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Abstract

The behaviour of algorithms for very robust regression ddpeon the
distance between the regression data and the outliers. t¥duice a param-
eter )\ that defines a parametric path in the space of models andesnabto
study, in a systematic way, the properties of estimatoreegtoups of data
move from being far apart to close together. We examine, ascidn of\,
the variance and squared bias of five estimators and we atsiden their
power when used in the detection of outliers. This systerragiproach pro-
vides tools for gaining knowledge and better understandfrije properties
of robust estimators.

Keywords. distance of outliers; forward search; least trimmed smjare
MM estimate; multiple outliers; overlap index

1 Introduction

Multiple regression is one of the main tools of applied stats. It has however
long been appreciated that ordinary least squares as a dnetHiting regres-
sion models is exceptionally susceptible to the presenceaittiers. Instead, very
robust methods, that asymptotically resist 50% of outliare to be preferred.
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Our paper presents a systematic, parameterized frameaattief non-asymptotic
comparison of these methods.

Very robust regression was introduced by Rousseeuw (1984)developed
suggestions of Hampel (1975) that led to the Least Mediamoag&s (LMS) and
Least Trimmed Squares (LTS) algorithms. For some historgarie recent devel-
opments see Rousseeuw and Van Driessen (2006). More gdiseradsions of ro-
bust methods are in Maronna, Martin, and Yohai (2006) andyeiathaler (2007).
We illustrate our methods for the comparison of high-breakuaregression pro-
cedures with comparisons of the performance of LTS and otledirestablished
methods, including S and MM estimators, with that of a puplavailable algo-
rithm for very robust regression that uses the Forward 8g#&$). See Atkinson,
Riani, and Cerioli (2010) for a recent discussion of the FS.

Very robust regression estimators share the propertydabginptotically, they
have a breakdown point of 50% (s&2) as the main data and outliers become
infinitely far apart. In order to distinguish between theiraators we study, in
a systematic way, their properties as the distance betweetwb groups of ob-
servations decreases. 48 we introduce a parameterised framework, parameter
A, for moving the outliers along a trajectory which is iniyatemote from the
main data, but which then passes close to it before agaimtiagdar away. We
control whether, at their closest, the two populations sliae same centre. We
design measures of overlap to calibrate the trajectories.

Numerical results are if4. We take the outliers from the regression model to
have a multivariate normal distribution. This provides ay\general scenario for
outliers that can range from points virtually on a line to araagly random scat-
ter around the regression plane. Boxplots of the estimabes the five methods
as) varies indeed show that, for wide separations, the methads$imilar prop-
erties. However they differ markedly as the two populatiomsverge. In order to
summarise this information we look at cumulative plots rdfie range of\, of the
variance and squared bias of the estimators. Another methozinparing robust
estimators is by their properties for outlier detection g€@and Hawkins 1990).
In §4 we calculate power curves as a functiom\dbr the number of outliers de-
tected. Since the curves indicate that the estimators gedeists of varying sizes,
we find the size of the outlier tests §b.

There are two main conclusions. The first is that the paramsetefamily of
departures provides a cogent framework for investigatiegldehaviour of very
robust estimators. The second is that FS is the preferredadedf very robust
regression, a conclusion particularly strongly suppobgthe power and size of
test curves. Among our concluding commentgénwe mention procedures for
insightful methods of data analysis, even if no group of olet@ns is in the
majority.



2 Modeds, Data and Robustness

Robustness is concerned with fitting a single model to dataiwére generated
by two, or maybe more, models. We suppose that the largeofidue datal — A,
where0 < A < 0.5, is generated by the mod#f; (6;) and the remaining park

of the data is generated by the modé}(6,). In the absence of outliers, that is
whenA = 0, an ideal robust estimator would have a variance that aetigdve
Cramer-Rao lower bound. If the data were contaminated, gtimate would be
unbiased. Such estimators do not exist. Maronna, Martih Yamai (2006 33.4)
describe some compromises between the two properties.

Robust methods study the properties of methods that {9, ) in ignorance
of knowledge of the form of the outlier generating modé|(6,), which can be
quite general. Whei/,(.) is a regression model/,(.) is often taken, for exam-
ple, to distribute observations randomly over a large spemecentrate them in
a cluster or to be a second regression model. Figure 2 of Reuss(1984) is a
paradigmatic example. There is no difficulty in havihg (6) = M, () but then
we must havé, # 0s.

The breakdown point of an estimatéris the largest value of\ for which
6 provides information abou, remaining bounded and bounded away from the
edge of the parameter space as the observations take apyg (sd& Maronna et al.
2006,83.2). The very robust regression procedures we comparedsgveptotic
breakdown points of 50%. This is customarily considerededhe maximum
possible value, a point we return tog8.

As yyn ~ My(6,) — oo the observationg,;; andy,,» from the two models
become increasingly well separated. Under these conditiom five estimators
in our study have similar properties. We are also interestedose data config-
urations when the observations are not so separated, sbdthay,,; andy,»
may be used in estimatirgbecause of overlap between the two samples. Such
configurations are highly informative about the differemoeproperties of robust
methods. We define a finite-sample measure of the overlgp,0aindy,,, that
is designed to be informative for regression models. In genthe properties of
robust estimators depend on the “distance” between the todefs. Table 3.1 of
Maronna, Martin, and Yohai (2006) is a typical example simgathe behaviour
of robust estimators as one observationoc. Our proposed distance measure
likewise provides a framework for comparison of regresgimtedures.

There is a samplé&; of n; observations fromi/; (6;) with distributionF; (y;; x;, 01).
These values of; belong to a design regioki. The sampl&, of n, observations
from M, (60;) has expectatioR(y; x;, 6,). Some values af; from S, may belong
to X. Let

y(v) = F{ ' (7 i, 61).



Then we let the indicator
[ { = 1 if Fl_l_(7/2;mi,91) < E(y;x;,02) < Fl_l(l —v/2;24,01) i€ Syx; €X
v = 0 otherwise.
1)
The index is a function of both, andf, and we examine it over a set of param-
eter values9, and©,. For a particular set of parameter valdgs andds , the
overlapping index is defined as

Oy = Tins i €S )

With M (0;) normal theory regression, we are therefore counting ttanoimber
of observations irS; for which z; € X, the expectations of which lie in a strip
around the expectation df/;(.). As~ decreases, the strip becomes broader. If
also for alli € S,, z; € X, thenO,, , — n,, the number of observations &.

It is informative to keep,; fixed and to vary, in a smooth way with a param-
eter\ € M. Then we look at a set of indexes

O,(N\) ={0, 1} 6, € ©;andb,;, € Oz(N). (3)
In particular we vary, linearly using the combination
Opp = M) + (1 — M\)09 (=00 < M\ € A < 00). (4)

The setA of values considered is problem dependent. With= 6, the centre
of M, passes through that dff;. Other choices of? can produce a trajectory
in which the observationg, are always outlying. Our examples show how the
variance and bias of the parameter estimates change in gtsmayp with \, but
in different and informative ways for different estimators

The contaminatiod/, in our examples comes from a multivariate normal dis-
tribution. In the Appendix we show how to calculate the piality of intersection
between this distribution and a strip around the regregs@mme. We call this the
theoretical overlapping index. Although itignor&st does signal cases wheyge
lies close to the regression line, even if remote ft&mrl hese observations would
then be “good” leverage points, in the sense that they ingtio® estimates of the
regression parameters. For counting vertical outlierseeglrobservations that lie
in X. These are signalled by the index defined in (2), which hagtcatculated
by simulation. We therefore call this the empirical index.

3 FiveMethodsfor Very Robust Regression

We compare and contrast the properties of five methods fgr nedaust regres-
sion. The algorithms that we use are all publicly availalterf the Forward
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Search Data Analysis (FSDA) Matlab toolboxwats . riani . it/MATLAB. In this
section we outline the methods that we compare. Full impigat®n details of
the algorithms are in the documentation of the FSDA libralymerically, all al-
gorithms involve selecting many subsets from the data. Avomant factor in our
ability to conduct as many simulations as were necessangisfticient sampling
of subsets provided in FSDA.

We consider the usual regression model with random calagysint we come
back to in§6) where we observe i.i.d. random vectors, @!) € RPTL, i =
1,...,n, wherey; € ® andx; € R? satisfy

yi = xt B+ u; 1=1,...,n. (5)

The u; are random errors independent from the covariatgswhich have com-
mon variance equal 0> andg is thep x 1 vector parameter of interest. Given an
estimator of3, say, the residuals are defined as

TZ(B) =Y — %TB

Traditional robust estimators attempt to limit the influeraf outliers by re-
placing the square of the residuals in the estimatiopy by a functionp of the
residuals which is bounded. The regression M-estimatg o the value that
minimizes the objective function

> olr(5) /o). ©

Of the numerous form that have been suggestegfor(Andrews et al. 1972,
Hampel et al. 1986, Huber and Ronchetti 2009) perhaps thépopsilar choice
is Tukey’s Biweight function

plx) = (7)

¢ if |z > ¢,

2 4 6 .
{%—%+&-Mﬂ§c
6

wherec is a crucial tuning constant. .
In equation (6) it is assumed thatis known, yielding the estimatg,, (o).
Otherwise, an M-estimator of scalg; is defined as the solution to the equation

S n(B) /o) = Ko ®

where both3 ando are iteratively jointly estimated. Although thdunction used
to obtain the scale estimator is not necessarily the sanf@atmt(6), we again use
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the biweight (7). If we take the minimum value ®f; which satisfies equation (8),
we obtain theS-estimate of scales(s) and the associated estimate of the vector of
regression coefficientsif).

K. andc are related constants which are linked to the breakdowrt pbihe
estimator of5. For an asymptotic breakdown point of 50% for thtestimator it
is necessary tha&K, = p(c). The value ofK. is determined by the requirement
of a consistent estimator of scale when the observationsareally distributed.
Fixing the breakdown point at 50% gives a value for 1.547%fand an efficiency
for estimation of 28.7% (Rousseeuw and Leroy 1987, pp. ¥85-1

The MM-regression estimator is intended to improve the Bnegor. The S
estimate of scalég is used and kept fixed in (8) to estimatebut with a value
of K. giving a higher efficiency. Because of the relationship leem/. andc
the hope of Rousseeuw and Leroy (1987, p. 143) is that the Mivhatr main-
tains its high breakdown point for finite samples. Followihg recommendation
of Maronna, Martin, and Yohai (2006, p. 126), we takesuch that the (asymp-
totic) nominal efficiency is 85%, which gave a high-breakdaestimator in our
examples, which included up to 23% of outliers.

The remaining three estimators @fesult from more direct approaches. The
forward search (FS) uses least squares to fit subsets ofvalises of increasing
sizem to the data, withp < m < n. The forward search for regression was
introduced by Atkinson and Riani (2000). A recent genergieng of forward
search methods is Atkinson et al. (2010). For efficient patamestimationn
should increase until al — m observations not in the subset used for fitting are
outliers. The outliers are found by testing at each stepe&#arch. The effect of
simultaneous testing can be severe (Atkinson and Riani)2@86FS algorithm is
designed to have sizeof declaring an outlier free sample to contain at least one
outlier. The automatic algorithm is based on that of Riartkidson, and Cerioli
(2009) who used scaled Mahalanobis distances to detedctmuth multivariate
normal data. For regression we replace these distancesioyads.

In Least Trimmed Squares (LTS) (Rousseeuw 1984, p. 876 etuels is over
subsets finding,ts to

h

minimize SSt{3(h)} = er{ﬁ(h)}, 9)

i=1

where/3(h) is the LS estimate of for a subset of sizé. With i = [n/2] + [(p +
1)/2]. LTS has an asymptotic breakdown point of 50%.

To increase efficiency, reweighted versions of LTS estimsatan be com-
puted. These reweighted estimators, denoted LTSr, arew@ehpy giving weight
0 to observations which (9) suggests are outliers. We thé&airoh sample of re-
duced size: — k, possibly outlier free, to which OLS is applied. For compan
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of results from LTSr with those from the FS we perform the ieutlest at a Bon-
ferronised sizex* = «/n, so taking thel — o* cutoff value of the reference
distribution. In our calculations = 0.01.

In FS, LTS and its reweighted version LTS? is estimated from subsets
formed by hard (0,1) trimming. Consistency factors for tiséireators follow
from the results of Tallis (1963) on elliptically trimmed ftivariate normal dis-
tributions.

4 TheNumerical Effect of Overlap

Because of the flexibility of our systematic approach, we patentially cover a
wide range of possibilities. Here we look at three numers@mples, two with
one explanatory variable and one with five variables. We laioioxplots of the
estimates over a suitableand relate these plots to the overlapping indices. We
separate out the variance and bias components of the estigrad compare these
through cumulative plots ovek. Finally, we compare the estimators for their
power of detecting outlying observations, that is thos¢ tlhane from Model 2.
The detection of outliers is particularly important if weyjtgre an indication that
other methods of data analysis, such as those sketcli@d ame appropriate.

In our one-variable regression examplgs is the regression mode) = o +
Bz; + €;, with the independent; ~ U(a, b), these values generated once for all
observations and values af The variance oft” is 0. and overlapping indices
were calculated for a strip of width2o, around EY).

The expectation af is u, = (a + b)/2. The bivariate normal distribution for
M5 has mean and variancé&: given by

M:<a+ﬁ(uz+d)))\+<ﬂz)(1_)\) and Z:<Ul 02>7

e +d 2 o2 01
(10)
where the first component corresponds to the response. Whken the centres
of the two populations are identical when the displacement0.

In our first example we took; = 100 with o = 10,5 = 3,0, = 10,a = 0
andb = 10. For the second population, = 30,07 = 20,0, = 2 andu, = 10.
Also d = 0 so the centres coincide at= 1. There were 100 simulations for each
value of\.

In the second example only a few of the parameters were chahgpopula-
tion 1b = 2 and( = 1. For population 23 = diag(4,0.1), us = 3.4 andd = 2
so that the centres no longer coincided. Also= 20.

The third example had five explanatory variablges= 6), but the structure
can also be explained in this framework. These variables welependently uni-



formly distributed on(, 21/10) with regression parameteps= 5 for all variables
andn; = 200. For population 2% = diag(100, I5), us = 3,d = 2 andny = 60.

We start with a one-variable example in whiéh= 0, so that the two pop-
ulations have the same mean whenr= 1. Figure 1 shows nine simulated data
sets. As)\ increases from -3 to 4, the centre bf, passes through that @/,
at which point there is almost complete overlapping of theeplations from the
two populations. That the overlap is not complete is shownheyplots of the
indices in the upper panel of Figure 2, the maxima of whichless than one.
The theoretical index is slightly higher than the empiricalex as there is some
probability of observations falling within the band givalues that are not i&’.
On the other hand, the plot of the squared Mahalanobis disttiom the mean of
M, to that of M, has a minimum of zero, showing identity of the two centres.

We now consider the effect of these data configurations omstienation of
(. The left-hand panels of Figure 3 show boxplots, from 100uatons, of the
values of the five estimators for a series of values\ofogether with a typical
data configuration for each. Far= —3 observations from\/; lie below and to
the right of those from\/;. If these outliers are not identified the slope of the
line is decreased. The boxplots all show some simulatioreyevbiuch estimates
occur, more often for LTS than for the other estimators. Maorportantly, LTS
has the highest variance amongst the estimators in the ragirofpthe boxplot,
that is when all outliers are rejected, with S the second masable. FS, LTSr
and MM have similar behaviour. For = —1, LTSr and MM are most affected
by the outliers with S slightly more stable than FS. The value 1 corresponds
to virtually complete overlap of the two groups. All methpds average, give
estimates that are biased downwards. However, those foraddSS are both
more variable and more biased. In the last panel\fer 3, the outliers are not
as well separated as they are in panel 1. LTSr now has apbkeciagative bias,
due to the inclusion of outliers in the reweighting stageaTesser extent MM is
also more prone to include outliers than the other methddshich LTS has the
highest variance.

Figure 4 provides a powerful summary of the results on theamae and bias
of the estimates off and also of« as A\ varies. The left-hand panels show the
partial sums of the squared bias oveand the right hand panels show the partial
sums of the variances. The values foare in the top row and those fgrin the
bottom row.

The plots illustrate the trade off between bias and varidocesome of the
estimators. For values ofup to three or so, LTS and S have the highest variances
and the lowest biases and have very similar properties. theesame range LTSr
and MM have high biases and low variances. Again this paistifrators have
very similar properties. The effect of the modification of3.7o LTSr and S to
MM has, in general, been to reduce variance at the cost of @edse in bias.
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The bias values for FS are in between those of these two grbupsloser to the
lower pair of values, especially for estimation@f The variance of FS is close,
and ultimately less than, the low values for LTSr and MM .

The bottom right panel of Figure 3 shows that for= 3, the outliers are
becoming distinct fromy;. As \ increases further the two groups become increas-
ingly distinct, an effect that is evident in Figure 4. For éx¢reme values of, the
horizontal value of the summed squared bias for all estirsatioows that the bias
is zero. The two populations are sufficiently far apart thatasymptotics defining
high breakdown apply. This is achieved for slightly lessessapon by MM than
LTSr. The plots of partial sums of variances, on the othedharcrease steadily,
since the estimators are always subject to the effect ofghdam variability in
the observations. The sums of variances for S and, pantiguld S are, however,
increasing more rapidly at the ends of the region than thos¢he other three
methods, a result in line with the rows of boxplots for= 43 in Figure 3.

These plots illustrate the differing performance of the #gtimators. In ad-
dition to good parameter estimates we would also like oumese to signal the
presence of outliers if the model fitted to the data is inairrédccordingly, we
calculated the average power, that is the average numbésefwations correctly
detected as being contaminated, that is the average nurhbbservations from
M. In testing for the presence of outliers we again used a fé3bferronised
sizea*. The results are in Figure 5. Outliers are not detected fotrakvalues
of \ as the parameter estimates are sufficiently corrupted bgredtsons from
M, that no observations appear outlying. As the means of theptypulations
move apart, the number of outliers detected increases. 1@ost of the range FS
has the highest power and LTSr the lowest. The other threeasss lie between
these extremes with MM having lower power for values\afear zero. As with
any power curves calculated for tests whose exact sizesoatenown, we need
to calibrate these findings against the size of the tests waido ing5.

As a second example we stay with a single explanatory varibbt now
choose a trajectory fox such that? = 6,, so that most of the observatiogsare
outlying. Figure 6 shows scatterplots of typical sampleddor values ofA. In
the first, for\ = 1.5, there is a set of horizontal outliers, which can be expected
not appreciably to affect the estimate of slope. Amcreases the observations
from M, rise above those from/;, generating increasingly remote vertical out-
liers. (In reading this plot, note the rescalingxoh the third and fourth panels.)

The difference between this example and Example 1 is made icl¢he plot
of the measures of overlap in the upper panels of Figure 8.tfiégmretical over-
lapping index has a value close to one as, for lower valugs albservations from
M5 have a high probability of lying inside the strip arouifi. However, the em-
pirical index has a lower value since, as the first panel ofifeg showed, few of
these observations fall withi’. For larger values ok both indices have values
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close to zero. Since the centres of the two populations arerndentical, the
minimum value of the squared Mahalanobis distance is gréze zero.

The behaviour of the five estimators for this new situatiosusimarized in
the partial sum plots of Figure 7. The scatterplots of Figuseiggest that the two
populations should be adequately separated by theXime4. For the moment
we ignore FS and focus on these lower values\ ¢br which S and LTS have
similar biases for3, but these are now the highest. The biasesfdo not show
much difference for lower values af The plots of variances are much simpler to
interpret: S and LTS have high variance for bathnd over the whole range of
A with MM and LTSr having low values. These two estimators &lage similar
low biases fors and much the same bias as all other rulesfor

This discussion is for that part of for which the two populations are rel-
atively close. The right-hand halves of the plots of biasvstibat S and LTS
provide unbiased estimates for smaller valuea tian do MM. Since it will not
be known when analysing data, how far away any contaminaatfsam the main
population, it is sensible to choose an estimator that eshaell over all ofA. In
this example the FS again has excellent properties; it latitest bias for both
parameters and a variance which is close to those from MM aist. LHowever,
the plots of bias show that the values for LTSr do not become @gemember
these are partial sums that are plotted) even when the gamdaare very well
separated.

To conclude the analysis of the second example we look atith@faverage
power in the lower half of Figure 8. As in Figure 5, FS has thghbst power and
LTSr the lowest, but now the difference between LTS and theratules is much
greater. S and MM have indistinguishable performances Wiith closer to that
of LTSr.

Our final example, which we treat more briefly, has five exptiaryavariables
(p = 6). Typical scatterplots of against each: are shown in Figure 9 for this
larger example, witlh; = 200 andny, = 60. As X increases from-1 to 2.6
the outliers “rise through” the central observations, dueamore visible in the
coloured pdf version of the paper. However, sidcg 0, the centres of the two
distributions are never identical. Unlike our other two mydes, this one does
not include outliers at leverage points, so that the diffees in behaviour of the
methods are, to some extent, reduced.

We summarize the behaviour of the five estimators in theglatim of vari-
ance and bias plots of Figure 10. With five explanatory vdemkthe major con-
tribution to the mean squared error of the parameter estgsr@imes fronw, so
we only consider these values. With independerhe bias and variance are the
sums of those for the individual components. The most ols/eature of the plot
is the poor behaviour of LTS. LTSr and S have medium behavimubias and
variance, with the order reversed for the two propertiesleMiM and FS have
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the same, lowest values for bias and similar values for megaintil\ = 1 when
that for FS increases, although staying below that for Sikgrihe other two ex-
amples, the relative behaviour of the estimators is litfiecéed by the value of,

a reflection of the stability of the outlier pattern overOf course, the magnitude
of the outliers is largest for extreme values, but leveragetp are not introduced
or removed.

The plot of average power is in Figure 11. As in the other ptftaverage
power FS has the highest power and LTSr the least. The othes #stimators
have very similar properties to each other. However, insssg power we need
to be sure that we are comparing tests with similar sizes.Z6ben in the centre
of the plot for values of\ close to one shows that we are not, with FS and LTSr
having the smallest values. For accurate comparisons weetoesale the other
three tests downwards, which will reduce the curves bel@vpiotted values.
However, even when = 1 the outliers are still present and, sintef 0, we are
not exactly looking at the null distribution of the test sats. We consider null
distributions and the resulting size of tests in the nextisec

5 SizeComparisons

In order to establish the size of the outlier tests we ran Eitions for sample sizes

n from 100 to 1,000 for several different dimensions of praide The results for

p = 6 and 11 are in Figure 12. In the simulations the samples wéoeved

to grow, so that larger values af contained smaller ones, leading to smoother
curves. Both the response and the explanatory variables sisrulated from
independent standard normal distributions, with all regi@n coefficients set to
one. Since all methods are affine equivariant, these anpitfaices do not affect
the results. For each value afwe present the average of 10,000 simulations,
in which we counted the number of samples declared as camgaé@t least one
outlier, with the tests conducted at the 1% Bonferroniseelle

The figure shows that, for three out of the five rules, the s@esvery far
from the nominal value. Fat = 100 the sizes For MM, LTS and S when= 6
range between 0.13 and 0.25. ot 11 the range for these rules is 0.36 to 0.81.
The sizes decrease with) but are even so still around 2% for these rules when
n = 1,000. The size for LTSr is closer to nominal, being around 3% andf@®6
n = 100 and decreasing rapidly with. Only FS has a size around 1% for both
values ofp and alln.

These calculations of size show that FS is correctly ordasguaving highest
power. The curves, such as those in Figure 11, for LTSr do eed mppreciable
adjustment for size. However size adjustment for MM, LTS 8naday well lead
to procedures with less power than LTSr.

11



A simple method of adjusting power for size is a hormal, oidtig, plot of the
power curves, as in Figure 8.12 of Atkinson (1985), when tbpesof the curve
indicates power and the intercept size. Although such a eoisgn would be
possible here, our purpose is not to establish the exaceprep of outlier tests.
Rather we are concerned with introducing a general framlefeothe comparison
of methods for very robust regression.

6 Discussion

In §3 we stipulated that the carriers be random. In defence Hah@Ronchetti
(2009, p. 197) comment that “Some authors have made unguailgweeping
claims that their favorite estimates have a breakdown papproaching 1/2 in
large samples. Such claims may apply to random carriersddutot hold in
designed situations”. They then use an argument based duratsal D-optimum
design withp support points (for example Atkinson, Donev, and Tobias7200
p. 222) to show that the breakdown point is, at b&st2p). They encourage the
joint study of robustness and experimental design. An examMuller (1997).
Our comparisons show that FS has the best performance of¢hestimators,
particularly, but not only, when we look at the comparisohpawer. In making
these comparisons we have used Bonferroni levels to determitliers. Even so
we do not avoid the impression given by LTS for laggand smalln of finding
“Outliers Everywhere” as Cook and Hawkins (19%98) did in their investiga-
tion of the related MVD method for multivariate data. We ththat the superior
performance of FS comes from the data-dependent flexilafithe number of
observations included in the final fit. All algorithms use fissubsets op ob-
servations as, at least part, of the estimation method. B &Il subsets are of
sizep. In LTSr subsets of sizg determine the final subset of size- £ (§3). S
estimators are also found starting frgnobservations. In our examples, with up
to 23% outliers we tools. in the second stage to give an asymptotic nominal ef-
ficiency of 85%. Small numerical experiments indicate tivatneslight increases,
for example to a nominal efficiency of 87%, result in very lovedkdown and
estimates similar to those from least squares. Severabettor example Cook,
Hawkins, and Weisberg (1993) and Hawkins and Olive (200&)elfcommented
on the persistence of the effects of the initial estimategneasymptotically. The
FS escapes such persistence because, although the swgasit fising grows in
size, observations can be deleted as well as added. Thisibehe apparent in
random start forward searches for both regression andvauéite data. Figure 10
of Atkinson and Riani (2007) shows the trajectories of 30frclees starting from
randomly selected subsets of sjzeFor a single population, perhaps with some
outliers, the subsets become the same (the trajectoriesigm) in the last 1/3 of
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the search. If there are several populations, some traiestare initially attracted
to each, and families of trajectories reveal the populatioBuch plots indicate
that we do not have to have at least half of the observationsngpbfrom one
population. Huber and Ronchetti (2009, p. 198) discuss oastvhen very high
contamination or mixture models are an issue and suggestiglgtdata analytic
approach through projection pursuit. We would argue timetihé regression con-
text, the FS is a natural method for disentangling mixturesravealing outliers,
even when no population gives rise to a majority of the data.

Acknowledgment This paper was completed at the Isaac Newton Institute for
Mathematical Sciences in Cambridge, England, during tHel 2fogramme on
the Design and Analysis of Experiments.

References

Andrews, D. F., P. J. Bickel, F. R. Hampel, W. J. Tukey, and Ruber (1972).
Robust Estimates of Location: Survey and Advances. Princeton, NJ: Prince-
ton University Press.

Atkinson, A. C. (1985)Plots, Transformations, and Regression. Oxford: Ox-
ford University Press.

Atkinson, A. C., A. N. Donev, and R. D. Tobias (2000ptimum Experimental
Designs, with SAS. Oxford: Oxford University Press.

Atkinson, A. C. and M. Riani (2000Robust Diagnostic Regression Analysis.
New York: Springer—Verlag.

Atkinson, A. C. and M. Riani (2006). Distribution theory asitulations for
tests of outliers in regressiodournal of Computational and Graphical
Satistics 15, 460-476.

Atkinson, A. C. and M. Riani (2007). Exploratory tools fomustering mul-
tivariate data.Computational Satistics and Data Analysis 52, 272—285.
doi:10.1016/j.csda.2006.12.034.

Atkinson, A. C., M. Riani, and A. Cerioli (2010). The forwasgarch: the-
ory and data analysis (with discussiodjurnal of the Korean Satistical
Society 39, 117-134. doi:10.1016/j.jkss.2010.02.007.

Cook, R. D. and D. M. Hawkins (1990). Comment on Rousseeuwvamnd
Zomeren (1990)Journal of the American Satistical Association 85, 640—
4,

13



Cook, R. D., D. M. Hawkins, and S. Weisberg (1993). Exactatige com-
putation of the robust multivariate minimum volume elligb@stimator.
Satisticsand Probability Letters 16, 213-218.

Hampel, F., E. M. Ronchetti, P. Rousseeuw, and W. A. Stal88q)L Robust
Satistics. New York: Wiley.

Hampel, F. R. (1975). Beyond location parameters: robustepots and meth-
ods.Bulletin of the International Statistical Institute 46, 375—-382.

Hawkins, D. M. and D. J. Olive (2002). Inconsistency of repang algorithms
for high-breakdown regression estimators and a new algor{with dis-
cussion)Journal of the American Satistical Association 97, 136—159.

Huber, P. J. and E. M. Ronchetti (200Bhbust Satistics, Second Edition. New
York: Wiley.

Maronna, R. A., R. D. Martin, and V. J. Yohai (2008pbust Satistics. Theory
and Methods. Chichester: Wiley.

Morgenthaler, S. (2007). A survey of robust statistiatistical Methods and
Applications 15, 271-293. Erratum: 16, 171-172.

Muller, C. H. (1997).Robust Planning and Analysis of Experiments. Lecture
Notes in Statistics 124. Berlin: Springer-Verlag.

Riani, M., A. C. Atkinson, and A. Cerioli (2009). Finding anknown number
of multivariate outliersJournal of the Royal Statistical Society, SeriesB 71,
447-466.

Rousseeuw, P. J. (1984). Least median of squares regredsional of the
American Satistical Association 79, 871-880.

Rousseeuw, P. J. and A. M. Leroy (198Rhbust Regression and Outlier De-
tection. New York: Wiley.

Rousseeuw, P. J. and K. Van Driessen (2006). Computing Lg®ssion for
large data set®ata Mining and Knowledge Discovery 12, 29-45.

Tallis, G. M. (1963). Elliptical and radial truncation in moal samplesAnnals
of Mathematical Statistics 34, 940-944.

7 Appendix A: The Theoretical Overlapping I ndex

The response and the explanatory variables lie in a spadenehdionp + 1. Let
these variables be. Then the regression plane can be writtehas — ¢ = 0.
The equation of the normal to the plane through a peion the plane is

2 = wo + b, (A1)

14



where the scalad is the distance from the plane. The outlying observations,
including the response, have a multivariate normal distidim. Let these b&l” ~
N(u,¥). We require the probability thdf” lies on one side of the plane. To
obtain this rotatél to a set of variableg with z; (A1) the normal to the plane.
Integrating out the othep variables shows that the required probability comes
from the marginal distribution of/; ~ N (b7 11, bT3b). Let the distance in the
direction fromy to the plane bel(c). Then, from (Al), at the plan&w = ¢ =
bT 1+ bThd(c), so that

d(c) = (c—b"p)/b"b. (A2)

Since the distancé(c) in the z; direction has been rescaled by the factob” b
the required probability is

Pr(! W > ¢) = Pr(Z; > ¢ — b" ) = ®{d(c)b" b/ (b 2b)**} = WU(c), say,
(A3)
where® is the cdf of the (univariate) standard normal distributidre require this
probability in terms of the regression model, which we novtevaisy = o + 57 z.
Then
V=01 -p7), w'=(y 2") and c=a.

Finally, we require the probability that” lies between two planes. For amythe
required strip around this model is+ 20.. The two planes then are defined by
constantg®™ = a + 20, ande¢™ = a — 20.. From (A3) the required probability is
U(ch) —W(c).
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Figure 1: Example 1. Simulated data sets with= 100 andn, = 30 for nine
values of\. As )\ increases observations frofd, become close to those from
M, and then become remote again. The parallelogram definesgianrfor the
empirical overlapping index
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Figure 2: Example 1. Upper panel: theoretical and empiogatlapping indices
for the data in Figure 1, showing maximaat 1. Lower panel: squared Maha-
lanobis distance of/; from M, and corresponding percentage points
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Figure 3: Example 1. Four simulated data sets\fer —3, —1, 1 and 3. Left-hand
panels: boxplots, from 100 simulations, of estimateg ¢tiotted line: 3; = 3)
for FS, LTS, LTSr S and MM estimators. Right-hand panelsidgisimulations
for these four values of
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Figure 4: Example 1. Partial sums oveof simulated squared bias and variance
of the five estimators. Left-hand panels squared bias, hightl panels variance.
Top linea, bottom lineg.
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Figure 5. Example 1. Simulated average power of the five phoes over\
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Figure 6: Example 2. Simulated data sets with= 100 andn, = 20 for four
values of\. As )\ increases observations frofd, become close to those from
M, and then become remote again. The parallelogram definesgianrfor the

empirical overlapping index

Figure 7: Example 2. Partial sums oveof simulated squared bias and variance
of the five estimators. Left-hand panels squared bias, hightl panels variance.
Top linea, bottom lineg.
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Figure 8: Example 2. Top panels: theoretical and empirieatlapping indices
and Mahalanobis distance éf; from M,. Bottom panel: simulated average
power of the five procedures ovar
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Figure 9: Example 3. Simulated data sets with five explagatariables,n, =
200 andns, = 60 for nine values of\. As )\ increases observations frohi, “pass
through” those from\/;, although the centres never coincide.

Figure 10: Example 3. Partial sums oveof simulated squared bias and vari-
ance of the five estimators. Left-hand panel squared bias,faght hand panel
variance.
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Figure 11: Example 3. Simulated average power of the fivequoes over\
with an inset zoom of the central part of the figure
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Figure 12: Size of nominally 1% Bonferronized outlier tefsts left-hand panel,
p = 6 and forp = 11. Note the different vertical scales in the two panels
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