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Abstract

The construction of optimal experimental designs for regression models
requires knowledge of the information matrix of a single observation. The
latter can be found if the elemental information matrices corresponding to the
distribution of the response are known. We present tables ofelemental infor-
mation matrices for distributions that are often used in statistical work. The
tables contain matrices for one- and two-parameter distributions. Addition-
ally we describe multivariate normal and multinomial cases. The parameters
of response distributions can themselves be parameterizedto provide depen-
dence on explanatory variables, thus leading to regressionformulations for
wide classes of models. We present essential results from optimum exper-
imental design and illustrate our approach with a few examples including
bivariate binary responses and gamma regression.

Keywords:adaptive design; convex optimal design; elemental informa-
tion matrix; equivalence theorem.

1 Introduction

We are concerned with optimal experimental design for a rather general class of re-
gression models. The observations are not constrained to benormally distributed,
but might, for example, follow a beta or binomial distribution, or, indeed, any
distribution for which the Fisher information matrix exists, together with regu-
lar maximum likelihood estimators. By regression we intendthat the parameters
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of these distributions are themselves functions of furtherparameters and of ex-
planatory variables, at least some of which can be chosen andcontrolled in the
experiment. Frequently a link function will be required, for example in the param-
eterization of the variance of a normal distribution or the probability in a Bernoulli
model.

Our main objective (see§§2 and 4) is to provide a collection of “elemental”
information matrices for specific distributions which are crucial for the solution
of optimal design problems. In this way we bring together results that are repet-
itively scattered throughout the statistical literature.These matrices are essential
for constructing information matrices for “single” observations. The latter may in
many cases, for example for mixed-effect models, consist ofa series of observa-
tions on a single subject. For applications to experimentaldesign we require the
possibility of independent replications of these series. Combining the concept of a
single observation (supported by tables of information matrices) with a collection
of sensitivity functions for various popular optimality criteria (see§3) the reader
can address numerous tasks in the optimal design of experiments.

We begin in§2 with an introduction to the generalized regression model,con-
tinuing in §3 with some basic ideas about optimal experimental design. The core
of our paper is§4 where we provide tables of elemental information matricesfor
one and two parameter univariate distributions. In§4.2 we indicate how further
information matrices, excluded from the tables, may be found for members of the
location-scale and exponential families. The multivariate normal distribution, in-
cluding a parameterized variance, and multinomial distributions receive special
attention in§4.3 and§4.4. Examples in§5 include the equivalence theorem for D-
optimality for normal observations with a particular parameterized variance. Ex-
ample 3 includes the family of designs for univariate generalized linear models,
whereas, in Example 4 there are two binary responses. Example 5 is gamma re-
gression when both the parameters are functions of explanatory variables.

2 Generalized Regression

2.1 Main model

We assume that the observed responseY is distributed as

Y ∼ p(y|η), (1)

whereY andy arek-dimensional vectors, withη of dimensionl. The parametersη
depend on controlsx ∈ X andX is a design set (region). UsuallyX ∈ R

s, but
in generalX could be a compact set of more complicated structure, for instance,
part of a functional space (Fedorov and Hackl 1997,§5.7). In what follows we
assume thatX ∈ R

s unless otherwise stated. In the standard setting for regression
models it is assumed that the expected values of responsesY are parameterized,
compare with Pázman (1986), Pukelsheim (1993), Fedorov and Hackl (1997) or
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Atkinson, Donev, and Tobias (2007); see Example 1. The most popular examples
are “normal” regression, binary regression and Poisson regression. Actually, all re-
gression models with response belonging to a one-parameterfamily can be treated
in a similar way. Generalizations for cases when the components ofη are of the
same type (e.g. expectations in the multivariate normal) are straightforward. How-
ever, in the case of multi-parameter distributions (such asthe gamma or Weibull), it
is very natural to assume that two or more components ofη of different types may
depend on controls and unknown parameters. As far as we know,in the experimen-
tal design literature only in the “normal” case have different types of components
of η been parameterized, namely, the expectation(s) of the response(s) and its vari-
ance (variance-covariance matrix). See, for instance, Atkinson and Cook (1995),
Dette and Wong (1999) or Fedorov and Leonov (2004). A rare exception is the
beta regression considered by Wu, Fedorov, and Propert (2005).

2.2 Likelihood estimators and Fisher information matrices

Before proceeding with the design problem for generalized regression we recall a
few commonly known facts and introduce the required notation. Let

η = η(x, θ), (2)

whereηT (x, θ) = {η1(x, θ), . . . , ηk(x, θ)} are given functions of controlsx and
unknown regression parametersθ. Further, letn independent observations{Yi}n

1

be made at{xi}n
1 . Equations (1) and (2) constitute a generalized regressionmodel.

The maximum-likelihood estimator (MLE)̂θn of θ can be defined as

θ̂n = arg max
θ∈Θ

n
∏

i=1

p(yi|η(xi, θ)) (3)

= arg max
θ∈Θ

L({yi}n
1 , {xi}n

1 , θ),

whereΘ is compact and the true valueθt of θ is an internal point ofΘ. Under rather
mild conditions onp(y|η), η(x, θ) and on the sequence{xi}n

1 (see, for example,
Lehmann and Casella 1998, Chapter 2) the MLEθ̂n is strongly consistent and its
normalized asymptotic variance-covariance matrix is

nD(θt, {xi}n
1 ) = M−1(θt, {xi}n

1 ), (4)

where

M(θ, {xi}n
1 ) =

n
∑

i=1

µ(xi, θ), (5)

and µ(x, θ) = Var

[

∂

∂θ
ln p(y|η(x, θ)

]

. (6)

Introducing

F (x, θ) =
∂ηT (x, θ)

∂θ
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and observing that

∂

∂θ
ln p(y|η(x, θ) =

∂ηT (x, θ)

∂θ

[

∂

∂η
ln p(y|η)

]

η=η(x,θ)

,

one may conclude from (6) that

Lemma 1
µ(x, θ) = F (x, θ)ν(η)F T (x, θ), (7)

where

ν(η) = Var

[

∂

∂η
ln p(y|η)

]

. (8)

Note that in (7) and (8) the vectorη depends onx andθ but we have omitted the
compound subscriptη = η(x, θ) and will continue to do so if this does not lead to
ambiguity.

In what follows we callν(η) defined by (8) the “elemental information matrix”
for model (1). It plays a central role in this article.

If there are repeated observations (5) should be replaced by

M(θ, ξN ) =

n
∑

i=1

riµ(xi, θ), (9)

or, moving to the normalized information matrix,

NM(θ, ξ) =
n
∑

i=1

wiµ(xi, θ), (10)

whereN =
∑n

i=1 ri andξ = {wi, xi}n
1 . If there are no repeated observations then

n andN coincide.
More generally,

M(θ, ξ) =

∫

µ(xi, θ)ξ(dx) (11)

=

∫

F (x, θ)ν(η)F T (x, θ)ξ(dx),

whereξ could be any probabilistic measure defined onX . Thus the information
matrix (11) is completely defined by the designξ, by the derivativesF (x, θ) of the
regression functionsη(x, θ) and by the elemental information matrixν(η).

3 A Few Basic Facts from Optimal Design Theory

Optimality criteria play a fundamental role in the design ofexperiments. We follow
the well-accepted paradigm of convex design theory (Fedorov 1972, Silvey 1980,
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Pázman 1986, Pukelsheim 1993, Fedorov and Hackl 1997, Atkinson et al. 2007)
and define an optimal (continuous/approximate) design as

ξ∗ = arg min
ξ∈Ξ

Ψ [M(ξ, θ)] , (12)

whereΨ[M ] is a convex and homogeneous function of matrixM (see Fedorov and
Hackl 1997,§2.2). An introduction to optimal design, emphasizing the importance
of Fisher information, is in Chapter 7 of Cox and Reid (2000).For the sake of sim-
plicity we confine ourselves throughout this paper to cases when optimal designs
defined by (12) have regular information matrices, e.g. non-zero determinants.

3.1 Equivalence theorem

The following theorem, which is often called the equivalence theorem after the
“equivalence theorem” of Kiefer and Wolfowitz (1960) for the D-criterion, is the
theoretical basis for the development of many numerical methods and for the con-
struction of adaptive designs.

Theorem 1 A necessary and sufficient condition forξ∗ to be optimal is fulfillment
of the inequality

min
x∈X

ψ(x, θ) ≥ 0, (13)

whereψ(x, ξ∗) is the directional derivative:

ψ(x, ξ∗) = lim
α→0

∂

∂α
Ψ [M((1 − α)ξ∗ + αξ(x))] , (14)

andξ(x) is a design atomized atx.

Frequently the functionψ(x, ξ) is called a sensitivity function. A table of sensi-
tivity functions for the most popular criteria is presentedin Table 1. All functions
ψ(x, ξ) are defined by the information matrices of a single observation. These, in
turn, are defined by the elemental information matrices (8) and by the derivatives
of the regression functionsF (x, θ). Thus Table 1, together with tables from the
next section that contain elemental matrices, leads straightforwardly to the specific
versions of the equivalence theorem for a wide variety of models; the necessity of
special calculations for each individual case is avoided.

Note that Table 1 is built under the assumption that the optimal designξ∗ is
regular. In some special cases in rows 2 and 4, for example, itcan happen thatξ∗ is
singular, that is that rankM(ξ∗) < m. Such cases are well treated in Pukelsheim
(1993), but are beyond the scope of this paper.

All the criteria in Table 1 operate in parameter space, that is they provide a
scalar measure of precision, or uncertainty, of the MLE ofθ or of the linear trans-
formationϑ = AT θ. In the case of arbitrary, but smooth, transformationsϑ(θ) the
results of the table still hold withAT replaced by the vector of derivatives∂ϑT /∂θ.
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Often a practitioner may be interested in estimation of response functionsη(x, θ)
or of a utility functionζ(x, θ) on some setZ that may or may not coincide with
X . The corresponding criteria are not explicitly included inTable 1. However, the
table provides the requisite information for some criteria. For instance, let interest
be in

∫

Z

Var [ζ(x, θ̂)]dx ∼=
∫

Z

∂ζ(x, θ)

∂θT
Var θ̂

∂ζ(x, θ)

∂θ
dx

= tr
∫

Z

∂ζ(x, θ)

∂θ

∂ζ(x, θ)

∂θT
dxVar θ̂.

Defining

A =

∫

Z

∂ζ(x, θ)

∂θ

∂ζ(x, θ)

∂θT
dx,

one can use the fourth row of Table 1 to find the necessary sensitivity function.

3.2 Computing optimal designs

Many widely-used numerical algorithms for the construction of optimal designs are
based on directional derivatives (Wynn 1970; Fedorov 1972;Fedorov and Hackl
1997).

For instance, in first-order algorithms, forward excursions add weight to the
design at

x+
s+1 = arg max

x∈X

ψ(x; ξs, θ), (15)

whereas backward excursions delete weight from

x−s+1 = arg min
x∈X

ψ(x; ξs, θ). (16)

Again, as in the previous section, Tables 1-4 and Table 5 provide all the components
that are needed, now for (15) and (16).

Fedorov and Hackl (1997,§3.2) and Atkinson et al. (2007,§9.5) describe the
use of general-purpose second-order algorithms for the construction of optimal
designs. These algorithms can be built using elemental information matrices and
sensitivity functions, i.e. the first-order directional derivatives, which are presented
in Table 1. However, second-order directional derivativesare also needed. Again
they are completely defined by the elemental information matrices and byF (x, θ)
(Fedorov and Hackl 1997,§3.2).

Adaptive designs in the optimal design setting are driven byplacing the(n+1)-
th observation at the point that is viewed as the most informative (with respect to
the selected criterion) aftern observations. The approximate location of this point
is defined as

xn+1 = arg max
x∈X

ψ(x; ξs, θ̂n), (17)

whereθ̂n is the maximum likelihood estimate aftern observations. Note that (17)
is identical to (15) if, instead of the unknownθ, we substitute its estimatêθn. Thus,
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knowledge of the sensitivity function - i.e. the knowledge of F (x, θ) together with
the elemental matrixν(η) - is sufficient to develop adaptive design procedures.

Table 1: Sensitivity functionsψ(x, ξ), D = M−1; see (4)

Ψ(ξ) ψ(x, ξ)

log |D|, |D|1/m, ∏m
α=1 λα(D) tr ν(x)FT (x)DF (x) −m

log |ATDA|, tr ν(x)FT (x)DA(ATDA)−1ATDF (x) − k
dimA = k ×m, rankA = k < m

trD,
∑m

α=1 λα(D) tr ν(x)FT (x)D2F (x) − trD

trATDA tr ν(x)
(

FT (x)DA
)2 − trATDA

trDγ ,
∑m

α=1 λ
γ
α(D) tr ν(x)FT (x)Dγ+1F (x) − trDγ

λmin = λmin(M)
∑a
i=1 πiP

T
i F (x)ν(x)F (x)Pi − λmin

= λ−1
max(D) λminPi = MPi,

a is the multiplicity ofλmin,
∑a

i=1 πi = 1, 0 ≤ πi ≤ 1

In many cases the calculation ofν(η) is simpler if, instead of (8) one uses
(Lehmann and Casella 1998)

ν(η) = −E

[

∂2

∂η∂ηT
ln p{y|η(x, θ)}

]

.

In survival analysis for families of continuous distributions on the real line it is
common (see, for example, Cox and Oakes 1984) to use the hazard function

h(y|η) =
p(y|η)

∫

∞

y p(u|η)du =
p(y|η)

Prob(Y ≥ y|η) .

Efron and Johnstone (1990) recommend representing the information matrix in
terms of the hazard function as

ν(η) = E

[

∂

∂η
ln h(y|η) ∂

∂ηT
ln h(y|η)

]

.

Note that, in general, unlike (8)

ν(η) 6= Var

[

∂

∂η
lnh(y|η)

]

,

and, equivalently,

E

[

∂

∂η
ln h(y|η)

]

6= 0.
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4 Elemental Information Matrices

In this section we provide a collection of elemental information matrices for pop-
ular distributions together with recommendations for the derivation of matrices for
any that we have omitted. In the following examples we show how this collection
helps to explore the optimal design problem for almost any plausible generalized
regression.

4.1 Univariate distributions

Almost all of the reported elemental information matrices or, at least the cor-
responding references, can be found in Johnson, Kotz, and Balakrishnan (1994,
1995) and Johnson, Kemp, and Balakrishnan (2005). We have also found useful
results in Lehmann and Casella (1998) and in Bernardo and Smith (1994). Table 2
contains elemental information expressions for single parameter distributions with
elemental information matrices for two parameter distributions in Table 4.

The distributions in Table 4 include the Weibull and Pareto which are often
used for modelling survival or lifetime data. We note (Harris 1968) that a mixture
of exponential distributions with a gamma distributed parameter leads to a form
of Pareto distribution, which makes it appropriate for modelling heterogeneity in
survival times. These distributions are frequently elaborated by the introduction
of extra parameters to add flexibility in shape and to allow for times that do not
start at zero. Brazauskas (2003) presents information matrices for these more com-
plicated Pareto distributions. Escobar and Meeker (1994),Gertsbakh (1995) and
Gupta and Kundu (2006) discuss information matrices for censored survival dis-
tributions. Information matrices for bivariate and multivariate Pareto distributions
are presented by Yari and Jafari (2006) ,Gupta and Nadarajah(2007) and by Kotz
(2008). Elaborations of the Laplace distribution are in Kotz, Kozubowski, and
Podgórski (2001). Ali and Nadarajah (2007) cover normal Laplace mixtures with
the Dirichelet-multinomial distribution in Paul, Balasooriya, and Banerjee (2005).

If one of these two parameters is assumed to be known then the elemental in-
formation for the other (unknown) parameter equals the corresponding diagonal
element of the elemental information matrix. In many settings it is helpful to work
with parametersϑ which are often log or logit functions of the original parameters
η and can vary between−∞ and∞. We useν(ϑ) when the parametersϑ, not
η, will be considered as functions of controlsx and regression parametersθ. All
results of Section 3 stay valid with the obvious replacementof ν(η) by ν(ϑ). Table
3 and Table 5 contain information or information matrices for popular choices of
those new parameters. The multivariate normal distribution and multinomial distri-
bution are described in the corresponding subsections. Many further references on
multivariate distributions can be found in Johnson, Kotz, and Balakrishnan (1997)
and Kotz, Balakrishnan, and Johnson (2000)
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Table 2: Elemental information for single parameter distributions

Distribution Density Mean Information
Variance

Bernoulli(p) py(1 − p)1−y p 1/[p(1 − p)]
0 ≤ p ≤ 1 p(1 − p)

Geometric(p) (1 − p)yp (1 − p)/p 1/[p2(1 − p)]
0 ≤ p ≤ 1 (1 − p)/p2

Binomial(p, n)
(

n
y

)

py(1 − p)n−y np n/[p(1 − p)]

0 ≤ p ≤ 1 np(1 − p)

Neg. Bin.(p,m)
(m+y−1

m−1

)

pm(1 − p)y m(1 − p)/p m/[p2(1 − p)]

0 ≤ p ≤ 1 m(1 − p)/p2

Hypergeometric(p,N, n)
(n

y)(
N−n

Np−y)
( N

Np)
np (N−1)n

p(1−p)(N−n)

0 ≤ p ≤ 1 np(1 − p)(N − n)/(N − 1)

Poisson(λ) λye−λ

y!
λ 1/λ

λ > 0 λ

9



Table 3: Transformed elemental information for single parameter distributions

Distribution New parameter Information

Bernoulli(p) ϑ = ln p
1−p eϑ/(1 + eϑ)2

Binomial(p, n) ϑ = ln p
1−p neϑ/(1 + eϑ)2

Poisson(λ) ϑ = lnλ eϑ

Geometric(p) ϑ = ln p
1−p 1/(1 + eϑ)

Neg. Bin.(p,m) ϑ = ln p
1−p m/(1 + eϑ)

4.2 Families of Distributions

If the reader does not find the needed distribution in Table 2 or in Table 4, the fol-
lowing classical results may help (c.f. Lehmann and Casella1998).

4.2.1 Location-scale families

The density of the location-scale family has the form

p(y, η) =
1

b
π

(

y − a

b

)

, (18)

i.e., in our notation,ηT = (a, b). The elements of the matrixν(η) can be found by
calculating the integrals

νaa =
1

b2

∫

s2(u)π(u)du, (19)

νbb =
1

b2

∫

[us2(u) + 1]2π(u)du, (20)

νab = νba =
1

b2

∫

us2(u)π(u)du, (21)

wheres(u) = ∂ lnπ(u)/∂u . The non-diagonal elements equal zero whenever
π(u) is symmetric about the origin. The normal, logistic, Cauchy, and double
exponential distributions belong to the location-scale family and are included in
our tables.

4.2.2 Exponential families.

Most of the common distributions that are in our tables, suchas the normal, expo-
nential, gamma, beta, Bernoulli, binomial, and Poisson belong to the exponential
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Table 4: Elemental information matrices for two parameter distributions

Distribution Density Mean Support Information matrix
Variance

Normal(a, σ2)
−∞ < a <∞
σ > 0

1√
2πσ2

e
−(y−a)2

2σ2
a
σ2 −∞,∞ σ−2

(

1 0
0 1

2σ
−2

)

Beta(α, β)
α > 0
β > 0

B(α, β)yα−1(1 − y)β−1
α/(α+ β)

αβ
(α+β)2(α+β+1)

0 < y < 1

(

ψ
′

(α) − ψ
′

(α + β) −ψ′

(α+ β)

−ψ′

(α+ β) ψ
′

(β) − ψ
′

(α+ β)

)

Gamma(α, β)
α > 0
β > 0

1

Γ(α)βα
yα−1e−y/β

αβ
αβ2 0,∞

(

ψ
′

(α) 1/β
1/β α/β2

)

Logistic(a, b)
−∞ < a <∞
b > 0

e−(y−a)/b

b[1 + e−(y−a)/b]2
a
b2π2/3

−∞,∞ 1
3

(

b−2 0
0 1 + b−2

)

Cauchy(a, b)
−∞ < a <∞
b > 0

b

π[b2 + (y − a)2]
Do not exist (−∞,∞) 1

2b2 I

Weibull(α, β)
α > 0
β > 0

α
β ( yβ )α−1e−(y/β)α

βΓ(1 + α−1)
β2[Γ(1 + 2α−1)
−Γ2(1 + α−1)]

0,∞
(

π2

6 + (1−γ)2

α2

γ−1
β

γ−1
β

α2

β2

)

Pareto(α, σ)
α > 2 (for variance)
σ > 0

α
x ( yσ )−α

σ
(

α
α−1

)

ασ2

(α−1)2(α−2)

0,∞
(

α
σ2(α+2) − 1

σ(α+1)

− 1
σ(α+1)

1
α2)

)

Double exponential
(Laplace)(a, b)
−∞ < a <∞
b > 0

e−|y−a|/b

2b

a
2/b2

−∞,∞ 1
b2
I

ψ(α) = Γ
′

(α)
Γ(α) andψ

′

(α) = dψ(α)
dα) are the digamma and trigamma functions;γ = 0.5772 is Euler’s constant, see Abramowitz and Stegun (1965)

11



Table 5: Transformed elemental information matrices for two-parameter distribu-
tions after transformation

Distribution New parameters Information matrix

N(a, σ2)
ϑ1 = a
ϑ2 = lnσ2

(

1/eϑ2 0
0 1/2

)

N(a, a2) ϑ = ln a 3

N(a, k2a2)
ϑ1 = ln a
ϑ2 = k2

(

2 + 1/ϑ2 1/ϑ2

1/ϑ2 1/(2ϑ2
2)

)

Beta(α, β)
ϑ1 = lnα

ϑ2 = lnβ

(

e2ϑ1ψ
′

(eϑ1) 0

0 e2ϑ2ψ
′

(eϑ2)

)

−ψ′

(eϑ1 + eϑ2)

(

e2ϑ1 1
1 e2ϑ2

)

Gamma(α, β)
ϑ1 = lnα
ϑ2 = lnβ

eϑ1

(

eϑ1ψ
′

(eϑ1) 1
1 1

)

Logistic(a, b)
ϑ1 = a
ϑ2 = ln b

1
3

(

e−2ϑ2 0
0 1 + e2ϑ2

)

Cauchy(a, b)
ϑ1 = a
ϑ2 = ln b

1
2

(

e−2ϑ2 0
0 1

)

Weibull(α, β)
ϑ1 = lnα
ϑ2 = lnβ

(

π2

6 + (1 − γ)2 γ−1
eϑ2

γ−1
eϑ2

e2ϑ1

)

family. For this family the density is written as

p(y, ϑ) = h(y)exp
[

ηT (ϑ)T (y) −B(ϑ)
]

. (22)

One can also write the density in the canonical form

p(y, ϑ) = h(y)exp
[

ηTT (y) −A(η)
]

, (23)

whereη is often called the natural or canonical parameter. Sometimes it is useful
to use the so-called mean-value parameterτ = E[T (y)]. Information matrices
for distributions in the canonical form (23) can easily be found. For canonical
parameters the elemental information matrix is

ν(η) =
∂2A(η)

∂η∂ηT
= Var[T (y)] = Σ, (24)
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and interestingly enough, for the mean-value parametrization, the elemental infor-
mation matrix is the inverse matrix ofΣ, i.e. ν(τ) = Σ−1.

Note that the multivariate normal and multinomial distributions considered in
the next two sections are both members of the exponential family. More about the
multivariate exponential family can be found in Kotz, Balakrishnan, and Johnson
(2000).

4.3 Multivariate normal distribution

Let Y ∈ Rl have a normal distribution, i.e.,

p(y|a,Σ) = (2π)−l/2|Σ|−1/2exp{−1

2
(y − a)Σ−1(y − a)T } .

We let θ represent the unknown parameters defining the meana(x, θ) and the
variance-covariance matrixΣ(x, θ). Then the(α, β) element of the information
matrix for θ and for a single observation is (Magnus and Neudecker 1988, p. 325):

µαβ =
∂a

∂θα
Σ−1∂a

T

∂θβ
+

1

2
tr

(

Σ−1 ∂Σ

∂θα
Σ−1 ∂Σ

∂θβ

)

. (25)

The information matrix for thel+(l+1)l/2 parametersa andΣ appears com-
plicated, so we introduce notation to express it in a more compact form (Magnus
and Neudecker 1988,§2.4; Harville 2002,§16.4). Let vecΣ be a vector that is con-
structed fromΣ and consists ofl2 components. To build it, stack the columns ofΣ
beneath each other so that the first column ofΣ is on top, followed by the second
column ofΣ, etc.; thel-th column ofΣ is therefore at the bottom of the stack.
BecauseΣ is symmetric, this vector vecΣ contains considerable redundancy. To
obtain a parsimonious column vector with the same information as is inΣ, elimi-
nate all elements that come from the super-diagonal elements of Σ. The resulting
vector, with onlyl(l + 1)/2 elements is denoted vechΣ.

The duplication matrixDl (Magnus and Neudecker 1988,§3.8) is a linear
transform that links vecΣ and vechΣ:

DlvechΣ = vecΣ .

Dl is a unique matrix of dimensionl2 × l(l + 1)/2. We useDl to express an
elemental information matrix with parametersϑ = {aT , (vechΣ)T }) in a relatively
compact format:

µ(θ) =

(

Σ−1 0
0 1

2D
T
m(Σ−1 ⊗ Σ−1)Dm

)

. (26)

For example, for the bivariate normal distribution with parametersθ = (a1, a2, σ
2
1 , ρσ1σ2, σ

2
2)

T ,

D2 =









1 0 0
0 1 0
0 1 0
0 0 1









,
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which inserted in (26), yields the compact re-expression ofthe elemental informa-
tion matrix:

µ(θ) =
1

1 − ρ2

(

Σ−1 0
0 B

)

, (27)

where

Σ−1 =

(

1
σ2
1

− ρ
σ1σ2

− ρ
σ1σ2

1
σ2
2

)

,

B =
1

1 − ρ2









2−ρ2

4σ4
1

− ρ
σ3
1
σ2

ρ2

2σ2
1
σ2
2

− ρ
σ3
1
σ2

1+ρ2

σ2
1
σ2
2

− ρ
σ1σ3

2

ρ2

2σ2
1
σ2
2

− ρ
σ1σ3

2

2−ρ2

4σ4
2









.

4.4 Multinomial distribution

For multinomial observationsy = (y1, . . . , yl, yl+1) (Bernardo and Smith 1994,
§5.4)

p(y|ϑ, n) =
n!

y1! · · · yl!yl+1!
ϑy1

1 · · ·ϑyl

l ϑ
yl+1

l+1 ,

where
l+1
∑

i=1

yi = n and
l+1
∑

i=1

ϑi = 1 .

There are actually onlyl independent parameters. We take, as is common, the
elemental parameters to beϑ = (ϑ1, . . . , ϑl)

T , noting thatϑl+1 = 1 −
∑l

i=1 ϑi .
The elemental information matrix forϑ is

µ(ϑ) =
n

ϑl+1











ϑ1+ϑl+1

ϑ1
1 · · · 1

1
ϑ2+ϑl+1

ϑ2
· · · 1

· · · · · · · · · · · ·
1 1 · · · θl+ϑl+1

ϑ1











. (28)

The latter can be rewritten as

µ(ϑ) = n









ϑ1 0 · · · 0
0 ϑ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · ϑl









−1

+
n

ϑl+1
llT , (29)

wherelT = (1 · · · 1). Recalling that

(A+ llT )−1 = A−1 − A−1llTA−1

1 + lA−1lT
,
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we obtain

µ−1(ϑ) =
1

n









ϑ1 0 · · · 0
0 ϑ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · ϑl









− 1

n
ϑϑT . (30)

5 Examples

Example 1. Linear regression with normal errors and constant variance.

For normally distributed observations there are two elemental parameters, the
meana and the varianceσ2, see Table 4. Let the variance be constant and

η(x, θ) =

(

a(x, ϑ)
σ2

)

=

(

fT (x) 0
0, . . . , 0, 1

)(

ϑ
σ2

)

. (31)

Often it is assumed thatσ2 does not depend onx. Then from (7), (11) and Table 1
it follows that

µ(x) =
1

σ2

(

f(x)fT (x) 0
0 1/2σ2

)

. (32)

Note that the information matrix is block diagonal, i.e. thefirstm componentŝϑp

of the MLE are independent of the last one,ϑ̂v = σ̂2.
The information matrix for the designξ is

M(ξ) =

(

Mp(ξ) 0
0 1/2σ4

)

, (33)

whereMp(ξ) =
∫

f(x)fT (x)ξ(dx).
We now apply the above to the D-criterion. From Theorem 1 and Table 1

it follows that the sensitivity function isψ(x) = f(x)Mp
−1(ξ)fT (x) −m, and a

necessary and sufficient condition forξ to be optimal is fulfillment of the inequality

fT (x)Mp
−1(ξ)f(x) ≤ m .

The later statement is of course the major part of Kiefer-Wolfowitz equivalence
theorem. Note that this inequality does not contain any unknown parameters.

Example 2. Normal linear regression with independently parameterized variance.

Let us continue the previous example with

η(x, θ) =

(

a(x, ϑp)
lnσ2(x, ϑv)

)

=

(

fT (x) 0
0, ϕT (x)

)(

ϑp

ϑv

)

. (34)

15



From (7) and the first line of Table 5 it follows that

M(ξ) =

(

Mp(ξ) 0
0 1/2Mv(ξ)

)

, (35)

whereMp(ξ) =
∫

f(x)fT (x)ξ(dx) andMv(ξ) =
∫

ϕ(x)ϕT (x)ξ(dx). Applying
Theorem 1 and Table 1 we have for the D-criterion that (compare with Atkinson
and Cook 1995)

e−ϑT
v ϕ(x)fT (x)Mp

−1(ξ)f(x) +
1

2
ϕ(x)Mv

−1(ξ)ϕT (x) ≤ mp +mv ,

wheremp = dimϑp andmv = dimϑv.

Example 3. One parameter families, linear predictor function and D-optimality.

Let η(x, θ) = h(θT f(x)), where the range of the inverse link functionh coin-
cides with the domain of the corresponding parameter (e.g. between0 and1 for p
from Table 2). From (7) and Table 1 it can immediately be seen that a necessary
and sufficient condition forξ to be optimal is fulfillment of the inequality

λ(θT f(x))fT (x)M−1(ξ)f(x) ≤ m ,

whereλ(u) = ν(u)φ2(u), φ(u) = ∂h(u)/∂u andM(ξ) =
∫

f(x)fT (x)ξ(dx).
Compare our results with the special cases presented by Wu (1985) and Torsney
and Gunduz (2001) for binary regression or of Ford, Torsney,and Wu (1992) and
Atkinson et al. (2007, Cap. 22) who considered generalized linear models.

Example 4. Bivariate binary response model.

Consider two binary outcomes, efficacy and toxicity, from a clinical trial. The
possible outcomes arey = (y00, y01, y10, y11) with probabilitiesϑT = (ϑ1, . . . , ϑ4).
It is more intuitive to re-express these probabilities respectively asp00, p01, p10 and
p11. The interpretation of these probabilities is: “probability of no efficacy, no tox-
icity”; “probability of no efficacy, toxicity”; etc. Let a “single” observation be an
observation performed on a cohort of sizen. Then

p(y|p, n) =
n!

y00!y01!y10, !y11!
py00

00 p
y01

01 p
y10

10 p
y11

11 , (36)

where
∑2

i=1

∑2
j=1 yij = n and

∑2
i=1

∑2
j=1 pij = 1 . Definep = (p00, p01, p10).

From (29) it follows that the elemental information matrix for a bivariate binary
random variable and a cohort of sizen is

µ(ϑ) = n





p00 0 0
0 p01 0
0 0 p10





−1

+
n llT

1 − p00 − p01 − p10
. (37)
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This formula was derived and used in a number of publicationson dose-response
studies, see for instance, Dragalin and Fedorov (2006).

Example 5. Gamma regression.

In the case of gamma distributed observations there are two intuitively attrac-
tive ways to define the link function:

1. Model the parametersα andβ directly:

lnα = fT (x)ϑα ,

lnβ = ϕT (x)ϑβ .

2. Model the meana = αβ and varianceb = αβ2:

ln a = ln(αβ) = f̃T (x)ϑ̃a ,

ln b = ln(αβ2) = ϕ̃T (x)ϑ̃b .

The formulae are more compact for the first case, which is the reason why we
proceed with it. Following Sections 2 and 3 we have

F (x, θ) =

(

αf(x) 0
0 βϕ(x)

)

, (38)

whereθT = (ϑT
α , ϑ

T
β ) and the information matrix of a single observation made at

x is (see Lemma 1 and Table 5):

µ(x, θ) = α

(

αψ′(α)f(x)fT (x)) f(x)ϕT (x)
ϕ(x)fT (x) ϕ(x)ϕT (x)

)

, (39)

whereα = ef
T (x)ϑα andβ = eϕ

T (x)ϑβ . The matrix (39) allows us to build the total
information matrixM(ϑ, ξ). A necessary and sufficient condition for D-optimality
follows immediately from (38) and Table 1 :

ψ′(α)fT (x)
(

M−1
)

αα
f(x)+

2

β
fT (x)

(

M−1
)

αβ
ϕ(x)+

α

β2
ϕT (x)

(

M−1
)

ββ
ϕ(x)

≤ mα +mβ ,

where the matrices
(

M−1
)

αα
,
(

M−1
)

αβ
,
(

M−1
)

ββ
are the blocks of the inverse

information matrix corresponding to parametersϑα andϑβ respectively. Of course,
one has to remember thatα andβ are functions ofx and of unknown parameters.
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6 Conclusions

We have provided a set of tools that makes the optimal design of experiments as
routine as possible for the most popular distributions of responses. A key is that
the parameters of these distributions may depend on controllable, and perhaps un-
controllable, variables. Once a model is selected, that is the distribution of the
responses and the predictive functions relatingy andx, the design procedure con-
sists of almost identical steps for all the alternatives enumerated and discussed in
this article. We trust that this collection of results will not only streamline the prac-
tical aspects of experimental design, but that it will also lead to the development of
rather simple software that can incorporate all the cases wehave considered (and
hopefully some we haven’t) in one menu driven toolkit.

It should be clearly understood that there is a wealth of challenging problems
that lies beyond the scope of one paper, even if we have surveyed much material.
One such example is problems with transformed responses when the transforma-
tions depend on unknown parameters as in the Box and Cox (1964) transformation;
see Atkinson (2005) for some design aspects in this case.

In various areas of biostatistics it may be challenging to build information ma-
trices when the correlated multivariate responses consistof both continuous and
discrete variables. See Tate (1955) (with a correction in Hannan and Tate 1965)
and Fedorov, Wu, and Zhang (2012).

These remarks are an explicit call for joint efforts with other statisticians to
build a collection of elemental information matrices to make experimental design
more attractive and readily available for a wider population of practitioners.

Acknowledgment This paper was written at the Isaac Newton Institute for
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