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Abstract:

Methods for the construction of A-,MV -,D- and E-optimal designs for dose-escalation

studies are presented. Algebraic results proved elusive and explicit expressions for the req-

uisite optimal designs are only given for a restricted class of traditional designs. Recourse

to numerical procedures and heuristics is therefore made. Complete enumeration of all pos-

sible designs is discussed but is, as expected, highly computer intensive. Two exchange

algorithms, one based on block exchanges and termed the Block Exchange Algorithm and

the other a candidate-set-free algorithm based on individual exchanges and termed the Best

Move Algorithm, are therefore introduced. Of these the latter is the most computationally

effective. The methodology is illustrated by means of a range of carefully selected examples.

Keywords : Dose-escalation studies; A-, MV -, D- and E-optimal designs; Complete enumer-

ation; Exchange Algorithms.

1. Introduction

Dose-escalation trials are commonly used in first-in-man studies of a new drug. However

many issues relating to the planning and execution of such trials were brought into stark relief

by the Te Genero disaster. The Royal Statistical Society working party, drawn together to

examine the statistical issues relating to the Te Genero trial, was particularly critical of the

design used in the trial, that is of the allocation of individuals to cohorts and to treatments

within cohorts (Senn et al, 2007). In a subsequent paper Bailey (2009) examined a broad

range of issues relating to the design of dose-escalation trials, formulated some key desiderata

in this regard and recommended a suite of easy-to-use designs.

The aim of the present study is to devise efficient methods for the construction of optimal

designs for dose-escalation studies and to critically appraise the form and usefulness of such

designs. The paper is organized as follows. The necessary notation and the criteria of interest

are introduced in Section 2. The ensuing sections then relate to methods of construction of

the requisite optimal designs, with an algebraic approach discussed in Section 3, complete

enumeration of all possible designs in Section 4 and the use of heuristic algorithms based on

exchange procedures in Section 5. Illustrative examples are provided in each section. Some

broad conclusions and pointers for future research are given in Section 6.
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2. Preliminaries

Consider a dose-escalation study comprising n doses and a placebo, and thus t = n + 1

treatments, and c cohorts. Following Bailey (2009), the placebo is labelled 0 and increasing

doses are labelled from 1 to n. The number of cohorts c is usually taken to be n which

specifies a standard design or n + 1 which specifies an extended design. Dose-escalation

is incorporated into the trial by ensuring that for cohort k, where k = 1, . . . , n, at least

one individual is allocated to dose k and further individuals are allocated to the treatments

0, . . . , k but not to doses k + 1, . . . , n. For extended designs there is no restriction on the

allocation of individuals to treatments in cohort n+1. The setting can thus be summarized

by the c × (n + 1) incidence matrix S with entry ski equal to the number of individuals

allocated to treatment i in cohort k where i = 0, 1, . . . , n and k = 1, . . . , c. For any given

allocation the rows of S sum to m = (m1, . . . , mc), where mk represents the number of

individuals allocated to cohort k, k = 1, . . . , c, and the columns of S sum to r = (r0, . . . , rn),

where ri is the number of times treatment i is replicated, i = 0, . . . , n. In addition the

constraints skk > 0, ski ≥ 0 for i ≤ k−1 and ski = 0 for i > k where k = 1, . . . , n necessarily

hold. Note that it is common to take the numbers of individuals allocated to each cohort to

be the same, that is to set m = m1 where 1 is a vector of 1’s.

This dose-escalation setting can be modelled as an incomplete block design with cohorts

corresponding to blocks. Specifically, suppose that responses are continuous and that cohort

and treatment effects are fixed. Then the response yki to the ith treatment in the kth cohort

can be modelled as

yki = µ+ βk + τi + eki, k = 1, . . . , c, i = 0, . . . , n,

where µ denotes the overall mean effect, βk the effect of the kth cohort, τi the effect of

the ith treatment and the error term eki is normally distributed with mean 0 and variance

σ2 independently of all other such error terms. It then follows immediately from standard

results pertaining to block designs (John and Williams, 1995, p. 12) that the information

matrix for the treatment effects adjusted for blocks is given by

L = R− STK−1S

where R is a diagonal matrix of order t with diagonal entries r0, . . . , rn and K is a diagonal

matrix of order c with diagonal entries m1, . . . , mc. Note that L1 = 0 where 0 is a vector of

0’s and thus that L is singular with rank(L) < n+1. If the block design is connected however,

then rank(L) = n and all treatment contrasts are estimable. Only connected designs are

considered here.
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The essential design problem in a dose-escalation study is to allocate individuals to

cohorts and to treatments within cohorts in a manner that is in some sense optimal or

near-optimal. In the present study, following Bailey (2009), optimality criteria based on

the variances of the least squares estimators of the pairwise treatment differences are con-

sidered. Specifically, the variance of the estimator of τi − τj is given, up to the constant

of proportionality σ2, by wij = cTijGcij where G is a generalized inverse of L and the vec-

tor cij has elements 1 and −1 in rows i and j respectively and zeros elsewhere for i and

j integers such that 0 ≤ i < j ≤ n. Thus the variance scaled by the efficiency factor is

given by vij =
N

2t
wij, where N =

∑c

k=1
mk is the total number of individuals. The A-

optimality criterion can then be introduced as the average and the MV -optimality criterion

as the maximum of the scaled pairwise variances and these criteria can be written formally

as v̄ = 1

(t
2
)

∑

0≤i<j≤n

vij and vmax = max
0≤i<j≤n

vij respectively.

It is convenient, in particular computationally, to introduce the set of pairwise treatment

differences as Cτ where C is the
t(t− 1)

2
× t matrix with the row corresponding to τi − τj

given by cTij for 0 ≤ i < j ≤ n and τ is the vector (τ0, . . . , τn). Then the variance matrix of

the least squares estimator of Cτ is given by CGCT with diagonal entries corresponding to

the pairwise treatment variances. Thus A-optimal designs are those designs which minimize

tr(CGCT ) = tr(GCTC) and, since CTC = tI − J , where I is the identity matrix of order t

and J is the t× t matrix of 1’s, and also since G1 is a constant multiple of 1 for any g-inverse

G of L, those designs which minimize tr(G). Note that if G is taken to be the Moore-Penrose

inverse, that is G = (L + 1

t
J)−1 − 1

t
J , then tr(CGCT ) = tr(G) (Bailey, 2009). In addition

MV -optimal designs are those designs which minimize the maximum of the diagonal entries

of CGCT . Other criteria based on the non-zero eigenvalues of L, written λ1, . . . , λn where

n = t− 1, have been formulated within the context of block designs but are less commonly

used than A- and MV -optimality (John and Williams, 1995, p. 32). Of these criteria, D-

and E-optimality are arguably the better known and in a sense most meaningful. Thus,

in the present study, D-optimal designs which maximize the geometric mean of the non-

zero eigenvalues of L, namely

n
∏

i=1

λi, and E-optimal designs which maximize the minimum

eigenvalue of L, namely min
i=1,...,n

λi, are also introduced.

Finally, if block effects are taken to be random, the model for the response yki to the ith

treatment in the kth cohort in the dose escalation setting can be written as

yki = τi + ηk + eki, k = 1, . . . , c, i = 0, . . . , n,

where ηk is the random effect of the kth cohort with mean 0 and variance σ2
C independently
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of all other error terms (Bailey, 2009). Then, provided the number of individuals allocated

to each cohort is the same, that is mk = m for k = 1, . . . , c, it follows that the pairwise

variances of the treatments can be obtained by replacing the matrix L introduced above by

L = R−
1− θ

m
STS −

θ

cm
rrT

where θ =
σ2

σ2 +mσ2
C

(Goos, 2002, p. 105; Bailey, 2009). Note that if θ is taken to be 0,

results for the fixed block effects model are obtained and that if θ is taken to be 1 those for

a completely random design accrue (John and Williams, 1995, p. 143; Bailey, 2009).

3. Algebraic Results

The most elegant approach to constructing optimal designs in the dose-escalation setting

is to derive explicit expressions for the pairwise treatment variances for broad classes of

designs and to use these to formulate and optimize appropriate criteria with respect to the

allocation. Bailey (2009) provides some guidelines. Indeed a very general strategy would be

to find a tractable algebraic expression for the matrix L but unfortunately this would only

seem to be feasible in the case of certain traditional designs.

To be specific, consider a traditional design with m individuals per cohort, with a indi-

viduals allocated to the placebo and b = m− a to dose k in cohorts k = 1, . . . , n and, in the

extended design case, with x1 individuals allocated to the placebo and an equi-distribution

of x2 =
m− x1

n
individuals to each of the remaining doses. Suppose further that the block

effects are random. Then for an extended design the t× t matrix L is specified by taking

S =





a1 bI

x1 x21
T



 , r =





na + x1

(b+ x2)1
T





and

R =





na+ x1 0T

0 (b+ x2)I



 .

Now L can be partitioned in the form

L =





ℓ11 ℓ121
T

ℓ211 ℓ22,II + ℓ22,JJ




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where ℓ11, ℓ12 = ℓ21, ℓ22,I and ℓ22,J are scalars and it is a straightforward matter to derive

explicit expressions for the non-zero eigenvalues of L, and thus for the Moore-Penrose inverse

of L (Pringle and Rayner, 1971, p. 23), as

λ1 =
b(a+ bθ) +mx2

m
with multiplicity n− 1

and

λn =
(n+ 1)

[

cb(a+ bθ) + cmx2 − nc(1− θ)x22 − nθ(b+ x2)
2
]

mc
.

Full details are presented in the Appendix. These non-zero eigenvalues can now be used

directly to specify the A−, D- and E-optimality criteria (John and Williams, 1995, Section

2.4). Furthermore the pairwise variances can be expressed in terms of the eigenvalues λ1

and λn as

w0i =
1

n

(

n− 1

λ1

+
n + 1

λn

)

for i = 1, . . . , n

and

wij =
2

λ1

for 1 ≤ i < j ≤ n,

thereby specifying theMV -optimality criterion. Full details are again given in the Appendix.

Note that results for the standard designs can be recovered by setting c = n and x2 = 0

and for fixed block effects by setting θ = 0. The use of the above formulae in constructing

optimal traditional designs is now illustrated by means of the following example.

Example 3.1: Consider a standard traditional design with random cohort effects, as spec-

ified above. It then follows that the non-zero eigenvalues of L are given by
b(a+ bθ)

m
with

multiplicity n− 1 and
(n+ 1)ab

m
with multiplicity 1, the scaled pairwise variances by

v0i =
(a+ b)2(an+ bθ)

2(n+ 1)ab(a+ bθ)
for i = 1, . . . , n,

vij =
n(a + b)2

(n+ 1)b(a + bθ)
for i < j ≤ n, i = 1, . . . , n− 1

and their mean by

v̄ =
(a+ b)2(an2 + bθ)

ab(n + 1)2(a + bθ)
.

These expressions can be invoked to construct optimal designs over the permitted range of

θ, namely 0 ≤ θ ≤ 1. To be specific, suppose that n = 4 and m = 16. Then the requisite

A-optimal designs depend on the values of θ and b and this dependence is illustrated by
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the plot of optimal b against θ shown in Figure 1. Note that values of θ corresponding to

transitions from b to b + 1 are given by feasible solutions to quadratics in θ obtained by

equating values of v̄ for b and b+ 1, b = 8, . . . , 12. These A-optimal designs are necessarily

more efficient than the Senn designs but are very much less efficient than the corresponding

halving designs, at least for θ < 0.849 (Bailey, 2009). The MV -optimal designs are more

interesting in that the changes in optimal b with θ, as shown in Figure 1, reflect switches

between the maximum of the scaled pairwise variances v0i and vij and in that they are more

efficient than the recommended halving design for θ values greater than 0.540.

4. Complete Enumeration

It is worth beginning the numerical search for optimal designs for a dose-escalation study

by investigating the feasibility of a complete enumeration of all possible designs. In partic-

ular, suppose that ak individuals are free to be allocated to pk treatments in the kth cohort

with the remaining number of individuals in that cohort, mk−ak, preallocated to a specified

set of treatments. Then the total number of ways in which the allocation over all cohorts

can be attained is given by

NA =

c
∏

k=1

(

ak + pk − 1

pk − 1

)

.

The resultant compositions for each cohort specify allocations to be added to the prespecified

allocation and are termed block additions. The number NA increases exponentially with

increasing numbers of doses and individuals in the study and in addition depends sensitively

on the values of ak and pk in the kth cohort, k = 1, . . . , c. As an illustration, values of NA

for standard and extended designs with n = 2, 3, 4 and 5, m = 2n, at least one individual

allocated to each permitted treatment within the cohorts k = 1, . . . , n and a free allocation

of individuals to treatments in the additional cohort of the extended designs are presented

in Table 1.

Complete enumeration proceeds broadly as follows:

Enumeration Algorithm

Step 1: Specify the fixed allocation of numbers of individuals to treatments in the design.

Step 2: Generate the candidate block additions for each cohort.

Step 3: Cycle through all possible designs recursively, building each design by taking a

block addition from the list for each cohort and recording the values of the criteria of

interest.
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Table 1: Total numbers of standard and extended designs for n = 2, 3, 4, 5, m = 2n, ski ≥

1, k = 1, . . . , n, i = 0, 1, . . . , k and sn+1,i ≥ 0, i = 0, 1, . . . , n

n NA: standard design NA: extended design

2 9 135

3 500 42, 000

4 180, 075 89, 137, 125

5 432, 081, 216 1, 297, 539, 891, 648

Step 4: Order the enumerated designs according to each of the A-, MV -, D- and E-

optimality criteria and select the best designs.

Step 2 involves listing all block additions, that is compositions or ordered partitions, for the

kth cohort, k = 1, . . . , c. A command for generating compositions is available in Mathemat-

ica but not in other computer packages such as Gauss or R. However routines to implement

the NW Algorithm of Nijenhaus and Wilf (1978, Chapter 5) for generating compositions are

readily devised by following closely the original code. Note that the NW Algorithm was also

used by Fisher and Hall (1992) to enumerate bootstrap samples. Step 3 in the enumeration

procedure can be achieved by recursive looping through the block additions in each cohort.

Finally note that the enumeration procedure can be readily adapted to find (M,S)-optimal

designs, that is designs for which the sum of the non-zero eigenvalues of L,
∑n

i=1
λi, is a

maximum and the sum of squares,
∑n

i=1
λ2
i , is a minimum (John and Williams, 1995, p. 32).

The complete enumeration of optimal designs for a dose-escalation setting is now illustrated

by means of the following example.

Example 4.1: The 89, 137, 125 extended designs for the setting n = 4, m = 8, ski ≥ 1 for

k = 1, . . . , 4, i = 0, 1, . . . , k and s5,i ≥ 0 for i = 0, 1, . . . , 4 were completely enumerated using

routines written in Gauss. The optimal designs are not unique but this is due, at least in

part, to the fact that designs in which the allocations for the placebo and for dose 1 are

switched are equivalent. Selected A-, MV -, D-, E- and (M,S)-optimal designs, which are

deemed to be best across all criteria, are presented in Figure 2 and their key properties are

summarized in Table 2.

Note that the recommended halving design given in Bailey (2009) is MV -optimal and

in addition is highly A-, D- and E-efficient. Note also that there are in fact 300 M-optimal
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Table 2: The number of optimal designs, Nopt, and the A-, MV -, D- and E-criterion values

for the designs in Figure 2

Optimal Criterion Values

Design Nopt A MV D E

A 2 1.2919 1.6054 2.3491 4.3255

MV 10 1.3231 1.5123 2.7123 4.6201

D 4 1.3055 1.6691 2.3402 4.0320

E 14 1.3778 1.6614 3.1254 4.6398

(M,S) 2 1.3506 1.8213 2.4019 3.6233

designs, that is designs maximizing
∑n

i=1
λi, but of these only 2 attain the minimum

∑n

i=1
λ2
i

and are thus (M,S)-optimal.

5. Algorithmic Construction

Complete enumeration rapidly becomes infeasible as the numbers of doses in the study

and the numbers of individuals free to be allocated to treatments increases. Recourse must

then be made to heuristic algorithms which do not guarantee to find the the globally optimal

design (Atkinson, Donev and Tobias, 2007, Chapter 12). In the present case two heuristics

are proposed, the one involving block exchanges and the other individual moves.

5.1 Block Exchange

Arguably the most widely used heuristic for the construction of block designs involves

compiling a candidate list of feasible blocks and embedding this into a Fedorov-type exchange

procedure. In the present case the algorithm can be implemented broadly as follows.

Block Exchange Algorithm

Step 1: Specify the fixed allocation of numbers of individuals to treatments. Generate the

candidate block additions for each cohort.

Step 2: Generate a starting design by choosing a block addition at random for each cohort.

Repeat until the design is connected.
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Step 3: For each cohort in turn, evaluate the criterion for exchanges of the current block

addition with all the remaining candidate block additions and perform the exchange

which effects the largest favourable change in criterion value.

Step 4: Repeat Step 3 until no further favourable exchanges can be effected. Stop.

This search procedure can be run many times and the best overall design selected as being

near-optimal.

In fact Step 3 can be modified in the following way.

Step 3.1: For each cohort, evaluate the criterion for exchanges of the current block addition

with all the remaining candidate block additions. Perform the exchange only in the

cohort for which the change in criterion value is most favourable, that is perform the

best exchange for the design overall.

This modification proved to be ineffective over a wide range of examples however and is not

discussed further.

An immediate drawback to the Block Exchange Algorithm is that the numbers of candi-

date compositions, that is block additions,

NX =

c
∑

k=1

(

ak + pk − 1

pk − 1

)

,

can become prohibitively large as the numbers of doses and individuals in the study increases.

To illustrate this fact, values for NX for standard and extended designs of the form specified

in Table 1 but with n = 6, . . . , 12 are summarized in Table 3. The ideas underpinning the

Block Exchange Algorithm are now illustrated by means of the following example.

Example 5.1: Suppose that a dose-escalation setting with 8 doses, 8 cohorts, 16 individuals

per cohort and ski ≥ 1 for k = 1, . . . , 8 and i = 0, 1, . . . , k is of interest and suppose further

that A-optimal designs for θ = 0, 0.25, 0.5 and 0.75 are to be considered. The requisite

optimal, or more precisely near-optimal, designs were constructed by invoking the block

exchange procedure outlined above 1, 000 times and these designs are summarized in Figure

3. The difference between the designs with changing θ is striking, with more individuals being

allocated to the highest dose in each cohort as θ increases. This trend can be attributed to

the fact that designs tend towards an equi-replication of treatments as the between-cohort

variance σ2
C decreases.
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Table 3: Total numbers of candidate block additions for standard and extended designs with

n = 6, . . . , 12, m = 2n, ski ≥ 1, k = 1, . . . , n, i = 0, 1, . . . , k and sn+1,i ≥ 0, i = 0, 1, . . . , n

n NX : standard design NX : extended design

6 1, 485 20, 049

7 5, 811 122, 091

8 22, 818 758, 289

9 89, 845 4, 776, 670

10 354, 521 30, 399, 536

11 1, 401, 291 194, 938, 011

12 5, 546, 381 1, 257, 224, 081

5.2 Best Individual Moves

An alternative heuristic to that of block exchange, based on moving single individuals be-

tween treatments and termed the Best Move algorithm, was devised and can be summarized

as follows.

Best Move Algorithm

Step 1: Specify the fixed allocation of numbers of individuals to treatments. Generate a

starting design by allocating the balance of individuals to treatments randomly within

each cohort, preserving the structure of the required design setting.

Step 2: For each cohort in turn, evaluate the criterion for all permissible and distinct moves

of individuals from one treatment to another and perform that move which effects the

largest favourable change in criterion value.

Step 3: Repeat Step 2 until no further moves give an improvement in criterion value. Stop.

Again this search procedure can be run many times and the best overall design selected as

being near-optimal. Step 2 can be modified so that the algorithm is less greedy as follows.

Step 2.1: For each cohort, evaluate the criterion for all permissible and distinct moves of

individuals to the treatments. Perform the move only in the cohort for which the

change in criterion value is most favourable, that is take the best move for the design

overall.
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The appeal of the best move algorithm is that it is candidate-set-free, that is it does not

require block additions for each of the cohorts to be generated. Indeed the algorithm,

and specifically the variant which incorporates Step 2, is in the spirit of candidate-set-free

coordinate-exchange, an approach which is proving to be highly effective both in the context

of the construction of exact optimal designs (Meyer and Nachtsheim, 1995; Jones and Goos,

2007) and in other areas as well (Hastie, Tibshirani and Friedman, 2009, Section 3.8.6). The

algorithm can also be regarded, in essence, as an interchange algorithm, with the structure

of the design problem allowing for a particularly straightforward interchange procedure as

compared with those invoked for more general block and row-and-column designs (John and

Williams, 1995, p. 100).

Best move algorithms were invoked to construct near-A-optimal designs for the setting of

Example 5.1 and the results are presented below. Application of the algorithms to large-scale

dose-escalation studies follows immediately and more details, specifically computational, are

presented elsewhere (Clark and Haines, 2012).

Example 5.2: The best move algorithms incorporating Step 2 and Step 2.1 were run

1, 000 times for the dose-escalation settings of Example 5.1 and the near-A-optimal designs

summarized in Table 5 were again obtained. Computationally, the block exchange algorithm

took approximately 80 times and the best move algorithm based on Step 2.1 approximately

5 times as long as the best move algorithm based on Step 2. The space requirements for

the best move algorithms were necessarily minimal as compared with those for the block

exchange algorithm. There was however no clear pattern across the block exchange and the

best move algorithms in terms of the percentage of runs that were successful in providing

the near-A-optimal designs.

The best move algorithm can also be invoked to construct designs for somewhat uncon-

ventional dose-escalation settings, as for example those in which a total of M individuals are

to be allocated to the treatments with minimal constraints on the numbers of individuals in

each cohort. The latter application is illustrated by means of the following example.

Example 5.3: Suppose that M = 40 individuals are to be allocated to a dose-escalation

study with n = 4 doses, c = 4 cohorts and θ taken to be 0, that is with no random effects.

The only constraint placed on the designs for this setting is that at least one individual must

be assigned to the placebo and one to the highest permitted dose in each cohort. A-, MV -,

D- and E-near-optimal designs were constructed by running the best move algorithm with

Step 2 10, 000 times and these designs are summarized in Figure 4. The percentage of times

the near-optimal designs were obtained varied widely across the criteria, ranging from 0.09%
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for the MV -criterion to 75.40% for the D-criterion. The designs are all somewhat extreme

and reflect the fact that, with a minimal constraint on numbers allocated to each cohort, a

tendency towards equi-replication prevails.

6. Conclusions

The main aim of the present study has been to develop methods for constructing A-,

MV -, D- and E-optimal designs for dose-escalation trials. Algebraic results proved elusive

and explicit expressions for the requisite optimal designs could only be found for a restricted

class of traditional designs. Recourse was therefore made to numerical procedures which

provided considerable flexibility in terms of choice of criteria and allocation of individuals

across treatments within the cohorts. Of the methods investigated numerically, complete

enumeration and the best move algorithm are to be recommended. Complete enumeration

guarantees to find the globally optimal design for a particular setting but its use is lim-

ited in that it is computationally highly expensive. In contrast the best move algorithm is

a candidate-set-free coordinate-exchange algorithm so that, while not guaranteeing to find

optimal designs, it is efficient in terms of computer-time and -space. The optimal designs

presented in the examples tend to display unusual patterns which may be difficult to in-

troduce to the practitioner. In addition the results indicate that Bailey’s recommended

halving designs perform well in terms of criteria-based efficiencies. On balance therefore it

would seem that numerically-constructed optimal designs for dose-escalation studies provide

valuable benchmarks and that the attendant routines offer considerable flexibility in terms

of choice of criterion and allocation. A suite of programs to construct optimal designs for

dose-escalation studies by invoking complete enumeration and the best move algorithm is

being developed in R and will be reported elsewhere (Clark and Haines, 2012).
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Appendix

Consider an extended traditional design with information matrix L as specified in Section

3. Then it is straightforward to show that the n× n matrix

L22 = ℓ22,II + ℓ22,JJ =

[

b(a + bθ) +mx2

m

]

I −
[

c(1− θ)x2
2 + θ(b+ x2)

2

cm

]

J

has eigenvalues λ1 =
b(a + bθ) +mx2

m
with multiplicity n − 1 and attendant eigenvectors

(1,−1, 0, . . . , 0), (1, 0,−1, . . . , 0) through to (1, 0, 0, . . . ,−1), or any basis thereof, and

λn,22 =
cb(a + bθ) + cmx2 − nc(1− θ)x2

2 − nθ(b+ x2)
2

mc

with multiplicity 1 and eigenvector 1 = (1, 1, 1, . . . , 1)T . It is thus clear that the matrix L

itself has n−1 eigenvalues λ1 with eigenvectors (0, 1,−1, 0, . . . , 0), (0, 1, 0,−1, . . . , 0) through

to (0, 1, 0, 0, . . . ,−1), or any basis thereof. Furthermore it is readily seen that the remaining

eigenvalues of L are λn = (n+1)λn,22 with eigenvector (−n, 1, . . . , 1) and 0 with eigenvector

1. Thus the non-zero eigenvalues of the Moore-Penrose inverse of L, namely Lg, are
1

λ1

with

multiplicity n − 1 and
1

λn

with multiplicity 1 and the corresponding eigenvectors are the

same as those of L, that is for λ1 and λn respectively (Pringle and Rayner, 1971, pp. 23-24).

Consider now a pairwise comparison of treatment effects, written cT τ , with variance

V ar(cT τ̂ ) = cTLgc = cTHΛgH
T c

where Λg is a diagonal matrix with diagonal elements the eigenvalues of Lg and H is an

orthogonal matrix with columns the corresponding normalized eigenvectors. Specifically

suppose, without loss of generality, that the matrices Λg and H can be expressed in parti-

tioned form as

Λg =













1

λn

0T 0

0
1

λ1

I 0

0 0T 0













and H =









−
√

n

n + 1
0T

1
√
n+ 1

1
√

n(n + 1)
1 B

1
√
n+ 1

1









where B is an n × (n − 1) matrix with columns any normalized orthogonal basis of the

n − 1 vectors (1,−1, 0, . . . , 0), (1, 0,−1, . . . , 0) through to (1, 0, 0, . . . ,−1). Then for cT =

cT01 = (1,−1, 0, . . . , 0), the first column of B can be taken to be
1

√

n(n− 1)





−(n− 1)

1T




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and all other columns of B are orthogonal to this vector and have first element 0. Thus

it follows immediately that cT01L
gc01 =

1

n

(

n+ 1

λn

+
n− 1

λ1

)

. In addition, for cT = cT12 =

(0, 1,−1, 0, . . . , 0), the first column of B can be taken to be
1
√
2
c12 so that all other columns

of B are orthogonal to c12 and thus cT12L
gc12 =

2

λ1

. Similar arguments to those used for c01

and c12 hold for all contrast vectors of the form c0i for i = 2, . . . , nand cij for 1 ≤ i < j ≤ n

respectively.
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Figure 1: Plots of optimal b against θ for standard traditional designs with n = 4, m = 16 and

random cohort effects. Solid lines correspond to A-optimal and dashed lines to MV -optimal

designs.
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Figure 2: Selected A-, MV -, D-, E- and (M,S)-optimal extended designs for n = 4 and

m = 8 with ski ≥ 1, i = 0, . . . , k, k = 1, . . . , 4 and s5i ≥ 0, i = 0, . . . , 4.

A-optimal

Dose 0 1 2 3 4

Cohort 1 4 4 0 0 0

Cohort 2 2 3 3 0 0

Cohort 3 2 1 2 3 0

Cohort 4 1 1 1 2 3

Cohort 5 1 1 1 2 3

MV -optimal

Dose 0 1 2 3 4

Cohort 1 4 4 0 0 0

Cohort 2 2 2 4 0 0

Cohort 3 1 1 2 4 0

Cohort 4 1 1 1 1 4

Cohort 5 1 1 1 2 3

D-optimal

Dose 0 1 2 3 4

Cohort 1 4 4 0 0 0

Cohort 2 2 3 3 0 0

Cohort 3 2 1 2 3 0

Cohort 4 1 1 2 2 2

Cohort 5 1 1 1 2 3

E-optimal

Dose 0 1 2 3 4

Cohort 1 4 4 0 0 0

Cohort 2 2 2 4 0 0

Cohort 3 2 1 1 4 0

Cohort 4 1 1 1 1 4

Cohort 5 0 1 2 1 3

(M,S)-optimal

Dose 0 1 2 3 4

Cohort 1 4 4 0 0 0

Cohort 2 3 2 3 0 0

Cohort 3 2 2 2 2 0

Cohort 4 1 1 2 2 2

Cohort 5 1 1 2 2 2
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Figure 3: Near-A-optimal designs for n = 8 doses, c = 8 cohorts and m = 16 individuals per

cohort with ski ≥ 1, i = 0, . . . , k, k = 1, . . . , 8.

θ = 0

Dose 0 1 2 3 4 5 6 7 8

Cohort 1 8 8 0 0 0 0 0 0 0

Cohort 2 5 5 6 0 0 0 0 0 0

Cohort 3 3 3 4 6 0 0 0 0 0

Cohort 4 2 2 3 3 6 0 0 0 0

Cohort 5 2 1 2 2 3 6 0 0 0

Cohort 6 1 1 1 2 2 3 6 0 0

Cohort 7 1 1 1 1 1 2 3 6 0

Cohort 8 1 1 1 1 1 1 1 3 6

θ = 0.25

Dose 0 1 2 3 4 5 6 7 8

Cohort 1 8 8 0 0 0 0 0 0 0

Cohort 2 5 4 7 0 0 0 0 0 0

Cohort 3 3 3 4 6 0 0 0 0 0

Cohort 4 1 2 3 4 6 0 0 0 0

Cohort 5 1 1 1 3 4 6 0 0 0

Cohort 6 1 1 1 1 2 4 6 0 0

Cohort 7 1 1 1 1 1 1 3 7 0

Cohort 8 1 1 1 1 1 1 1 2 7

θ = 0.5

Dose 0 1 2 3 4 5 6 7 8

Cohort 1 8 8 0 0 0 0 0 0 0

Cohort 2 4 5 7 0 0 0 0 0 0

Cohort 3 3 2 4 7 0 0 0 0 0

Cohort 4 1 1 3 4 7 0 0 0 0

Cohort 5 1 1 1 2 4 7 0 0 0

Cohort 6 1 1 1 1 1 4 7 0 0

Cohort 7 1 1 1 1 1 1 3 7 0

Cohort 8 1 1 1 1 1 1 1 2 7

θ = 0.75

Dose 0 1 2 3 4 5 6 7 8

Cohort 1 8 8 0 0 0 0 0 0 0

Cohort 2 4 5 7 0 0 0 0 0 0

Cohort 3 2 1 5 8 0 0 0 0 0

Cohort 4 1 1 1 4 9 0 0 0 0

Cohort 5 1 1 1 1 3 9 0 0 0

Cohort 6 1 1 1 1 1 2 9 0 0

Cohort 7 1 1 1 1 1 1 1 9 0

Cohort 8 1 1 1 1 1 1 1 1 8
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Figure 4: Standard A-, MV -, D-, E-optimal designs for n = 4 doses and M = 40 individuals

assigned to the trial with sk0, skk ≥ 1 and ski ≥ 0, i = 1, . . . , k − 1, k = 1, . . . , 4.

A-optimal

Dose 0 1 2 3 4

Cohort 1 1 1 0 0 0

Cohort 2 1 1 1 0 0

Cohort 3 1 1 1 1 0

Cohort 4 5 5 6 7 8

MV -optimal

Dose 0 1 2 3 4

Cohort 1 1 1 0 0 0

Cohort 2 1 1 1 0 0

Cohort 3 1 1 2 2 0

Cohort 4 5 5 5 6 8

D-optimal

Dose 0 1 2 3 4

Cohort 1 1 1 0 0 0

Cohort 2 1 1 1 0 0

Cohort 3 1 1 1 1 0

Cohort 4 6 6 6 6 7

E-optimal

Dose 0 1 2 3 4

Cohort 1 1 1 0 0 0

Cohort 2 1 0 1 0 0

Cohort 3 1 1 1 2 0

Cohort 4 5 6 6 6 8
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