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Abstract

Knowing an upper bound on the number of optimal design points greatly
simplifies the search for an optimal design. Carathéodory’s Theorem is com-
monly used to identify an upper bound. However, the upper bound from
Carathéodory’s Theorem is relative loose when there are three or more pa-
rameters in the model. In this paper, an alternative approach of finding a
sharper upper bound for classical optimality criteria is proposed. Examples
are given to demonstrate how to use the new approach.

Keywords: Carathéodory’s theorem; nonlinear regression; cardinality of de-
sign; experimental design.



1 Introduction

Regression models with at least three parameters are required in many ap-
plications. For example, although the two parameter logistic model is widely
used to estimate the dose corresponding to the p%th effectiveness (ED100p),
four parameter sigmoidal shaped functions, such as the EMAX model (Wag-
ner, 1968), are commonly required when continuous responses are scaled
to fall between zero and one and minimum and maximum values are un-
known. In addition, many biological science experiments produce dose re-
sponse functions with a downturn which require nonlinear models with at
least three parameters (e.g. Welshons et al., 2003). In any experiment, the
sample space of treatments (e.g. doses) and the distribution of subjects over
this treatment sample space must be determined. Let the treatment space
be finite, and let ξ = {(xi, wi)>}K1 denote a design, where xi is the ith dose
and wi = ni/n is the proportion of subjects allocated to dose xi (i.e., the
associated design weight).

An optimal design specifies the doses to use and how to distribute sub-
jects over these doses in the manner that minimizes a criterion function, that
reflects the goals of the experiment. Because the inverse of the Fisher in-
formation matrix is approximately proportional to the variance-covariance
matrix of maximum likelihood estimates (under common regularity condi-
tions), this information matrix is typically used to construct criterion func-
tions. Two common examples are the so called D- and A-optimality criteria.
D-optimality minimizes the determinant of the inverse of Fisher information
matrix for the parameters of interest, which is asymptotically equivalent to
minimizing the confidence ellipsoid for the joint estimation of the parameters;
A-optimality minimizes the sum of the asymptotic variances of maximum
likelihood estimates.

As an illustrative model, define Θ = (θ1, θ2, . . . , θt) and let observations
be independent given treatment with

yij = µi(xi,Θ) + εij; εij ∼ N(0, σ2), (1)

where µi(xi,Θ) is differentiable with respect to Θ; and σ2 is unknown. Let Θ̂
denote the maximum likelihood estimate of Θ. Then, by Taylor expansion,
an approximate Fisher information matrix for Θ can be written as

M(ξ,Θ) =
(
muv

)
=

n

σ2

K∑
i=1

wif(xi)
>f(xi), (2)
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where f(x) =
(

∂µ(x,Θ)>

∂θ1

∂µ(x,Θ)>

∂θ2
· · · ∂µ(x,Θ)>

∂θt

)
, u, v = 1, 2, . . . , t.

Often interest is in s (1 ≤ s ≤ t) linear combinations of the parameters,
say A>Θ, where A is a t× s dimensional matrix. For example, with s = 1,
A> =

(
1 0 · · · 0

)
specifies interest in estimating the first parameter

with all the rest being nuisance parameters. The information matrix for A>Θ

under model (1) is C =
(
A>M−

(ξ,Θ)A
)−1

, where M−
(ξ,Θ) is the generalized

inverse of M(ξ,Θ). A general, classical, class of optimality criteria is given by

φp =


(
1
s
Tr [Cp]

)1/p
, p < 0;

(Det[C])1/s p = 0;

λmin(C) p = −∞.
(3)

where λmin(C) denotes the minimum eigenvalue of C. The most well known
criteria are D-optimality if p = 0 and A-optimality if p = −1. Note that
the factorization in (2) is not limited to models of the form (1), and the
methods described in the paper can be applied to other models as long as
the information matrix can be factored as (2).

Analytical methods for obtaining optimal designs are well developed for
linear models. See Fedorov (1972); Fedorov and Hackl (1997); Pukelsheim
(2006); and Atkinson et al. (2007). A geometric method developed by Elving
(1952), has proven useful for some optimal design criteria for two parameter
generalized linear models. See Fellman (1999). General analytical meth-
ods for two parameter nonlinear models are developed by Yang and Stufken
(2009).

In general, nonlinear models with three or more parameters have com-
plicated information matrices making it hard to obtain optimal designs an-
alytically. There are relatively few recent papers on analytically obtaining
optimal designs for nonlinear models with three or more parameters. See
Li and Majumdar (2008, 2009); Yang (2010); and Dette and Melas (2011).
Sitter and Torsney (1995) applies Elving’s geometric approach to a three
parameter model.

However, the application of optimal design theory for nonlinear models
has exploded with the use of numerical algorithms. For example, the ex-
change algorithm is described by Fedorov and Hackl (1997). Knowing an
upper bound on the number of design points limits the number of candidate
design points to be considered, making the search more tractable.

Yang (2010) provides a procedure for determining an upper bound of

2



number of support points for any classical optimal design criterion. The basic
idea is to identify a subclass of designs such that for any arbitrary design,
one can find a design in that subclass that has an improved information
matrix in terms of Lowener ordering. Yang’s approach involves solving a set
of nonlinear equations, which allows further simplification by utilizing the set
of nonlinear equations (Yang and Stufken, 2009). Dette and Melas (2011)
generalized Yang (2010) utilizing different methods.

In this paper, we provide yet a different way of determining the upper
bound of number of support points for classical optimal criterion function.
Although this approach is not as general as Yang’s approach, it is easy to
understand and straightforward to implement.

When each subject has a single response and the number of design points
is less than the number of parameters, the parameters are unidentifiable.
Therefore, one may require the number of design points be at least t, where
t is the number of parameters. Finding a upper bound q on the number
of design permits the search for optimal design points to be restricted to
the range [t, q] and reducing q by even just one can greatly simplify the
search for optimal designs. Carathéodory’s Theorem (cf. Liski, 2002, and
Pukelsheim, 2006) is commonly used for obtaining q. The theorem states that
the number of points for any optimal design is no more than t(t+ 1)/2 + 1.
When the number of parameters is 2, the upper bound is 4. Thus, the search
can be limited to 2, 3 and 4 point designs; since the cardinality of possible
optimal design points is very narrow, optimal designs for two parameter
models can be obtained relatively easily. However, when the model has more
than 3 parameters, Carathéodory’s Theorem provides an upper bound that
is increasingly far from t and the optimal design problem explodes. In this
paper, we present a new approach that reduces q below the bound given
by Carathéodory’s Theorem. This approach is invariant under any classical
optimality criteria, and it can be applied to multiple-stage experiments as
well as to single-stage ones.

In section 2, the new approach for identifying an upper bound on the
number of optimal design points is described. In section 3, the proposed
approach is applied to Hyun, Yang and Flournoy’s model (2011) and to a
probit model with three parameters. Finally, brief conclusions are given.
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2 Identifying the upper bound on the num-

ber of design points

Let ξ∗ denote the optimal design under some φp-optimality criterion, and let
G denote the generalized inverse of M(ξ∗,Θ), the information for ξ∗. Suppose
the research quesion of interest lies in s (s ≤ t) linear combinations of the
parameters A>Θ, where A is a t × s matrix of rank s. Then the informa-
tion matrix for A>Θ under the model (1) is (A>GA)−1. Kiefer’s General
Equivalence Theorem (Kiefer, 1958; cf. Pukelsheim, 2006) states that ξ∗ is
the φp-optimal design for A>Θ if and only if there is a generalized inverse
G of M(ξ∗,Θ) such that

f(x)Cf(x)> ≤ Tr((A>GA)−p), (4)

where

C = GA
(
A>G(ξ∗,Θ)A

)−(p+1)
A>G> =

(
cij
)t,t
1,1
. (5)

If G is constructed from any φp-optimal design ξ∗ for A>Θ, equality will be
obtained in (4) when x is replaced with any support point xi from ξ∗. So no
matter what the support points are, they must be the local maximum points
of

F (x) = f(x)Cf(x)>, (6)

and, hence, the number of optimal design points can not exceed the number
of local maxima in F (x). If we can determine an upper bound of the number
of local maxima in F (x), then we have an upper bound of the number of
optimal design points. Note that cij, 1 ≤ j ≤ i ≤ t, is some function of ξ∗,
Θ, A, and G, but not of x. Therefore, in seeking the maxima in (6), one
can treat {cij} as constant. Define Ψij = f(xi)f(xj), 1 ≤ j ≤ i ≤ t. Then
(6) can be written as

F (x) =
t∑
i=1

ciiΨii(x) + 2
t∑
i=1

∑
j<i

cijΨij(x). (7)

Suppose that F (x) is a smooth function defined on [A,B], where A can be
−∞ and B can be ∞. We first give two definitions:

1. A point x is called a down-crossing critical point of F (x) if F (x) = 0,
F (x−) > 0 and F (x+) < 0;
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2. A point x is called a up-crossing critical point of F (x) if F (x) = 0,
F (x−) < 0 and F (x+) > 0.

Lemma 1 gives some basic facts about down-crossing critical points and up-
crossing critical points of F (x) that follow straightforwardly from mathemat-
ical analysis:

Lemma 1. Let F (x) be given by (6), and suppose it is a smooth function
defined on [A,B] with a finite number of critical points.

1. Down-crossing critical points and up-crossing critical points alternate,
i.e., any two adjacent down-crossing critical points must have one and
only one up-crossing critical point between them and any two adjacent
up-crossing critical points must have one and only one down-crossing
critical point between them;

2. Suppose x1 is a down-crossing critical point and x2 is a up-crossing
critical point which is adjacent to x1. If x1 < x2, then F (x) < 0 for
x ∈ (x1, x2); if x1 > x2, then F (x) > 0 for x ∈ (x2, x1);

3. Suppose xA is the smallest down-crossing critical point. If there is no
up-crossing critical point on [A, xA], then F (x) > 0 for x ∈ [A, xA]. If
there exist a up-crossing critical point on [A, xA], say x0, then F (x) < 0
for x ∈ [A, x0] and F (x) > 0 for x ∈ [x0, xA];

4. Suppose xB is the largest down-crossing critical point. If there is no
up-crossing critical point on [xB, B], then F (x) < 0 for x ∈ [xB, B]. If
there exist a up-crossing critical point on [xB, B], say x0, then F (x) < 0
for x ∈ [xB, x0] and F (x) > 0 for x ∈ [x0, B].

The following theorem helps to clarify the relationship between the num-
ber of down-crossing critical points of F (x) and the number of down-crossing
critical points of it’s derivative F ′(x).

Theorem 1. For a differentiable function F (x) defined on [A,B], suppose
F ′(x) has finite number of critical points with at most M(≥ 1) down-crossing
critical points on [A,B]. Then F (x) has finite number of critical points and
the number of down-crossing critical points depends on one of the following
four situations:
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1. if the smallest and largest critical points of F ′(x) are both down-crossing,
then F (x) has either (i) at most M − 1 down-crossing critical points
or (ii) M down-crossing critical points and the largest critical point is
down-crossing;

2. if the largest critical point of F ′(x) is down-crossing, then in addition to
the two cases in 1, F (x) has either (i) M down-crossing critical points
and the smallest critical point is down-crossing or (ii) M + 1 down-
crossing critical points and both the smallest and largest critical point
are down-crossing;

3. if the smallest critical point of F ′(x) is down-crossing, then F (x) has
at most M down-crossing critical points;

4. otherwise, F (x) either has (i) at most M down-crossing critical points
or (ii) M + 1 down-crossing critical points and the smallest critical
point is down-crossing.

Proof. Let xA′ and xB′ be smallest and largest the down-crossing critical
points of F ′(x) and let xA and xB be the smallest and largest down-crossing
critical points of F (x). The conclusions of this theorem are straightforward
once we establish the following three facts:

(a) Between two adjacent down-crossing critical points of F ′(x), there ex-
ists at most one down-crossing critical point of F (x) and at most up-
crossing point of F (x), and there is no other critical points of F (x).

(b) On [A, xA′ ], if there is no up-crossing critical point of F ′(x), then there
is no down-crossing critical points of F (x) on [A, xA′ ], but there may
exist a up-crossing critical point on this interval; if there exists a up-
crossing critical point of F ′(x), then there may exist a down-crossing
critical point of of F (x) on [A, xA′ ] and there is no up-crossing critical
points before the down-crossing critical point.

(c) On [xB′ , B], if there is no up-crossing critical point of F ′(x), then there
exist at most one down-crossing critical points of F (x) on [xB′ , B], and
there is no up-crossing critical points on this interval; if there exists a
up-crossing critical point of F ′(x), then there may exist a down-crossing
critical point of F (x) on [A, xA′ ] and there may also exist a up-crossing
critical points after the down-crossing critical point.
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The proof of the three facts are similar, so we just prove (a). Let x1 and x3
be two adjacent down-crossing critical points of F ′(x). Then by 1 of Lemma
1, there exist one and only one up-crossing critical point of F ′(x) on (x1, x3),
say x2. By 2 of Lemma 1, F ′(x) ≤ 0 for x ∈ (x1, x2), which means F (x) is a
strictly decreasing function (F ′(x) has finite number of critical points). Thus
there exists at most one critical point of F (x) on (x1, x2), and if it exists,
it must be down-crossing critical point. Similarly we can show that there
exists at most one critical point of F (x) on (x2, x3), and if it exists, it must
be up-crossing critical point.

Clearly, the number of local maxima of a function F (x) depends on the
number of down-crossing critical points of F ′(x) and whether there are up-
crossing points in [A, xA′ ] and [xB′ , B]. By mathematical induction, we have

Lemma 2. Suppose that F (x) is a function defined on [A,B]. Let the number
of local maximum points of a function F (x) be R and the number of down-
crossing critical points of F ′(x) be M .

1. if both the smallest and largest critical points of F ′(x) are down-crossing,
then R = M ;

2. if only the smallest critical point of F ′(x) is down-crossing, then R =
M + 1 and B is one of local maximum points;

3. if only the largest critical point of F ′(x) is down-crossing, then R =
M + 1 and A is one of local maximum points;

4. if none of the smallest or largest critical point of F ′(x) is down-crossing,
then R = M + 2 and both A and B are local maximum points.

If we divide F ′(x) by some positive function on [A,B], say P (x), then
the down-crossing critical points and up-crossing points of F ′(x) are the
same as those of F ′(x)/P (x). Thus we can study F ′(x)/P (x) instead of
F ′(x). If it is still difficult to determine the number of down-crossing critical
points of F ′(x)/P (x), we can study the down-crossing critical points and
up-crossing points of (F ′(x)/P (x))′. This process can be continued until one
obtains functions a in a simple format, in particular, a quadratic form. The
derivatives of F (x) are typically easily obtained by Mathematica. Using the
following theorem, we can obtain the maximum number of locally maximum
points of F (x).
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Theorem 2. Let F (x) be a differentiable function given by (6). Suppose
there exist positive functions Pi(x) (possibly equal to 1) such that

G1(x) =
dF (x)

dx
= P1(x)F1(x)

G2(x) =
dF1(x)

dx
= P2(x)F2(x)

...

Gn(x) =
dFn−1(x)

dx
= Pn(x)[ax2 + bx+ c], (8)

where a, b, and c are constants. Let r be a positive integer. Then

1. If a is negative and n = 2r, the upper bound is r + 1;

2. If a is negative and n = 2r+1, the upper bound is r+2 and ξ∗ includes
the lowest point in the design space;

3. If a is positive and n = 2r, the upper bound is r + 2 and ξ∗ includes
both the lowest point and the highest point in the design space;

4. If a is positive and n = 2r+1, the upper bound is r+2 and ξ∗ includes
the highest point in the design space.

Proof. We only give the proof when a is negative by mathematical induction.
The proof when a is positive is similar. Let M ′ and M be the number of
down-crossing critical points of F ′(x) and F (x), respectively.

When n = 1, consider the behavior of F ′(x) when x ∈ (−∞,+∞).
Clearly, F ′(x) either < 0 for all x or has one down-crossing critical point
and the largest critical point is down-crossing. For the first case, F (x) is
a strict decreasing function, thus F (x) has one locally maximum point and
M ≤ 1 (if M = 1 the largest critical point is down-crossing). For the second
case, F (x) has at most two locally maximum points including A by Lemma
2. In addition, as given by situation 2 of Theorem 1, M ≤ 1 (if M = 1 at
least one of the smallest and the largest critical point is down-crossing) or
M = 2 and both the smallest and largest critical point are down-crossing.
Thus when n = 1, the conclusion follows.

When n = 2, by the discussion of n = 1, we have M ′ = 0, or M ′ = 1 and
at least one of the smallest and the largest critical point is down-crossing, or
M ′ = 2 and both the smallest and largest critical point are down-crossing.
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By Lemma 2, F (x) has at most two locally maximum points. In addition, by
applying Theorem 1 and discussing the three cases, we have either (i) M ≤ 1
or (ii) M = 2 and the largest critical point is down-crossing.

Assume that when n = 2r, F (x) has at most r + 1 locally maximum
points and two cases for the down-crossing critical points of F (x): (i) M ≤ r
or (ii) M = r + 1 and the largest critical point is down-crossing.

When n = 2r + 1, by the assumption, down-crossing critical points of
F ′(x) have two possibilities: (i) M ′ ≤ r; (ii) M ′ = r+1 and the largest critical
point is down-crossing. By Lemma 2, F (x) has at most r+2 locally maximum
points including A. In addition, by applying Theorem 1 and discussing the
two possibilities, there are three possibilities for the down-crossing critical
points of F (x): (i) M ≤ r; (ii) M = r + 1 and at least one of the smallest
and the largest critical is down-crossing; (iii) M = r+2 and both the smallest
and the largest critical are down-crossing.

When n = 2r + 2, by the discussion of n = 2r + 1, down-crossing critical
points of F ′(x) have three possibilities: (i) M ′ ≤ r; (ii) M ′ = r + 1 and at
least one of the smallest and the largest critical point is down-crossing; (iii)
M ′ = r + 2 and both the smallest and the largest critical are down-crossing.
By Lemma 2, F (x) has at most r + 2 locally maximum points. In addition,
by applying Theorem 1 and discussing the three possibilities, there are two
possibilities for the down-crossing critical points of F (x): (i) M ≤ r + 1 or
(ii) M = r + 2 and the largest critical point is down-crossing.

By mathematics induction, our conclusion follows.

3 AN APPLICATION

In many toxicological assays, response functions have a downturn at high
doses. This situation has been described by Margolin et al. (1981); Bretz
et al. (2003); Welshons et al. (2003); and others. Nonlinear models with
three or more parameters have been utilized to explain such a response func-
tion with downturn. For example, Hyun et al. (2011) adapted Margolin
et al.’s three parameter model (1981) to continuous responses. They subse-
quently found that the probit model with quadratic term fit the motivating
experimental data very well. In this paper, these two models are used to
demonstrate our approach.

Example 1: In Hyun, Yang and Flournoy’s model (2011), the mean
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response function is

µ(xi,Θ) = {1− exp[−(α + βxi)]}exp[−γxi], where α > 0, β ≥ 0, γ ≥ 0.
(9)

The Fisher information matrix for Θ̂ = {α̂, β̂, γ̂} can be written as

M(ξ,Θ) =
n

σ2

K∑
i=1

wi(B
>)−1B>f(xi)

>f(xi)BB−1,

where

f(x) =
(
e−(α+βx+γx) xe−(α+βx+γx) − x{e−γx − e−(α+βx+γx)}

)
;

B =

 1 0 0
0 1 0
0 1 −1


.

Now M(ξ,Θ) can be rewritten as M(ξ,Θ) = n
σ2

∑K
i=1wi(B

>)−1(f∗(xi))
>f∗(xi)B

−1,
where f∗(x) = Bf(x) =

(
e−(α+βx+γx) xe−(α+βx+γx) xe−γx

)
.

The General
Equivalence Theorem states

f∗(x)Cf∗(x)> ≤ Tr((A>M−
(ξ∗,Θ)A)−p), (10)

where C is given by (5) and equality holds when x is a support point of ξ∗.
Recall that C is constant in (10) since ξ∗ is φp-optimal design.

Equation (6) becomes

F (x) = f∗(x)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (f∗(x))>

= e−2(α+βx+γx){c22x2 + 2c12x+ c11 + xeα+βx(2c13 + 2c23x+ c33xe
α+βx)}.

(11)

Recall that, in applying Theorem 2, a positive factor in F ′(x) doesn’t change
the down-crossing critical points and up-crossing critical points of F ′(x).
Therefore, any positive factors in the derivatives of (11) can be ignored. The
seventh derivative in the sequence (8) applied to (11) is a quadratic equation
with respect to x:

G7(x)

P7(x)
= −16β6c33γx

2 + (16β6c33 − 144β5c33γ)x+ 72β5c33 − 264β4c33γ = 0.

(12)
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Since c33 is a diagonal element of the positive definite matrix (5), c33 is
positive. Recall β, γ ≥ 0 as given in (9). Thus the sign of coefficient for x2 is
negative. By 2 of Theorem 2, there are 5 extreme values and ξ∗ includes the
lowest point in the design space. Thus the upper bound on the number of
design points for a φp-optimality criterion is 5 of which only four are unknown.
The procedure for obtaining this result is sketched in Figure 1, which shows
that there are 5 extreme values including the lowest point and there are seven
lower order derivatives from the concave down quadratic equation.

Example 2: The probit model with quadratic term fit the data that
motivated Hyun et al. (2011) very well when the mean response function is

µ(xi,Θ) = Φ(α + βxi + γx2i ), (13)

where α < 0, β < 0, γ < 0 and Φ is the cumulative distribution function of
the standard normal distribution. The Fisher information matrix for Θ is

M(ξ,Θ) =
n

σ2

K∑
i=1

wi
1√
2π

f(xi)
>f(xi),

where

f(x) = exp

{
−(α + βxi + γx2i )

2

2

}(
1 x x2

)
.

Equation (6) becomes

F (x) = f(x)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 (f(x))>

= exp{−(α + βx+ γx2)2}{c33x4 + 2c23x
3 + (2c13 + c22)x

2 + 2c12x+ c11}.
(14)

The positive term exp{−(α+βx+γx2)2} can be ignored inG1(x). Continuing
to apply Theorem 2, the sixth derivative in the sequence (8) applied to (14)
is a quadratic equation with respect to x:

G6(x)

P6(x)
= −42c33γ

2x2 − 6(4c23γ
2 + 3c33βγ)x

−(c33β
2 + 6c23βγ + 4c13γ

2 + 2c22γ
2 + 2c33αγ) = 0.;

As for Example 1, the sign of coefficients for the both quadratic terms are
negative. By 1 of Theorem 2, the upper bound for φp-optimal designs under
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Figure 1: The change of shapes of the graphs for different differential equa-
tions. The graphs show how many extreme values can be observed at most
for each of lower order derivatives from the concave down quadratic equation.
For example, the graph 1 represents the shape of the concave down quadratic
equation and the graph 2 shows that there are 2 extreme values including
the lowest point where there is one lower order derivatives from the concave
down quadratic equation.

Figure 1: The change of shapes of the graphs for different differential equations. The
graphs show how many extreme values can be observed at most for each of lower order
derivatives from the concave down quadratic equation. For example, the graph 1 represents
the shape of the concave down quadratic equation and the graph 2 shows that there are 2
extreme values including the lowest point where there is one lower order derivatives from
the concave down quadratic equation.

16
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the model (13) is 4 design points. This also can be seen in the Figure 1 again
which shows that there exists 4 extreme values where there are six lower
order derivatives from the concave down quadratic equation.

4 CONCLUSIONS

We present a new approach for identifying the maximum number of design
points under classical optimality criteria. To illustrate our approach, Hyun
et al.’s model (2011) and a probit model with a quadratic term are used to
describe the response surface. The approach provides the maximum number
of design points under φp-optimality cannot be greater than 5 and one point
is the lowest in the design space under Hyun, Yang and Flournoy’s model and
cannot be greater than 4 under the probit model. Carathéodory’s Theorem
provides 7 points as the upper bound when there are 3 parameters in the
model. So our approach reduces the upper bound for both examples. In
addition, one point is given in some cases and others may have weights equal
to zero indicating a smaller optimal set.

As mentioned in the introduction, the proposed approach is not restricted
to single-stage experiments. Multi-stage experiments are used when good
parameter estimates do not exist. Following the first stage using an initial
design, parameter estimates are used to estimate the optimal design, which is
then used in the second stage. Continuing in this manner, the design points
that are added are increasingly efficient. Let ξ1 denotes an initial design and
ξ2 denotes a design used at the second stage. Then a common measure of
information is M(ξ,Θ) = M(ξ1,Θ) + M(ξ2,Θ). The corresponding equivalence
theorem can be re-written in a format similar to (4). So, identifying the upper
bound on the number of optimal design points for ξ2 following ξ1 becomes
the same as identifying the upper bound for ξ2 in a single-stage ignoring ξ1.

The approach presented in this paper is illustrated for specific models.
If the model changes, the upper bounds may change too, and the bounds
proposed in this paper can be better or worse than in the examples given
here. Regardless, it will be worthwhile to apply Theorem 2 to determine
whether or not it provides a reduced upper bound on the maximum number
of design points from Carathéodory’s Theorem.

13



5 Acknowledgements

Min Yang and Nancy Flournoy gratefully acknowledge support from the Isaac
Newton Institute for the Mathematical Sciences. We took full advantage of
the hospitality, accommodations and wonderful working environment of the
Institute.

14



Bibliography

[1] Atkinson, A. C., Donev, A. N., Tobias, R. D., 2007. Optimum Experi-
mental Designs with SAS. Oxford University Press.

[2] Bretz, F., Hothorn, L. A., Hsu, J. C., 2003. Identifying effec-
tive and/or safe doses by stepwise confidence intervals for ratio.
Statistics in Medicine 22, 847-858.

[3] Dette, H., Melas, V.B., 2011. A note on the de la Garza phenomenon
for locally optimal designs. Annals of Statistics 39, 1266-1281.

[4] Elfving, G., 1952. Optimal allocation in linear regression theory. Annals
of Mathematical Statistics 23, 255-262.

[5] Fedorov, V. V., 1972. Theory of Optimal Experiments. Academic Press.

[6] Fedorov, V. V., Hackl, P., 1997. Model-Oriented Design of Experiments.
Lecture Notes in Statistics 125, New York, Springer-Verlag.

[7] Fellman, J., 1999. Gustav Flfving’s contribution to the emergence of the
optimal experimental design theory. Statistical Science 14, 197-200.

[8] Hyun, S. W., Flournoy, N., Yang, M., 2011. Optimal designs for response
functions with a downturn. Journal of Statistical Planning and Inference
141, 559-575.

[9] Kiefer, J., 1958. On the nonrandomized optimality
and randomized nonoptimality of symmetrical designs.
Annals of Mathematical Statistics 29, 675-699.

[10] Liski, E. P., Mandal, N. K., Shah, K. R., Siniha, B. K., 2002. Topics in
Optimal Design. New York: Springer-Verlag.

15



[11] Li, G., Majumdar, D., 2008. D-optimal designs
for logistic models with three and four parameters.
Journal of Statistical Planning and Inference 138, 1950-1959.

[12] Li, G., Majumdar, D., 2009. Some results on D-optimal designs for
nonlinear models with applications. Biometrika 96, 487-493.

[13] Margolin, B. H., Kaplan, N., Zeiger, E., 1981. Statistical analysis of the
ames Salmonella/microsome test. Proceedings of the National Academy
of Sciences of the United States of America 78, 3779-3783.

[14] Simpson, D. G., Margolin, B. H., 1990. Nonparametric testing for dose-
response curves subject to downturns: asymptotic power considerations.
Annals of Statistics 18, 373-390.

[15] Pukelsheim, F., 2006. Optimal design of experiment. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA.

[16] Silvey, S. D., 1980. Optimal Design: An Introduction to the Theory for
Parameter Estimation. London: Chapman and Hall.

[17] Sitter, R. R., Torsney, B., 1995 Optimal designs for binary response
experiments with two design variables. Statistica Sinica 5, 405-419.

[18] Wagner, J. G., 1968. Kinetics of pharmacologic response. I. Proposed
relationships between response and drug concentration in the intact an-
imal and man. Journal of Theoretical Biology 20, 173-201.

[19] Welshons, W. V., Thayer, K. A., Judy, B. M., Taylor, J. A., Cur-
ran, E. M., Saal, F. S., 2003. Large effects from small exposures. I.
Mechanisms for endocrine-disrupting chemicals with estrogenic activity.
Environmental Health Perspectives 111, 994-1006.

[20] Yang, M., Stufken, J., 2009. Support points of locally optimal designs for
nonlinear models with two parameters. Annals of Statistics 37, 518-541.

[21] Yang, M., 2010. On the de la Garza phenomenon. Annals of Statistics
38, 2499-2524.

16


