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Abstract

The construction of optimal experimental designs for regien models
requires knowledge of the information matrix of a singlearation. The
latter can be found if the elemental information matricesesponding to the
distribution of the response are known. We present tableteafiental infor-
mation matrices for distributions that are often used itistteal work. The
tables contain matrices for one- and two-parameter digtahs. Addition-
ally we describe multivariate normal and multinomial casése parameters
of response distributions can themselves be parametddzedvide depen-
dence on explanatory variables, thus leading to regressromulations for
wide classes of models. We present essential results fraimam exper-
imental design and illustrate our approach with a few exasphcluding
bivariate binary responses and gamma regression.

Keywords: adaptive design; convex optimal design; elemental inferma
tion matrix; equivalence theorem.

1 Introduction

We are concerned with optimal experimental design for serajbneral class of re-
gression models. The observations are not constrained rtorpeally distributed,

but might, for example, follow a beta or binomial distritarj or, indeed, any
distribution for which the Fisher information matrix exdsttogether with regu-
lar maximum likelihood estimators. By regression we intémat the parameters
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of these distributions are themselves functions of furihperameters and of ex-
planatory variables, at least some of which can be chosercamigolled in the
experiment. Frequently a link function will be required; &xample in the param-
eterization of the variance of a normal distribution or thebability in a Bernoulli
model.

Our main objective (se&t2 and 4) is to provide a collection of “elemental”
information matrices for specific distributions which arei@al for the solution
of optimal design problems. In this way we bring togetheultssthat are repet-
itively scattered throughout the statistical literatufiehese matrices are essential
for constructing information matrices for “single” obsations. The latter may in
many cases, for example for mixed-effect models, consist séries of observa-
tions on a single subject. For applications to experimet¢aign we require the
possibility of independent replications of these seriemm@ining the concept of a
single observation (supported by tables of informationrices) with a collection
of sensitivity functions for various popular optimalityiteria (see§3) the reader
can address numerous tasks in the optimal design of exp@sme

We begin in§2 with an introduction to the generalized regression maxisi;
tinuing in §3 with some basic ideas about optimal experimental desidye. cbre
of our paper ig4 where we provide tables of elemental information matrioes
one and two parameter univariate distributions. 542 we indicate how further
information matrices, excluded from the tables, may be doian members of the
location-scale and exponential families. The multivariabrmal distribution, in-
cluding a parameterized variance, and multinomial digtiitms receive special
attention in§4.3 andg4.4. Examples ig5 include the equivalence theorem for D-
optimality for normal observations with a particular pagderized variance. Ex-
ample 3 includes the family of designs for univariate gelnegd linear models,
whereas, in Example 4 there are two binary responses. Erabnigl gamma re-
gression when both the parameters are functions of explanedriables.

2 Generalized Regression

2.1 Main modé€

We assume that the observed respadride distributed as

Y ~ p(yln), (1)

whereY andy arek-dimensional vectors, with of dimension. The parameterg
depend on controls € 2" and 2" is a design set (region). Usually™ € R®, but
in generalZ” could be a compact set of more complicated structure, foance,
part of a functional space (Fedorov and Hackl 198%.7). In what follows we
assume tha2” € R unless otherwise stated. In the standard setting for reigres
models it is assumed that the expected values of responsee parameterized,
compare with Pazman (1986), Pukelsheim (1993), FedordvHatkl (1997) or



Atkinson, Donev, and Tobias (2007); see Example 1. The nmstlpr examples
are “normal” regression, binary regression and Poissamssgpn. Actually, all re-
gression models with response belonging to a one-paraifiaetdy can be treated
in a similar way. Generalizations for cases when the commuisnef,, are of the

same type (e.g. expectations in the multivariate normalsaaightforward. How-
ever, in the case of multi-parameter distributions (sudh@gamma or Weibull), it
is very natural to assume that two or more componentsadfdifferent types may
depend on controls and unknown parameters. As far as we limthvg experimen-

tal design literature only in the “normal” case have différg/pes of components
of n been parameterized, namely, the expectation(s) of themssys) and its vari-
ance (variance-covariance matrix). See, for instanceindtk and Cook (1995),
Dette and Wong (1999) or Fedorov and Leonov (2004). A rarepbian is the

beta regression considered by Wu, Fedorov, and Proper5)200

2.2 Likeihood estimatorsand Fisher information matrices

Before proceeding with the design problem for generalizggtassion we recall a
few commonly known facts and introduce the required nobaticet

n=n(z,0), 2

wheren™ (z,0) = {n1(z,0),...,n.(z,0)} are given functions of controls and

unknown regression parametérsFurther, letn independent observatiodd; }7

be made afz; }1'. Equations (1) and (2) constitute a generalized regressamifel.
The maximum-likelihood estimator (MLE), of 6 can be defined as

b = argmax [ pliln(ei,0)) ®)
€0 1
= arg%lea@XL({yi}l7{wi}l’0)7

where® is compact and the true valégof ¢ is an internal point 0. Under rather

mild conditions omp(y|n), n(z,d) and on the sequende:; }} (see, for example,
Lehmann and Casella 1998, Chapter 2) the Mi,Hs strongly consistent and its
normalized asymptotic variance-covariance matrix is

nD(Hﬁ{wl}?) = M_l(et’{xi}rll)’ (4)
where
M0 {zi}}) = ) ulxi0), (5)
=1
and p(z,6) = Var [% 1np<y|n<x,9>] . (6)
Introducing .
F(z,0) = on_(x,9) 8(;6’0)



and observing that

3} on” (z,0) [ d ]
—In r,0) = ———=|—1In ,
5g mp(yln(z,0) 26 |on p(yln) -
one may conclude from (6) that
Lemmal
p(x,0) = F(x,0)v(n)F" (x,0), )
where 5
v(n) = Var [a—nlnp(y!n)} - 8

Note that in (7) and (8) the vectardepends o andf but we have omitted the
compound subscripi = n(z, §) and will continue to do so if this does not lead to
ambiguity.

In what follows we call(n) defined by (8) theélemental information matrix
for model (1). It plays a central role in this article.

If there are repeated observations (5) should be replaced by

M(0,6n) =Y rip(xi, 0), ©)
i=1
or, moving to the normalized information matrix,
NM(0,8) =Y wip(xi,0), (10)
i=1

whereN = Y""  r; andé = {w;, z;}]. If there are no repeated observations then
n andN coincide.
More generally,

M0, = [ nla0)eldn) (11)
— [ PO @ 0)¢ ),
where¢ could be any probabilistic measure defined®h Thus the information

matrix (11) is completely defined by the desigrby the derivatived'(x, ) of the
regression functiong(z, #) and by the elemental information mateixn).

3 A Few Basic Factsfrom Optimal Design Theory

Optimality criteria play a fundamental role in the desigrexperiments. We follow
the well-accepted paradigm of convex design theory (Fedd®d2, Silvey 1980,



Pazman 1986, Pukelsheim 1993, Fedorov and Hackl 1997ngdhkiet al. 2007)
and define an optimal (continuous/approximate) design as

¢ = argmin W [M(S, 0)], (12)

where¥[M] is a convex and homogeneous function of matdxsee Fedorov and
Hackl 1997,52.2). An introduction to optimal design, emphasizing theartance

of Fisher information, is in Chapter 7 of Cox and Reid (200®)r the sake of sim-
plicity we confine ourselves throughout this paper to cadesrvoptimal designs
defined by (12) have regular information matrices, e.g. zeno-determinants.

3.1 Equivalencetheorem

The following theorem, which is often called the equivakeribeorem after the
“equivalence theorem” of Kiefer and Wolfowitz (1960) fortiD-criterion, is the
theoretical basis for the development of many numericahouds and for the con-
struction of adaptive designs.

Theorem 1 A necessary and sufficient condition fdrto be optimal is fulfillment
of the inequality
min ¢ (z, 0) > 0, (13)
zeX

wherey(z, £*) is the directional derivative:

$(,€) = lim LW [M((1 - )" +at(a)], (14)

a—00o
and¢(x) is a design atomized at

Frequently the function)(z, €) is called a sensitivity function. A table of sensi-
tivity functions for the most popular criteria is presentedable 1. All functions
Y(x, &) are defined by the information matrices of a single obsamatihese, in
turn, are defined by the elemental information matrices (@) lay the derivatives
of the regression functiong(x,#). Thus Table 1, together with tables from the
next section that contain elemental matrices, leads &tifaigvardly to the specific
versions of the equivalence theorem for a wide variety of @mdhe necessity of
special calculations for each individual case is avoided.

Note that Table 1 is built under the assumption that the adtisesigns™* is
regular. In some special cases in rows 2 and 4, for examglanihappen thdt" is
singular, that is that rank/ (£*) < m. Such cases are well treated in Pukelsheim
(1993), but are beyond the scope of this paper.

All the criteria in Table 1 operate in parameter space, thdhey provide a
scalar measure of precision, or uncertainty, of the MLE of of the linear trans-
formationd = AT4. In the case of arbitrary, but smooth, transformatié(®) the
results of the table still hold witi” replaced by the vector of derivatives” /9.



Often a practitioner may be interested in estimation ofeasp functiong(z, 6)
or of a utility function((x,#) on some set” that may or may not coincide with
Z. The corresponding criteria are not explicitly included’able 1. However, the
table provides the requisite information for some criteRar instance, let interest

be in
A 6{(95, 9) N 8{(95, 9)
Var [((x,0)]|de = / Varg ———=dx
fvrleaee = [ S5 =
= tr /3 50 20T dx Vard.
Defining

[ 0¢(x,0) O((x,0)
A‘/g o0 aeT

one can use the fourth row of Table 1 to find the necessarytsaysiunction.

3.2 Computing optimal designs

Many widely-used numerical algorithms for the construttid optimal designs are
based on directional derivatives (Wynn 1970; Fedorov 1%&orov and Hackl
1997).

For instance, in first-order algorithms, forward excursi@ud weight to the
design at

oy = argmaxy(z; £, ), (15)
whereas backward excursions delete weight from
Topy = arg ming(z; &, 0). (16)

Again, as in the previous section, Tables 1-4 and Table Sge@ll the components
that are needed, now for (15) and (16).

Fedorov and Hackl (199%3.2) and Atkinson et al. (200%9.5) describe the
use of general-purpose second-order algorithms for thetagaion of optimal
designs. These algorithms can be built using elementatrirdtion matrices and
sensitivity functions, i.e. the first-order directionalidatives, which are presented
in Table 1. However, second-order directional derivat@esalso needed. Again
they are completely defined by the elemental informatiorrices and byF'(x, 0)
(Fedorov and Hackl 199%3.2).

Adaptive designs in the optimal design setting are driveplaging the(n+1)-
th observation at the point that is viewed as the most infau@gwith respect to
the selected criterion) after observations. The approximate location of this point
is defined as

Tpal = argmaxz/;(x;ﬁs,én), a7
el

whered,, is the maximum likelihood estimate afterobservations. Note that (17)
is identical to (15) if, instead of the unknoviinwe substitute its estimatg,. Thus,
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knowledge of the sensitivity function - i.e. the knowleddeFgx, 6) together with
the elemental matrix(n) - is sufficient to develop adaptive design procedures.

Table 1: Sensitivity functions(xz, £), D = M~; see (4)

v(§) P(,§)
log |D|, |D|Y™, TI"_, Xa(D) trv(z)FT (z)DF(z) —m
log|ATDA|, trv(z)FT (x)DA(ATDA)*ATDF (x) — k
dimA =k xm, rankA =k <m
trD, >0 Aa(D) trv(z)FT (x)D?*F(z) — tr D
trATDA trv(z) (F© (x)DA)2 —trATDA
tr DY, Y AL(D) trv(z)FT (2) DY F(x) — tr DY
Amin = Amin (M) Oy 7, PTF(2)v(2)F(2)P; — Amin
= A;lallx(D) )\minPi - MPZ!

a is the multiplicity of Ay,
Som=10<m <1

In many cases the calculation ofn) is simpler if, instead of (8) one uses
(Lehmann and Casella 1998)

82
v(n) = —E Whﬂp{ym(&@)} .

In survival analysis for families of continuous distrikris on the real line it is
common (see, for example, Cox and Oakes 1984) to use thedhiametion

oyl plyl)
h(yln) = fyoop(u|77)du ~ Prob(Y > yln)

Efron and Johnstone (1990) recommend representing thamafon matrix in
terms of the hazard function as

v(n) = E [8% I (y1n) 1nh<yrn>} |

Note that, in general, unlike (8)
v(n) # Var 2lnh( In)
n an yimy s
and, equivalently,

B |5 hisla)] #0



4 Elemental Information Matrices

In this section we provide a collection of elemental infotima matrices for pop-
ular distributions together with recommendations for teevétion of matrices for
any that we have omitted. In the following examples we show tios collection
helps to explore the optimal design problem for almost aaygible generalized
regression.

4.1 Univariatedistributions

Almost all of the reported elemental information matrices at least the cor-
responding references, can be found in Johnson, Kotz, atakiBdnan (1994,
1995) and Johnson, Kemp, and Balakrishnan (2005). We haweefalnd useful
results in Lehmann and Casella (1998) and in Bernardo anthg#i94). Table 2
contains elemental information expressions for singlampater distributions with
elemental information matrices for two parameter distidns in Table 4.

The distributions in Table 4 include the Weibull and Paretuol are often
used for modelling survival or lifetime data. We note (HartB68) that a mixture
of exponential distributions with a gamma distributed paeger leads to a form
of Pareto distribution, which makes it appropriate for mtg heterogeneity in
survival times. These distributions are frequently elabet by the introduction
of extra parameters to add flexibility in shape and to allowtimes that do not
start at zero. Brazauskas (2003) presents informatiorigeatior these more com-
plicated Pareto distributions. Escobar and Meeker (1984)tsbakh (1995) and
Gupta and Kundu (2006) discuss information matrices fosomd survival dis-
tributions. Information matrices for bivariate and mudtiiate Pareto distributions
are presented by Yari and Jafari (2006) ,Gupta and Nadaf2@dlv) and by Kotz
(2008). Elaborations of the Laplace distribution are in Zdtozubowski, and
Podgorski (2001). Ali and Nadarajah (2007) cover normailaee mixtures with
the Dirichelet-multinomial distribution in Paul, Balaso@, and Banerjee (2005).

If one of these two parameters is assumed to be known therdimeetal in-
formation for the other (unknown) parameter equals theesponding diagonal
element of the elemental information matrix. In many sgtiit is helpful to work
with parameterg) which are often log or logit functions of the original paraere
n and can vary betweeroco andoo. We user () when the parameter$, not
71, will be considered as functions of contratsand regression parametets All
results of Section 3 stay valid with the obvious replacenoént(n)) by v(19). Table
3 and Table 5 contain information or information matricesgopular choices of
those new parameters. The multivariate normal distribugiod multinomial distri-
bution are described in the corresponding subsectionsy Mather references on
multivariate distributions can be found in Johnson, Kot 8alakrishnan (1997)
and Kotz, Balakrishnan, and Johnson (2000)



Table 2: Elemental information for single parameter disttions

Distribution Density Mean Information
Variance

Bernoulli(p) pY(1—p)t=v p 1/[p(1 = p)]

0<p<l1 p(1—p)

Geometri¢p) (1—p)¥p (1-p)/p 1/[p*(1 - p)]

0<p<1 (1—p)/p?

Binomial(p, n) (Z)py(l —p)nY np n/[p(1 - p)]

0<p<l1 np(l —p)

Neg. Bin. (p,m) ("t p™ (1 —p)Y m(1—p)/p m/[p*(1 - p)]

0<p<1 m(1—p)/p?

: (D) () (N—D)n
Hypergeometridp, N, n) B EAN np PA—p)(N—n)
0<p<l1 np(l —p)(N —n)/(N —1)

PoissoIfi\) )‘—ys,_—A A 1/A

A>0 A




Table 3: Transformed elemental information for single pasgter distributions

Distribution New parameter Information
Bernoulli(p) 0 =In % eV /(1 +e”)?
Binomial(p,n) ¥ = In £ ne’ /(1 +e”)?
Poissofi\) d=1In\ eV

Geometri¢p) 0 =1In {2 1/(1+¢e?)

Neg. Bin.(p,m) ¢ =1In: m/(1+ e?)

4.2 Familiesof Distributions

If the reader does not find the needed distribution in Tableid dable 4, the fol-
lowing classical results may help (c.f. Lehmann and Cad€I88).

4,21 Location-scale families

The density of the location-scale family has the form

) = 57 (450) (19)

i.e., in our notationy” = (a,b). The elements of the matrix(n) can be found by
calculating the integrals

Vaa = »2 SQ(U)W(U)dU, (19)
Vppy = biz/[usz(u) + 127 (u)du, (20)
Vab = Vpg = b%/uSQ(u)ﬂ(u)du, (21)

wheres(u) = dlnw(u)/0u . The non-diagonal elements equal zero whenever
m(u) is symmetric about the origin. The normal, logistic, Caycayd double
exponential distributions belong to the location-scal@ifa and are included in
our tables.

4.2.2 Exponential families.

Most of the common distributions that are in our tables, sasthe normal, expo-
nential, gamma, beta, Bernoulli, binomial, and Poissoormgko the exponential
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Table 4: Elemental information matrices for two parameistrithutions

Distribution Density Mean Support Information matrix
Variance
2
e LA e - Sy
o >0 V2mro? o? ’ 0 Lo
Betda ﬁ) ’ ’
9 + _ _
0> 0 Blagya-pt LD ecy<n (VS verd wier ) )
>0 @t A2 (0t ArD) Y (a+06) Y (B) =¥ (a+P)
Gammada, ) ,
! e 0,00 ( AN >
B>0 /B of
e __ewan a - (o)
b0 b[l 4 e~ (w—a)/t]2 b2r?/3 ’ 30 0 14072
Cauchya, b)
b H 1
—00 < a < oo —_— Do not exist —00, 00 51
) T - a7 (o)
We'bu”(Oé, ,3) /BF(]- + a_l) 71-_2 + (177)2 'Y*l
o >0 S lem " Pra+20l) 000 ( RS )
g0 (1 +a7) -
Paretdo, o) o (ﬁ) a 1
a > 2 (for variance) %(%)~“ 0, 00 ( o*(e$2) o(a+1) >
o>0 ac? T o(atl) a?)
(a—1)?(a—2)

Double exponential
(Laplaceja, b) e~ ly—al/b a B 1
—00 < a< 0o 2b 2/b? 0020 2l

b>0

Y(a) = FF((QD‘)) andy’ (a) = dfé(;) are the digamma and trigamma functioms:= 0.5772 is Euler’s constant, see Abramowitz and Stegun (1965)




Table 5. Transformed elemental information matrices far-parameter distribu-
tions after transformation

Distribution ~ New parameters Information matrix
Y =a /e’ 0
2 1
N(aao' ) 192:an2 < 0 1/2 >
N(a,a?) Y=1Ina 3
Y1 =Ina 2+1/9 1/9
2 2 1 2
N(a,k? a ) 192 — k‘2 < 1/192 1/(2,[9%) >
62191,1/},(6791) 0
¥ =Ina 0 2029’ (e72)
Beta(a, §)
19 = ln ’ 62191 1
? b —)' (" + e2) < 1 20 >
Y =lha 9 eV (e?) 1
Gammda, 3) 9o = In 3 e < ) 1
L 191 =a 1 6_2192 0
LOg|St|C(CL7 b) 192 —Inbd 3 < 0 14 62792
191 =a 1 6_2192 0
Cauchya, b) 9y = Inb 3 < 0 1
. '&1 =lna«o %2+(1—’Y)2 1521
Weibull(c, 5) 9y = In 3 ( 521 o501
family. For this family the density is written as
p(y,9) = h(y)exp [n" ()T (y) — BW)] . (22)
One can also write the density in the canonical form
p(y,9) = h(y)exp [n"T(y) — A(n)] , (23)

wheren is often called the natural or canonical parameter. Sonestitnis useful
to use the so-called mean-value parameter E[T'(y)]. Information matrices
for distributions in the canonical form (23) can easily berfd. For canonical
parameters the elemental information matrix is

_ 0*A(n)
v(n) = anonT

= Var[T(y)] = %, (24)
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and interestingly enough, for the mean-value parameimizathe elemental infor-
mation matrix is the inverse matrix af, i.e. v(7) = L1

Note that the multivariate normal and multinomial disttibns considered in
the next two sections are both members of the exponentialyfakore about the
multivariate exponential family can be found in Kotz, Baiaknan, and Johnson
(2000).

4.3 Multivariate normal distribution

LetY € R! have a normal distribution, i.e.,
1
p(yla, 2) = (2m) 2|5 Peap{— 5 (y - )37 (y — )T}

We let 6 represent the unknown parameters defining the méand) and the
variance-covariance matriX(z, ). Then the(a, 3) element of the information
matrix for # and for a single observation is (Magnus and Neudecker 19825):

da __,10aT 1 0% 1 0%
Hap = 8—0(12 8—96 + 5‘51‘ (E %E 6—96> . (25)

The information matrix for thé+ (14 1)/2 parameters and> appears com-
plicated, so we introduce notation to express it in a morepamnform (Magnus
and Neudecker 19882.4; Harville 2002516.4). Let ve& be a vector that is con-
structed from> and consists off components. To build it, stack the columnssdf
beneath each other so that the first columixa$ on top, followed by the second
column of X, etc.; thel-th column ofX is therefore at the bottom of the stack.
BecauseX is symmetric, this vector veét contains considerable redundancy. To
obtain a parsimonious column vector with the same inforoma#is is inX, elimi-
nate all elements that come from the super-diagonal elenuéiit. The resulting
vector, with onlyl(! 4+ 1)/2 elements is denoted veth

The duplication matrix D; (Magnus and Neudecker 19883.8) is a linear
transform that links veX and vech::

Dyvechy = vecx .

D, is a unique matrix of dimensiot? x I(I + 1)/2. We useD; to express an
elemental information matrix with parameters= {a”, (vechx)”'}) in a relatively
compact format:

»-1 0
(o) = ( 0 1pT(x'exlD, ) . (26)

For example, for the bivariate normal distribution withgaeter® = (a1, a2, 0%, poi0a,05)7
0 0
Dy =

OO O =

1
1
0

= O O



which inserted in (26), yields the compact re-expressiah@felemental informa-
(27)

tion matrix:
() = 1 oo
PO=7—2 0o B )"
where
1 __p
_ 2 o102
= o1
__P 1 ’
0102 o3
2-p> _ _p P2
1 40‘11 U%gg 20%0%
_ __p 1+p __p
B = 1— p2 O’io’g 0%0% 01%3
2_
20202 _0/:73 40’61
192 102 2

4.4 Multinomial distribution
, U1, yi+1) (Bernardo and Smith 1994,

For multinomial observationg = (1,
Yi+1

§5.4)
plyld,n) = —— " g gy
’ vl ylyi! Lol

41

where

I+1
Zyi:n and 2192:1
=1 =1

There are actually only independent parameters. We take, as is common, the
elemental parameters to Be= (94,...,9;)", noting that;, | = 1 — 22:1 ¥ .

The elemental information matrix fat is
Lz’%ﬂ 1 .. 1
! Vo+041 1
uy=-— ' T (28)
Vi1 . o .
1 1 R 91";;91#1
The latter can be rewritten as
9, 0 - 0\ !
p@)=n| 0 V2 o 0 L g, (29)
e e Vi1
0 0 9,
wherel” = (1---1). Recalling that
AT A

Ty-1 _ 4—1
At = A7 = e

14



we obtain

9 0 0
ey =L 0 P 0 |- Ly, (30)
0 0 9,

5 Examples

Example 1. Linear regression with normal errors and constaariance.

For normally distributed observations there are two eldgalgrarameters, the
meana and the variance?, see Table 4. Let the variance be constant and

_(alz )\ _( fT(x) 0 v
77(9579) - < 0.2 > - < O,...,O, 1 0,2 . (31)
Often it is assumed that> does not depend an Then from (7), (11) and Table 1
it follows that ()7 ()
1 flx)f (z 0

Note that the information matrix is block diagonal, i.e. thist m component3§p
of the MLE are independent of the last org, = 62.
The information matrix for the desighis

mi = (M 0L (33)

whereM, (&) = [ f(x) 7 (x)€(dz).

We now apply the above to the D-criterion. From Theorem 1 aalolel 1
it follows that the sensitivity function ig/(z) = f(z)M, (&) fT(z) — m, and a
necessary and sufficient condition foto be optimal is fulfillment of the inequality

T (@) M, 1 €) f(x) <m .

The later statement is of course the major part of Kieferfévatz equivalence
theorem. Note that this inequality does not contain any anknparameters.

Example 2. Normal linear regression with independentlyapagterized variance.

Let us continue the previous example with

n(z,0) = ( ln‘ﬁfgﬁpgv) > = ( / TO(:”) SOTO(@ > ( Zi ) D)

15



From (7) and the first line of Table 5 it follows that

ME) 0
O = ("5 e ) (%)

whereM, (&) = [ f(z)fT(z)é(dz) and M, (&) = [ (x)¢T (z)€é(dz). Applying
Theorem 1 and Table 1 we have for the D-criterion that (compath Atkinson
and Cook 1995)

e @) T (@) M,V () f(2) + %@(%)Mv_l(f)()@T(m) S mp+ My,

wherem,, = dim v, andm,, = dim9,.
Example 3. One parameter families, linear predictor fumetand D-optimality.

Letn(z,0) = h(6T f(x)), where the range of the inverse link functibreoin-
cides with the domain of the corresponding parameter (etyvéen) and1 for p
from Table 2). From (7) and Table 1 it can immediately be skaha necessary
and sufficient condition fof to be optimal is fulfillment of the inequality

MO f (@) [T ()M () f(z) < m

whereA(u) = v(u)¢?(u), ¢(u) = Oh(u)/0uandM(§) = [ f(z)f"(x)&(dx).
Compare our results with the special cases presented by 985)®and Torsney
and Gunduz (2001) for binary regression or of Ford, Torsarg, Wu (1992) and
Atkinson et al. (2007, Cap. 22) who considered generalizeghf models.

Example 4. Bivariate binary response model.

Consider two binary outcomes, efficacy and toxicity, fromiaical trial. The
possible outcomes ate= (400, Yo1, ¥10, y11) With probabilitiesy” = (91, ...,94).
It is more intuitive to re-express these probabilities eesipely asog, po1, p1o and
p11. The interpretation of these probabilities is: “probabibf no efficacy, no tox-
icity”; “probability of no efficacy, toxicity”; etc. Let a “sgle” observation be an
observation performed on a cohort of stzeThen

|
n: Yoo Y01 ,.Y10 Y11 (36)

Poo Po1 Pio P )
Yoo!yo1 Y10, ypg ! 00 0L 10 L

pylp,n) =

WherEZ?:1 Z?:l Yij =1 and Z?:l Z?:lpij =1. DEfinep = (p00>p017p10)-
From (29) it follows that the elemental information matror fa bivariate binary
random variable and a cohort of sizeés

po 0 0 ! n T
pd)=n| 0 po O + : (37)

1— — —
0 0 puo Poo — Po1 — P10
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This formula was derived and used in a number of publicatmnslose-response
studies, see for instance, Dragalin and Fedorov (2006).

Example 5. Gamma regression.

In the case of gamma distributed observations there arertiuiively attrac-
tive ways to define the link function:

1. Model the parameteks and 3 directly:

na = fT(w)ﬁou
g = ¢l (2)ds.

Ina=In(af) = fT
Inb=In(af?) = @' (z)

The formulae are more compact for the first case, which is ¢asan why we
proceed with it. Following Sections 2 and 3 we have

_ [ af(z)
F(m,@)-( 0 (38)

5900(96) > ’

where¢” = (97, v%) and the information matrix of a single observation made at
x is (see Lemma 1 and Table 5):

(@)@ @) )6 (@)
. 0) = ( (@) () w(w)soT(x)>’ 39)

wherea = e/ (@Y andg = e#” (@95, The matrix (39) allows us to build the total
information matrixM (¢, £). A necessary and sufficient condition for D-optimality
follows immediately from (38) and Table 1 :

V@) (@) (M) g F@) 5 17@) (M) ol 55T @) (M) 5, 0(0)

< mq+mg,

where the matrice6M ') . (M~") ;. (M~1),; are the blocks of the inverse
information matrix corresponding to parametérsandd g respectively. Of course,
one has to remember thatandj are functions oft and of unknown parameters.
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6 Conclusions

We have provided a set of tools that makes the optimal dedigmeriments as
routine as possible for the most popular distributions spomses. A key is that
the parameters of these distributions may depend on ctafit®| and perhaps un-
controllable, variables. Once a model is selected, thdtasdistribution of the
responses and the predictive functions relagrandz, the design procedure con-
sists of almost identical steps for all the alternativesnesrated and discussed in
this article. We trust that this collection of results widitronly streamline the prac-
tical aspects of experimental design, but that it will aksad to the development of
rather simple software that can incorporate all the casesawve considered (and
hopefully some we haven't) in one menu driven toolkit.

It should be clearly understood that there is a wealth oflehging problems
that lies beyond the scope of one paper, even if we have soiveyich material.
One such example is problems with transformed responses thikgransforma-
tions depend on unknown parameters as in the Box and Cox )Y r@®éformation;
see Atkinson (2005) for some design aspects in this case.

In various areas of biostatistics it may be challenging titdboformation ma-
trices when the correlated multivariate responses consisbth continuous and
discrete variables. See Tate (1955) (with a correction inrtda and Tate 1965)
and Fedorov, Wu, and Zhang (2012).

These remarks are an explicit call for joint efforts with exttstatisticians to
build a collection of elemental information matrices to makperimental design
more attractive and readily available for a wider populatd practitioners.
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