and to
determine the design which maximizes the minimal deviation between the
model η1 and the class of models defined by η2, that is

ξ∗ = argmax
ξ

∫
χ
(η1(x, θ1)− η2(x, θ

∗
2))

2 ξ(dx),

where the parameter θ∗2 minimizes the expression

θ∗2 = arg min
θ2∈Θ2

∫
χ
(η1(x, θ1)− η2(x, θ2))

2 ξ(dx).

Note that θ∗2 is not an estimate but corresponds to best approximation
of the “given” model η1(·, θ1) by models of the form {η2(·, θ2) | θ2 ∈ Θ2}
with respect to a weighted L2-norm. Since its introduction the T -optimal
design problem has found considerable interest in the literature and we refer
the interested reader to the work of Ucinski and Bogacka (2005) or Dette
and Titoff (2009) among others. In general, the determination of T -optimal
designs is a very difficult problem and explicit solutions are – to our best
knowledge – not available except for very simple models with a few param-
eters. In this paper we present analytical results for T -optimal designs, if
the interest is in the discrimination between two polynomial models which
differ in the degree by two. To be precise, we consider the case where the
regression functions η1(x, θ1) and η2(x, θ2) are given by

(2.3) η1(x, θ1) = θ1,0 + θ1,1x+ . . .+ θ1,n−2x
n−2 + θ1,n−1x

n−1 + θ1,nx
n,

and

(2.4) η2(x, θ2) = θ2,0 + θ2,1x+ . . .+ θ2,n−2x
n−2,

respectively, and the design space is given by X = [−1, 1]. In model (2.3) the
parameter θ1 is given by θ1 = (θ1,0, θ1,1, . . . , θ1,n−2, bθ1,n, θ1,n)

T , where the
ratio of the coefficients corresponding to the highest powers b = θ1,n−1/θ1,n
and the parameter θ1,n specify the deviation from a polynomial of degree
n− 2.

In the following discussion we define

η(x, α, b, θ1,n) = η1(x, θ1)− η2(x, θ2)(2.5)

= α0 + α1x+ . . .+ αn−2x
n−2 + θ1,n(bx

n−1 + xn),
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 5

where we use the notation αi = θ1,i−θ2,i (i = 0, . . . , n−2), then the problem
of finding the T -optimal design for the models η1 and η2 can be reduced to

ξ∗ = argmax
ξ

∫
χ

(
α∗
0 + α∗

1x+ . . .+ α∗
n−2x

n−2 + θ1,n(bx
n−1 + xn)

)2
ξ(dx)

where α∗ = (α∗
1, . . . , α

∗
n−2)

T is a vector minimizing the expression

α∗ = argmin
α

∫
χ
(η(x, α, b, θ1,n))

2 ξ(dx).

It is now easy to see that for a fixed value of b = θ1,n−1/θ1,n the T -optimal
design does not depend on the parameter θ1n. In the next section we give
the complete solution of the T -optimal design problem if the absolute value
of the parameter b = θ1,n−1/θ1,n less or equal to some critical value.

3. T -optimal designs for small values of |b| = |θ1,n−1/θ1,n|. Through-
out this section we assume that the parameter b satisfies

(3.1) |b| = |θ1,n−1/θ1,n| ≤ n(1− cos
(π
n

)
)/(1 + cos

(π
n

)
) = n tan2

( π
2n

)
,

then it is easy to see that all points

(3.2) t∗i (b) = −
(
1 +

|b|
n

)
cos

(
iπ

n

)
− |b|
n
, i = 1, . . . , n

are located in the interval [−1, 1]. Our first result gives an explicit solution
of the T -optimal design problem in the case b = θ1,n−1 = 0 and – as a
by-product – proves the conjecture raised in Atkinson (2010).

Theorem 3.1 A design ξ is T -optimal for discriminating between the mod-
els (2.3) and (2.4) with θ1n−1 = 0 on the interval [−1, 1] if and only if it
can be represented in the form ξ = (1 − α)ξ1 + αξ2, where α ∈ [0, 1], the
measures ξ1 and ξ2 are defined by

ξ1 =

(
t∗1(0) . . . t∗n(0)
ω∗
1 . . . ω∗

n

)
, ξ2 =

(
−t∗n(0) . . . −t∗1(0)
ω∗
n . . . ω∗

1

)
,(3.3)

and the weights and support points are given by
(3.4)

ω∗
i =

2

n
sin2

(
iπ

2n

)
, ω∗

n−i =
2

n
cos2

(
iπ

2n

)
, i = 1, . . . ,

⌊n
2

⌋
, ω∗

n =
1

n
,

and (3.2) for b = 0, respectively.
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6 H. DETTE, V.B. MELAS, P. SHPILEV

Proof of Theorem 3.1. It was proved by Dette and Titoff (2009) [see
Theorem 2.1] that any T -optimal design on the interval [−1, 1] for discrim-
inating between the polynomials

∑n−2
j=0 θ2,jx

j and

η1(x, θ1) =

n−2∑
j=0

θ1,jx
j + θ1nx

n

(note that θ1n−1 = 0) is supported at the set of the extremal points

A =
{
x ∈ [−1, 1]

∣∣∣ ψ∗(x) = sup
t∈[−1,1]

|ψ∗(t)|
}

where ψ∗(x) = η1(x, θ1)−
∑n−2

j=0 θ2jx
j and

(3.5) θ2 = (θ2,0, . . . , θ2,n−2)
T = arg min

θ2∈Rn−1
sup

x∈[−1,1]
| η1(x, θ1)−

n−2∑
j=0

θ2,jx
j |

is the parameter corresponding to the best approximation of η1(x, θ1) with
respect to the sup-norm. By a standard result in approximation theory
[see Achiezer (1956), Section 35 and 43] it follows that the solution of
the problem (3.5) is unique and given by ψ∗(x) = θ1,n2

−(n−1)Tn(x), where
Tn(x) = cos(n arccosx) is the nth Chebyshev polynomial of the first kind.
Note that Tn(x) is an even or odd polynomial of degree n with leading coef-
ficient 2n−1 [see Szegö (1975)]. The corresponding extremal points are given
by x0 = t∗1(0) = −1, xi = t∗i (0) = − cos iπ

n , i = 1, . . . , n− 1, xn = t∗n(0) = 1.
Now it follows from Theorem 2.2 in Dette and Titoff (2009) that a design

ξ∗ is T -optimal if and only if it satisfies the system of linear equations

(3.6)

∫
A
ψ∗(x)xkdξ∗(x) = 0, k = 0, . . . , n− 2

(note that in the case of linear models the necessary condition in Theorem
2.2 in Dette and Titoff (2009) is also sufficient). Therefore for proving that
ξ∗1 = ξ1 is a T -optimal design it is sufficient to verify the identities

(3.7)

∫
ψ∗(x)dξ∗1(x) = θ1,n2

−(n−1)(−1)n
n∑

i=1

(−1)ixki ω
∗
i = 0

(k = 0, 1, . . . , n − 2),which will be done in the Appendix. In a similar way
we can check that the design ξ∗2 in (3.3) is a T -optimal design. Note that

supp (ξ∗1) ∪ supp (ξ∗2) =
{
xi = − cos

(π
n
i
)
| i = 0, . . . , n

}
= A
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 7

because t∗n−i(0) = −t∗i (0). Moreover, (3.6) defines a system of linear equa-
tions of the form Fω = 0 for the vector ω = (ω0, . . . , ωn)

T of the T -

optimal design ξ∗, where the matrix F is given by F = ((−1)ixki )
k=0,...,n−2
i=0,...,n ∈

Rn−1×n+1 and has rank n− 1. Additionally, the components of the vector ω
satisfy

∑n
i=0 ωi = 1. Therefore the set of solutions has dimension 1. Because

the vectors of weights corresponding to the designs ξ∗1 and ξ∗2 are given by
ω(1) = (0, ω∗

1, . . . , ω
∗
n)

T and ω(2) = (ω∗
n, . . . , ω

∗
1, 0)

T and are therefore linearly
independent (note that ω∗

i > 0, i = 1, . . . , n), any vector of weights corre-
sponding to a T -optimal design must be a convex combination of ω(1) and
ω(2). Consequently, any T -optimal design can be represented in the form
ξ = (1− α)ξ∗1 + αξ∗2 , which proves the assertion of Theorem 3.1. 2

Note that the T -optimal design is not unique in the case b = 0. On the
other hand, the T -optimal designs are unique, whenever θ1,n−1 ̸= 0, and,
if the ratio |θ1,n−1/θ1,n| is not too large, the T -optimal designs can also be
found explicitly as demonstrated in our following result.

Theorem 3.2 If the parameter b = θ1,n−1/θ1,n satisfies (3.1), then there
exists a unique T -optimal design on the interval [−1, 1] for discriminating
between the models (2.3) and (2.4). For positive b this design has the form

ξ∗ =

(
t∗1(b) . . . t∗n(b)
ω∗
1 . . . ω∗

n

)
,(3.8)

where the points t∗i (b) and weights w∗
i (b) are defined in (3.2) and (3.4),

respectively (note that t∗1(b) ≥ −1, t∗n(b) = 1). The T -optimal design for
negative b has the form

ξ∗ =

(
−t∗n(b) . . . −t∗1(b)
ω∗
n . . . ω∗

1

)
(note that −t∗n(b) = −1,−t∗1(b) ≤ 1).

Proof of Theorem 3.2.We consider the case 0 < b ≤ n(1−cos
(
π
n

)
)/(1+

cos
(
π
n

)
) where direct calculations show that the points t∗i (b), i = 1, . . . , n are

contained in the interval [−1, 1]. Moreover, these points are the extremal
points of the polynomial

(3.9) cnTn

(
−x− b

n

1 + b
n

)
, cn = (−1)n

(
1

2

)n−1(
1 +

b

n

)n
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8 H. DETTE, V.B. MELAS, P. SHPILEV

where Tn is the Chebyshev polynomial of the first kind. For later purposes
we note that the coefficient of xn−1 in this polynomial is equal to

(3.10)

n∑
i=1

[(
1 +

b

n

)
ui +

b

n

]
= b,

where u1, . . . , un are the roots of the polynomial Tn(x), that is ui = cos(2i−1
2n π)

(i = 1, . . . , n),
∑n

i=1 ui = 0. It can be shown by a standard argument in ap-
proximation theory [see Achiezer (1956), Section 35 and 43] that θ1nψ

∗(x)
with

ψ∗(x) = cnTn

(−x− b
n

1 + b
n

)
is the unique solution of the extremal problem

min
θ2∈Rn−1

sup
x∈[−1,1]

| η1(x, θ1)−
n−2∑
j=0

θ2,jx
j |,

where η1(x, θ1) =
∑n

j=0 θ1,jx
j . Therefore by Theorem 2.1 and 2.2 in Dette

and Titoff (2009) a T -optimal design is supported at the n extremal points
t∗1(b), . . . , t

∗
n(b) (note that we use b ≤ n tan2( π

2n) at this point, which implies
|t∗j (b)| ≤ 1; j = 1, . . . , n) and the weights are determined by (3.6). Because
the set of extremal points is given by A = {t∗1(b), . . . , t∗n(b)} this system
reduces to

(3.11)
n∑

i=1

t∗ki (b)(−1)iω∗
i = 0, k = 0, 1, . . . , n− 2,

and we will prove in the appendix that the weights given in (3.4) define a
solution of (3.11). Therefore the design ξ∗ specified in (3.8) is a T -optimal
design for 0 < b ≤ n(1 − cosπ/n)/(1 + cosπ/n). Since the function ψ∗(x)
is unique, any T -optimal design is supported at the points t∗1(b), . . . , t

∗
n(b)

[see Theorem 2.1 in Dette and Titoff (2009)]. By Theorem 2.2 in the same
reference it follows that the weights of any T -optimal design satisfy the
system of linear equations (3.11) with ω∗

i = ωi and
∑n

i=1 ωi = 1. Since
ψ∗(t∗i (b)) = (−1)i (i = 1, . . . , n) we can rewrite this system as

(3.12) Fω = en,

where ω = (ω1, . . . , ωn)
T is the vector of weights, the last row of the matrix

F is given by (1, . . . , 1) and corresponds to the condition
∑n

i=1 ωi = 1,
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 9

Table 2
The critical values b∗n = n tan2

(
π
2n

)
for various values n ∈ N.

n 3 4 5 6 7 8 9 10

b∗n 1 0.6864 0.5280 0.4306 0.3646 0.3168 0.2801 0.2509

en = (0, . . . , 0, 1)T ∈ Rn denotes the nth unit vector and the columns of the
matrix F are given by

ai = (−1)i(1, t∗i (b), . . . , (t
∗
i (b))

n−2, ψ∗(t∗i (b)))
T , i = 1, 2, . . . , n.

The remaining assertion of Theorem 3.2 follows if we prove that detF ̸= 0,
which implies that the solution of (3.12) and therefore the T -optimal design
is unique. For this purpose assume that the opposite holds. In this case the
rows of the matrix F would be linearly dependent and there exists a vector
h = (h1, . . . , hn−1, 1)

T such that aTi h = 0, i = 1, 2, . . . , n. But the function
k(x) = (1, x, . . . , xn−2, ψ∗(x))Th is a polynomial of degree n with coefficient
of xn−1 given by b. Since aih = k(t∗i (b)) = 0 this polynomial has roots at
the points t∗i (b), moreover

n∑
i=1

t∗i (b) = −b−
n∑

i=1

(
1 +

b

n

)
cos

(
iπ

n

)
= −b+ 1 +

b

n
.

However, by (3.10) the sum of the roots must equal −b by Vieta’s formula.
This contradiction proves that detF ̸= 0. Therefore the system of equations
in (3.12) has a unique solution, which means that the T -optimal design is
unique.

The case of negative b is considered in a similar way and the details are
omitted for the sake of brevity. 2

The critical values b∗n = n tan2
(

π
2n

)
for various values of n ∈ N are dis-

played in Table 1. Theorem 3.1 and 3.2 give an explicit solution of the T -
optimal design problem for discriminating between a polynomial regression
of degree n − 2 and n, whenever |b| = |θ1,n−1|/|θ1,n| ≤ bn. In the opposite
case the solution is not so transparent and will be discussed in the following
section.

4. T -optimal designs for large values of |b|. In this section we
consider the case |b| ≥ n tan2

(
π
2n

)
for which the T -optimal design cannot
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10 H. DETTE, V.B. MELAS, P. SHPILEV

be found explicitly. Therefore we present a numerical method to determine
the optimal designs. The method was described by Dette et al. (2004) in the
context of determining optimal designs for estimating individual coefficients
in a polynomial regression model [see also Melas (2006)] and for the sake of
brevity we only explain the basic principle. For this purpose we rewrite the
function η in (2.5) as

(4.1) η(x, α, b̄) = α0 + α1x+ . . .+ αn−2x
n−2 + θ1n−1(x

n−1 + b̄xn),

where b̄ = 1/b = θ1n/θ1n−1. Note that for fixed b̄ the T -optimal design is
independent of the parameter θ1n−1 and that the choice

b̄ ∈
[
− 1

n
cot2

( π
2n

)
,
1

n
cot2

( π
2n

)]
corresponds to the case |b| ≥ n tan2

(
π
2n

)
considered in this section. In order

to express the dependence on the parameter b̄ we use the notation t∗i (b̄) for
the support points and ω∗

i (b̄) for the weights of the T -optimal design in this
section.

The main idea of the algorithm is a representation of the support points
t∗i (b̄) and corresponding weights ω∗

i (b̄) in terms of a Taylor series, where the
coefficients can be determined explicitly as soon as the design is known for
a particular point b̄. The algorithm proceeds in several steps

(1) Initialization: In the present situation the point b̄ is given by b̄ = 0,
which corresponds to the situation of discriminating between a poly-
nomial of degree n − 2 and n − 1. For this case it follows from Dette
and Titoff (2009) that the T -optimal design coincides with the D1-
optimal design. This design has been determined explicitly by Studden

(1980) and puts masses ωi(0) =
1

n−1 at the points ti(0) = cos
(
(i−1)π
n−1

)
(i = 2, . . . , n − 1) and masses ω1(0) = ωn(0) = 1

2(n−1) at the points

t1(0) = −1 and tn(0) = 1.
(2) The dual problem: For the constructions of the Taylor expansion we

now associate to each vector

τ ∈ U =
{
(t2, . . . , tn−1, ω1, . . . , ωn−1)

T

∣∣∣ − 1 < t2 < . . . < tn−1 < 1;ωi > 0,

n−1∑
j=1

ωj < 1
}
,

a design with n support points defined by

ξτ =

(
−1 t2 . . . tn−1 1
ω1 ω2 . . . ωn−1 ωn

)
.
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 11

As pointed out in the previous discussion there exists a corresponding
extremal problem defined by

(4.2) inf
q∈Rn−1

sup
x∈[−1,1]

∣∣b̄xn + xn−1 − f̄T (x)q
∣∣

with a unique solution corresponding to the T -optimal design problem
under consideration, where we use the notation f̄T (x) = (1, x, . . . , xn−2).

(3) The necessary condition: For each vector q in (4.2) define vectors dq =
(qT , 1, b̄)T ,Θ = (q, τ) and a quadratic form

H(Θ, b̄) = H(q, τ, b̄) = dTq M(ξτ )dq,

where M(ξτ ) is the information matrix of the design ξτ for the regres-
sion model (4.1). It then follows by similar results as in Dette et al.
(2004) that the design ξτ∗ is a T -optimal design for discriminating be-
tween the polynomials of degree n and n−2 and the vector q∗ is a solu-
tion of an extremal problem (4.2) if the points Θ∗ = (q∗, τ∗) ∈ Rn−1×U
is the unique solution of the system

∂

∂Θ
H(Θ, b̄)

∣∣∣
Θ=Θ∗

= 0,

such that the inequality
∣∣dTq∗f(x)∣∣2 ≤ dTq∗M(ξτ∗)dq∗ holds for all x ∈

[−1, 1].
(4) Taylor expansion of the optimal solution: The function

Θ∗ :

{
I −→ R3n−4

b̄ −→ Θ∗(b̄) = (Θ∗
1(b̄), . . . ,Θ

∗
3n−4(b̄)) = (q∗(b̄)T , τ∗(b̄)T ).

which maps the parameter b̄ ∈ I = [− 1
n cot2

(
π
2n

)
, 1n cot2

(
π
2n

)
] to the

coordinates of the best approximation q∗(b̄) and the support points
t∗i (b̄) and weights ω∗(b̄) of the T -optimal design, is a real analytical
function. The coefficients in the corresponding Taylor expansion

Θ∗(b̄) = Θ∗(b̄0) +
∞∑
j=1

Θ∗(j, b̄0)(b̄− b̄0)
j

in a neighborhood of any point b̄0 ∈ I can be calculated by the recur-
sive formulas

Θ∗(s+1, b̄0) = − 1

(s+ 1)!
J−1(b̄0)

(
d

db

)s+1

g(Θ∗
(s)(b̄), b̄)

∣∣∣
b̄=b̄0

, s = 0, 1, 2, . . . ,
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12 H. DETTE, V.B. MELAS, P. SHPILEV

where

Θ∗
(s)(b̄) = Θ∗

(s)(b̄0) +

s∑
j=1

Θ∗(j, b̄0)(b̄− b̄0)
j ,

g(Θ, b̄) =
∂

∂Θ
H(Θ, b̄)

J(b̄0) =

(
∂2

∂Θi∂Θj
H(Θ, b̄)

) ∣∣∣
Θ=Θ∗(b̄0)

.

We can use this procedure to calculate the T -optimal design for discrim-
inating between polynomials of degree n and n − 2 in the cases which are
not covered by Theorem 3.1 and 3.2. We illustrate the methodology in the
following example.

Example 4.1 Consider the T -optimal design problem for a model of degree
5 and a cubic polynomial model. Note that for n = 5 we have n tan2( π

2n) ≃
0.528. Therefore if b ∈ [0, 0.528] a T -optimal design is given by Theorem 3.1,
that is

ξ∗T =

(
t1(b) t2(b) t3(b) t4(b) 1
0.038 0.138 0.262 0.362 1

5

)
,

t∗i (b) = −
(
1 +

b

5

)
cos

(
iπ

5

)
− b

5
, i = 1, . . . , 5.

In order to construct the T -optimal design on the interval [0.528,∞] we
introduce the notation b = 1/b ∈ [0, 1.894]. With the results of the previ-
ous paragraph we obtain a Taylor expansion for the interior support points
t∗2(b), t

∗
3(b), t

∗
4(b) and weights ω∗

1(b), ω
∗
2(b), ω

∗
3(b), ω

∗
4(b) of the T -optimal de-

sign for discriminating between a cubic and a polynomial of degree 5 where
b = θ1n/θ1n−1. By the results of Studden (1980) the vector of support points
and weights corresponding to the center of the expansion at the point b̄0 = 0
is explicitly known, that is

(t∗2(0), t
∗
3(0), t

∗
4(0), ω

∗
1(0), . . . , ω

∗
4(0)) = (− 1√

2
, 0,

1√
2
,
1

8
,
1

4
,
1

4
,
1

4
).

At the first step we use a Taylor expansion at the point b̄0 = 0 to determine
the T -optimal design for b̄ ∈ [0, 0.4]. When we have found the vector Θ∗(0.4)
we construct a further Taylor expansion at the point b̄0 = 0.4 and this
process is continued in order to determine the vector Θ∗(b) for any value
b ∈ [0, 1.894]. The support points and weights are depicted in Figure 1 as a
function of the parameter b̄ = 1/b = θ1n/θ1n−1. Note that in all cases b ̸= 0
the T -optimal design for discriminating between a polynomial of degree 5
and 3 is supported at 5 points.
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T -OPTIMAL DESIGNS FOR DISCRIMINATION 13

Fig 1. The support points (left panel) and weights (right panel) of the T -optimal design
for discriminating between a polynomial of degree 3 and 5 for various values of b = 1/b ∈
[0, 1.894].

5. Concluding remarks and further discussion. In this paper we
have determined T -optimal designs for discriminating between two rival
polynomial regression models of degree n− 2 and n. To our best knowledge
these results provide the first analytic solution of a T -optimal discriminat-
ing design problem with an arbitrary number of parameters in the regression
model.

It should be pointed out that the results depend on the ratio of the coef-
ficients of the terms xn−1 and xn in the polynomial of larger degree, which
is a well known feature of the T -optimality criterion. Therefore the designs
derived here are local in the sense of Chernoff (1953). Usually locally optimal
designs serve as a benchmark for commonly used designs as demonstrated in
the example of the introduction. Moreover, locally optimal designs form the
basis for more sophisticated design strategies, which require less knowledge
about the model parameters such as Bayesian or standardized maximin op-
timality criteria [see Chaloner and Verdinelli (1995) or Dette (1997) among
others]. This extension was already mentioned in the pioneering work of
Atkinson and Fedorov (1975a,b) and we conclude this paper with a brief
discussion of a first explicit result on maximin T -optimal designs for the
polynomial regression models.

To be precise, consider the situation, where the ratio b = θ1,n−1/θ1,n
cannot be exactly specified but prior knowledge suggests that b ∈ I for
some interval I ⊂ R. Without loss of generality, assume θ1,n = 1, then
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14 H. DETTE, V.B. MELAS, P. SHPILEV

following Atkinson and Fedorov (1975a) a maximin optimal discriminating
design maximizes the expression

inf
b∈I

inf
θ2∈Rn−1

∫ 1

−1
(xn + bxn−1 +

n−2∑
j=0

θ2,jx
j)2dξ(x).(5.1)

The following result provides a solution of this optimal design problem for
specific intervals I ⊂ R.

Theorem 5.1

(a) If I = R, the maximin T -optimal discriminating design is given by

ξ∗MM =

(
t∗0 t∗1 . . . t∗n−1 t∗n
1
2n

1
n . . . 1

n
1
2n

)
,(5.2)

where the support points are defined by

t∗i = cos
(n− i

n
π
)

i = 0, . . . , n.

(b) Assume that I = (−∞,−b0] or I = [b0,∞). If b0 ≥ 0, then the maximin
T -optimal discriminating design coincides with the T -optimal discriminating
design determined in Section 3 and 4 for the value b = b0.

In particular, if b0 = 0, then all designs specified in Theorem 3.1 are
maximin T -optimal discriminating designs.

Proof of Theorem 5.1. In order to prove part (a) note that for I = R
the criterion (5.1) reduces to

sup
ξ

inf
θ∈Rn

∫ 1

−1
(xn +

n−1∑
j=0

θ2,n−1x
j)2dξ(x),

which corresponds to the T -optimal discriminating design problem for a
polynomial of degree n and n− 1. By the results in Dette and Titoff (2009)
the solution of this problem coincides with the D1-optimal design, which is
given by (5.2) [see Studden (1980)].

For a proof of part (b) observe that

sup
ξ

inf
b∈I

sup
θ2∈Rn−1

∫ 1

−1

(
xn + bxn−1 +

n−2∑
j=0

θ2,jx
j
)2
dξ(x)

= inf
b∈I

sup
ξ

sup
θ2∈Rn−1

∫ 1

−1

(
xn + bxn−1 +

n−2∑
j=0

θ2,jx
j
)2
dξ(x) =: inf

b∈I
R(b),
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where the last equality defines the function R in an obvious manner. We
now consider the case I = [b0,∞) with b0 ≥ 0 and show that the function
R is increasing on R+, which implies

inf
b∈I

R(b) = R(b0)(5.3)

and proves the assertion for the case I = [b0,∞). Recall the definition of
b∗ = n tan2(π/2n) in (3.1), then the proof of Theorem 3.1 shows that for
∈ (0, b∗]

R(b) =
(
1 +

b

n

)2n 1

22n−2
,

which is obviously increasing with respect to the argument b. If R would be
not increasing on the remaining region R+\(0, b∗], then there would exist
real numbers b2 > b1 > b∗, such that R(b1) = R(b2) with corresponding
extremal polynomials

Li(x) = xn + bix
n−1 + qTi f̄(x) i = 1, 2

where f̄(x) = (1, x, . . . , xn−2)T and

qi = argminq∈Rn−1

∫ 1

−1
(xn + bix

n−1 + qT f̄(x))2dξ(x).

This yields

sup
x∈[−1,1]

| L1(x) |= sup
x∈[−1,1]

| L2(x) |=
√
R(b1) =

√
R(b2).

By the discussion in Section 4 the polynomials L1, L2 can be chosen such
that they coincide at the boundary points of the interval [−1, 1] (note that
for b > b∗ the support of the optimal discriminating design always contains
both boundary points −1 and 1). Therefore a simple argument shows that
there exist n − 2 other points in the interior of the interval (−1, 1), where
the polynomials must coincide. Consequently, L1(t̃j) = L2(t̃j) for n points
t̃1, . . . , t̃n ∈ [−1, 1], which shows that the polynomials are identical. This
yields b1 = b2 and because of this contradiction the monotonicity of the
function R has been established, which proves (5.3) and part (b) in the case
I = [b0,∞). The remaining case I = (−∞,−b0] can be proved by similar
arguments and the details are omitted for the sake of brevity. 2

Theorem 5.1 provides the solution to maximin T -optimal discriminating
design problems for specific intervals I ⊂ R. In particular, it identifies the
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16 H. DETTE, V.B. MELAS, P. SHPILEV

worst case as a boundary point of the interval under investigation using the
monotonicity of the criterion with respect to b. This property, which appears
in many minimax- or maximin optimal design problems, has been criticized
by Dette (1997). This author recommends Bayesian or standardized max-
imin optimality criteria, which reflect the different sizes of the optimality
criteria for different values of b in a more reasonable way. The determina-
tion of T -optimal discriminating designs with respect to these criteria is
substantially harder and a challenging problem for future research.
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6. Appendix. Proof of the identities (3.7) and (3.11). Note that
the identities in (3.7) and (3.11) can be written in the form

(6.1)

n∑
i=1

t∗ki (b)(−1)iω∗
i = 0, k = 0, 1, . . . , n− 2,

where t∗i (0) = cos( iπn ) = xi. We will prove that these equalities hold for any
real number b. Since

(6.2) t∗ki (b) =

k∑
j=0

aj cos

(
jiπ

n

)
, i = 0, 1, . . . , n, k = 0, 1, . . . , n− 2

for some coefficients aj = aj(b) (j = 0, 1, . . . , k) the identities (6.1) follow
from

(6.3)

n∑
i=1

(−1)i cos

(
kiπ

n

)
ω∗
i = 0, k = 0, 1, . . . , n− 2.
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In order to prove (6.3) consider first the case k = 0, n = 2s for some s, where
the left hand side of (6.3) reduces to

n∑
i=1

ω∗
i (−1)i =

1

n

[s−1∑
i=1

[
(1− cos

( iπ
n

)
)(−1)i + (1 + cos

( iπ
n

)
)(−1)i

]
+ (−1)s + 1

]
=

1

n

[s−1∑
i=1

2(−1)i + (−1)s + 1
]
= 0,

which proves (6.3). If k = 0, n = 2s+ 1 we get

n∑
i=1

ω∗
i (−1)i =

1

n

[ s∑
i=1

[
(1− cos

( iπ
n

)
)(−1)i − (1 + cos

( iπ
n

)
)(−1)i

]
+ (−1)

]
=

1

n

[
2

s∑
i=1

cos

(
iπ

n

)
(−1)i+1 − 1

]

=
1

n

[
1−

cos
[
π(1+2(n+1)s)

2n

]
cos
(

π
2n

) − 1
]
= − 1

n

cos
(
(2s+1)π

2

)
cos
(

π
2n

) = 0

where the third identity follows by standard results for trigonometrical sum-
mation [see e.g. Jolley (1961), formula (428)]. This proves (6.3) for the case
k = 0, n = 2s + 1. Now consider the case of even n, n = 2s for some odd
s, s = 2l− 1 and k of the form k = 2(2r− 1). In this case the left hand side
of (6.3) reduces to

1

n

[s−1∑
i=1

[
(1− cos

( iπ
n

)
) + (1 + cos

( iπ
n

)
)
]
(−1)i cos

(
kiπ

n

)
+ (−1)s cos

(
kπ

2

)
+ cos(kπ)

]
=

1

n

[
2
s−1∑
i=1

(−1)i cos

(
kiπ

n

)
+ (−1)s cos

(
kπ

2

)
+ cos(kπ)

]
=

1

n

{(
cos
(kπ
4s

))−1[
cos
(πk
4s

− π
)
+ cos

(πk
4s

+
π

2
(k + 2s− 2)

)]
+ 2
}

=
1

n

{
(−1) + (−1)2s−1 + 2

}
= 0

where we have again used well known results on trigonometric summation
[see Jolley (1961), formula (428)]. Therefore we obtain the equality (6.3) in
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the case n = 2s, s = 2l−1 and k = 2(2r−1). The other cases can be proved
in a similar way, and the details are omitted for the sake of brevity.
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