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Abstract

The behaviour of algorithms for very robust regression depends on the
distance between the regression data and the outliers. We introduce a param-
eterλ that defines a parametric path in the space of models and enables us to
study, in a systematic way, the properties of estimators as the groups of data
move from being far apart to close together. We examine, as a function ofλ,
the variance and squared bias of five estimators and we also consider their
power when used in the detection of outliers. This systematic approach pro-
vides tools for gaining knowledge and better understandingof the properties
of robust estimators.

Keywords: distance of outliers; forward search; least trimmed squares;
MM estimate; multiple outliers; overlap index

1 Introduction

Multiple regression is one of the main tools of applied statistics. It has however
long been appreciated that ordinary least squares as a method of fitting regres-
sion models is exceptionally susceptible to the presence ofoutliers. Instead, very
robust methods, that asymptotically resist 50% of outliers, are to be preferred.
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Our paper presents a systematic, parameterized framework for the non-asymptotic
comparison of these methods.

Very robust regression was introduced by Rousseeuw (1984) who developed
suggestions of Hampel (1975) that led to the Least Median of Squares (LMS) and
Least Trimmed Squares (LTS) algorithms. For some history ofmore recent devel-
opments see Rousseeuw and Van Driessen (2006). More generaldiscussions of ro-
bust methods are in Maronna, Martin, and Yohai (2006) and Morgenthaler (2007).
We illustrate our methods for the comparison of high-breakdown regression pro-
cedures with comparisons of the performance of LTS and otherwell-established
methods, including S and MM estimators, with that of a publicly available algo-
rithm for very robust regression that uses the Forward Search (FS). See Atkinson,
Riani, and Cerioli (2010) for a recent discussion of the FS.

Very robust regression estimators share the property that,asymptotically, they
have a breakdown point of 50% (see§2) as the main data and outliers become
infinitely far apart. In order to distinguish between the estimators we study, in
a systematic way, their properties as the distance between the two groups of ob-
servations decreases. In§2 we introduce a parameterised framework, parameter
λ, for moving the outliers along a trajectory which is initially remote from the
main data, but which then passes close to it before again becoming far away. We
control whether, at their closest, the two populations share the same centre. We
design measures of overlap to calibrate the trajectories.

Numerical results are in§4. We take the outliers from the regression model to
have a multivariate normal distribution. This provides a very general scenario for
outliers that can range from points virtually on a line to a seemingly random scat-
ter around the regression plane. Boxplots of the estimates from the five methods
asλ varies indeed show that, for wide separations, the methods have similar prop-
erties. However they differ markedly as the two populationsconverge. In order to
summarise this information we look at cumulative plots, over the range ofλ, of the
variance and squared bias of the estimators. Another methodof comparing robust
estimators is by their properties for outlier detection (Cook and Hawkins 1990).
In §4 we calculate power curves as a function ofλ for the number of outliers de-
tected. Since the curves indicate that the estimators provide tests of varying sizes,
we find the size of the outlier tests in§5.

There are two main conclusions. The first is that the parameterised family of
departures provides a cogent framework for investigating the behaviour of very
robust estimators. The second is that FS is the preferred method of very robust
regression, a conclusion particularly strongly supportedby the power and size of
test curves. Among our concluding comments in§6 we mention procedures for
insightful methods of data analysis, even if no group of observations is in the
majority.
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2 Models, Data and Robustness

Robustness is concerned with fitting a single model to data which are generated
by two, or maybe more, models. We suppose that the larger partof the data,1−∆,
where0 < ∆ < 0.5, is generated by the modelM1(θ1) and the remaining part∆
of the data is generated by the modelM2(θ2). In the absence of outliers, that is
when∆ = 0, an ideal robust estimator would have a variance that achieved the
Cramer-Rao lower bound. If the data were contaminated, the estimate would be
unbiased. Such estimators do not exist. Maronna, Martin, and Yohai (2006,§3.4)
describe some compromises between the two properties.

Robust methods study the properties of methods that fitM1(θ1) in ignorance
of knowledge of the form of the outlier generating modelM2(θ2), which can be
quite general. WhenM1(.) is a regression model,M2(.) is often taken, for exam-
ple, to distribute observations randomly over a large space, concentrate them in
a cluster or to be a second regression model. Figure 2 of Rousseeuw (1984) is a
paradigmatic example. There is no difficulty in havingM1(θ) = M2(θ) but then
we must haveθ1 6= θ2.

The breakdown point of an estimatorθ̃ is the largest value of∆ for which
θ̃ provides information aboutθ, remaining bounded and bounded away from the
edge of the parameter space as the observations take any values (see Maronna et al.
2006,§3.2). The very robust regression procedures we compare haveasymptotic
breakdown points of 50%. This is customarily considered to be the maximum
possible value, a point we return to in§6.

As yM2 ∼ M2(θ2) → ∞ the observationsyM1 andyM2 from the two models
become increasingly well separated. Under these conditions the five estimators
in our study have similar properties. We are also interestedin those data config-
urations when the observations are not so separated, so thatboth yM1 andyM2

may be used in estimatingθ because of overlap between the two samples. Such
configurations are highly informative about the differences in properties of robust
methods. We define a finite-sample measure of the overlap ofyM1 andyM2 that
is designed to be informative for regression models. In general, the properties of
robust estimators depend on the “distance” between the two models. Table 3.1 of
Maronna, Martin, and Yohai (2006) is a typical example showing the behaviour
of robust estimators as one observation→ ∞. Our proposed distance measure
likewise provides a framework for comparison of regressionprocedures.

There is a sampleS1 of n1 observations fromM1(θ1) with distributionF1(yi; xi, θ1).
These values ofxi belong to a design regionX . The sampleS2 of n2 observations
from M2(θ2) has expectationE(y; xi, θ2). Some values ofxi from S2 may belong
to X . Let

y(γ) = F−1

1 (γ; xi, θ1).
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Then we let the indicator

Ii,γ =

{

= 1 if F−1

1
(γ/2;xi, θ1) < E(y;xi, θ2) < F−1

1
(1 − γ/2;xi, θ1) i ∈ S2, xi ∈ X

= 0 otherwise.
(1)

The index is a function of bothθ1 andθ2 and we examine it over a set of param-
eter valuesΘ1 andΘ2. For a particular set of parameter valuesθ1,k andθ2,k the
overlapping index is defined as

Oγ,k =
∑

i

Ii,γ,k i ∈ S2. (2)

With M1(θ1) normal theory regression, we are therefore counting the total number
of observations inS2 for which xi ∈ X , the expectations of which lie in a strip
around the expectation ofM1(.). As γ decreases, the strip becomes broader. If
also for alli ∈ S2, xi ∈ X , thenOγ,k → n2, the number of observations inS2.

It is informative to keepθ1 fixed and to varyθ2 in a smooth way with a param-
eterλ ∈ R. Then we look at a set of indexes

Oγ(λ) = {Oγ,k} θ1 ∈ Θ1 andθ2,k ∈ Θ2(λ). (3)

In particular we varyθ2 linearly using the combination

θ2,k = λkθ
0

1 + (1 − λk)θ
0

2 (−∞ < λk ∈ Λ < ∞). (4)

The setΛ of values considered is problem dependent. Withθ0
1 = θ1 the centre

of M2 passes through that ofM1. Other choices ofθ0
1 can produce a trajectory

in which the observationsy2 are always outlying. Our examples show how the
variance and bias of the parameter estimates change in a smooth way withλ, but
in different and informative ways for different estimators.

The contaminationM2 in our examples comes from a multivariate normal dis-
tribution. In the Appendix we show how to calculate the probability of intersection
between this distribution and a strip around the regressionplane. We call this the
theoretical overlapping index. Although it ignoresX it does signal cases wherey2

lies close to the regression line, even if remote fromX . These observations would
then be “good” leverage points, in the sense that they improve the estimates of the
regression parameters. For counting vertical outliers we need observations that lie
in X . These are signalled by the index defined in (2), which has to be calculated
by simulation. We therefore call this the empirical index.

3 Five Methods for Very Robust Regression

We compare and contrast the properties of five methods for very robust regres-
sion. The algorithms that we use are all publicly available from the Forward
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Search Data Analysis (FSDA) Matlab toolbox atwww.riani.it/MATLAB. In this
section we outline the methods that we compare. Full implementation details of
the algorithms are in the documentation of the FSDA library.Numerically, all al-
gorithms involve selecting many subsets from the data. An important factor in our
ability to conduct as many simulations as were necessary is the efficient sampling
of subsets provided in FSDA.

We consider the usual regression model with random carriers(a point we come
back to in§6) where we observe i.i.d. random vectors (yi, xT

i ) ∈ ℜp+1, i =
1, . . . , n, whereyi ∈ ℜ andxi ∈ ℜp satisfy

yi = xT
i β + ui i = 1, . . . , n. (5)

Theui are random errors independent from the covariates (xi) which have com-
mon variance equal toσ2 andβ is thep× 1 vector parameter of interest. Given an
estimator ofβ, sayβ̂, the residuals are defined as

ri(β̂) = yi − xT
i β̂.

Traditional robust estimators attempt to limit the influence of outliers by re-
placing the square of the residuals in the estimation ofβ by a functionρ of the
residuals which is bounded. The regression M-estimate ofβ is the value that
minimizes the objective function

n
∑

i=1

ρ{ri(β)/σ}. (6)

Of the numerous form that have been suggested forρ(.) (Andrews et al. 1972,
Hampel et al. 1986, Huber and Ronchetti 2009) perhaps the most popular choice
is Tukey’s Biweight function

ρ(x) =

{

x2

2
− x4

2c2
+ x6

6c4
if |x| ≤ c

c2

6
if |x| > c,

(7)

wherec is a crucial tuning constant.
In equation (6) it is assumed thatσ is known, yielding the estimatẽβM(σ).

Otherwise, an M-estimator of scalẽσM is defined as the solution to the equation

1

n

n
∑

i=1

ρ{ri(β)/σ} = Kc, (8)

where bothβ andσ are iteratively jointly estimated. Although theρ function used
to obtain the scale estimator is not necessarily the same as that in (6), we again use
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the biweight (7). If we take the minimum value ofσ̃M which satisfies equation (8),
we obtain theS-estimate of scale (̃σS) and the associated estimate of the vector of
regression coefficients (β̃S).

Kc andc are related constants which are linked to the breakdown point of the
estimator ofβ. For an asymptotic breakdown point of 50% for theS-estimator it
is necessary that2Kc = ρ(c). The value ofKc is determined by the requirement
of a consistent estimator of scale when the observations arenormally distributed.
Fixing the breakdown point at 50% gives a value for 1.547 forc and an efficiency
for estimation of 28.7% (Rousseeuw and Leroy 1987, pp. 135-143).

The MM-regression estimator is intended to improve the S estimator. The S
estimate of scalẽσS is used and kept fixed in (8) to estimateβ, but with a value
of Kc giving a higher efficiency. Because of the relationship betweenKc andc
the hope of Rousseeuw and Leroy (1987, p. 143) is that the MM estimator main-
tains its high breakdown point for finite samples. Followingthe recommendation
of Maronna, Martin, and Yohai (2006, p. 126), we takeKc such that the (asymp-
totic) nominal efficiency is 85%, which gave a high-breakdown estimator in our
examples, which included up to 23% of outliers.

The remaining three estimators ofβ result from more direct approaches. The
forward search (FS) uses least squares to fit subsets of observations of increasing
size m to the data, withp ≤ m ≤ n. The forward search for regression was
introduced by Atkinson and Riani (2000). A recent general review of forward
search methods is Atkinson et al. (2010). For efficient parameter estimationm
should increase until alln − m observations not in the subset used for fitting are
outliers. The outliers are found by testing at each step of the search. The effect of
simultaneous testing can be severe (Atkinson and Riani 2006); the FS algorithm is
designed to have sizeα of declaring an outlier free sample to contain at least one
outlier. The automatic algorithm is based on that of Riani, Atkinson, and Cerioli
(2009) who used scaled Mahalanobis distances to detect outliers in multivariate
normal data. For regression we replace these distances by residuals.

In Least Trimmed Squares (LTS) (Rousseeuw 1984, p. 876) the search is over
subsets finding̃βLTS to

minimize SST{β̂(h)} =

h
∑

i=1

r2

i {β̂(h)}, (9)

whereβ̂(h) is the LS estimate ofβ for a subset of sizeh. With h = [n/2] + [(p +
1)/2]. LTS has an asymptotic breakdown point of 50%.

To increase efficiency, reweighted versions of LTS estimators can be com-
puted. These reweighted estimators, denoted LTSr, are computed by giving weight
0 to observations which (9) suggests are outliers. We then obtain a sample of re-
duced sizen − k, possibly outlier free, to which OLS is applied. For comparison
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of results from LTSr with those from the FS we perform the outlier test at a Bon-
ferronised sizeα∗ = α/n, so taking the1 − α∗ cutoff value of the reference
distribution. In our calculationsα = 0.01.

In FS, LTS and its reweighted version LTSrσ2 is estimated from subsets
formed by hard (0,1) trimming. Consistency factors for the estimators follow
from the results of Tallis (1963) on elliptically trimmed multivariate normal dis-
tributions.

4 The Numerical Effect of Overlap

Because of the flexibility of our systematic approach, we canpotentially cover a
wide range of possibilities. Here we look at three numericalexamples, two with
one explanatory variable and one with five variables. We lookat boxplots of the
estimates over a suitableΛ and relate these plots to the overlapping indices. We
separate out the variance and bias components of the estimates and compare these
through cumulative plots overΛ. Finally, we compare the estimators for their
power of detecting outlying observations, that is those that come from Model 2.
The detection of outliers is particularly important if we require an indication that
other methods of data analysis, such as those sketched in§6, are appropriate.

In our one-variable regression examplesM1 is the regression modelyi = α +
βxi + ǫi, with the independentxi ∼ U(a, b), these values generated once for all
observations and values ofλ. The variance ofY is σǫ and overlapping indices
were calculated for a strip of width±2σǫ around E(Y ).

The expectation ofx is µx = (a + b)/2. The bivariate normal distribution for
M2 has meanµ and varianceΣ given by

µ =

(

α + β(µx + d)
µx + d

)

λ+

(

µ2

µ2

)

(1−λ) and Σ =

(

σ1 σ2

σ2 σ1

)

,

(10)
where the first component corresponds to the response. Whenλ = 1 the centres
of the two populations are identical when the displacementd = 0.

In our first example we tookn1 = 100 with α = 10, β = 3, σǫ = 10, a = 0
andb = 10. For the second population,n2 = 30, σ1 = 20, σ2 = 2 andµ2 = 10.
Also d = 0 so the centres coincide atλ = 1. There were 100 simulations for each
value ofλ.

In the second example only a few of the parameters were changed. In popula-
tion 1 b = 2 andβ = 1. For population 2,Σ = diag(4, 0.1), µ2 = 3.4 andd = 2
so that the centres no longer coincided. Alson2 = 20.

The third example had five explanatory variables (p = 6), but the structure
can also be explained in this framework. These variables were independently uni-
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formly distributed on (0, 2
√

10) with regression parametersβ = 5 for all variables
andn1 = 200. For population 2,Σ = diag(100, I5), µ2 = 3, d = 2 andn2 = 60.

We start with a one-variable example in whichd = 0, so that the two pop-
ulations have the same mean whenλ = 1. Figure 1 shows nine simulated data
sets. Asλ increases from -3 to 4, the centre ofM2 passes through that ofM1,
at which point there is almost complete overlapping of the observations from the
two populations. That the overlap is not complete is shown bythe plots of the
indices in the upper panel of Figure 2, the maxima of which areless than one.
The theoretical index is slightly higher than the empiricalindex as there is some
probability of observations falling within the band ofy values that are not inX .
On the other hand, the plot of the squared Mahalanobis distance from the mean of
M2 to that ofM1 has a minimum of zero, showing identity of the two centres.

We now consider the effect of these data configurations on theestimation of
β. The left-hand panels of Figure 3 show boxplots, from 100 simulations, of the
values of the five estimators for a series of values ofλ, together with a typical
data configuration for each. Forλ = −3 observations fromM2 lie below and to
the right of those fromM1. If these outliers are not identified the slope of the
line is decreased. The boxplots all show some simulations where such estimates
occur, more often for LTS than for the other estimators. Moreimportantly, LTS
has the highest variance amongst the estimators in the main part of the boxplot,
that is when all outliers are rejected, with S the second mostvariable. FS, LTSr
and MM have similar behaviour. Forλ = −1, LTSr and MM are most affected
by the outliers with S slightly more stable than FS. The valueλ = 1 corresponds
to virtually complete overlap of the two groups. All methods, on average, give
estimates that are biased downwards. However, those for LTSand S are both
more variable and more biased. In the last panel, forλ = 3, the outliers are not
as well separated as they are in panel 1. LTSr now has appreciable negative bias,
due to the inclusion of outliers in the reweighting stage. Toa lesser extent MM is
also more prone to include outliers than the other methods, of which LTS has the
highest variance.

Figure 4 provides a powerful summary of the results on the variance and bias
of the estimates ofβ and also ofα asλ varies. The left-hand panels show the
partial sums of the squared bias overΛ and the right hand panels show the partial
sums of the variances. The values forα are in the top row and those forβ in the
bottom row.

The plots illustrate the trade off between bias and variancefor some of the
estimators. For values ofλ up to three or so, LTS and S have the highest variances
and the lowest biases and have very similar properties. Overthe same range LTSr
and MM have high biases and low variances. Again this pair of estimators have
very similar properties. The effect of the modification of LTS to LTSr and S to
MM has, in general, been to reduce variance at the cost of an increase in bias.
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The bias values for FS are in between those of these two groups, but closer to the
lower pair of values, especially for estimation ofβ. The variance of FS is close,
and ultimately less than, the low values for LTSr and MM .

The bottom right panel of Figure 3 shows that forλ = 3, the outliers are
becoming distinct fromy1. Asλ increases further the two groups become increas-
ingly distinct, an effect that is evident in Figure 4. For theextreme values ofλ, the
horizontal value of the summed squared bias for all estimators shows that the bias
is zero. The two populations are sufficiently far apart that the asymptotics defining
high breakdown apply. This is achieved for slightly less separation by MM than
LTSr. The plots of partial sums of variances, on the other hand, increase steadily,
since the estimators are always subject to the effect of the random variability in
the observations. The sums of variances for S and, particularly, LTS are, however,
increasing more rapidly at the ends of the region than those for the other three
methods, a result in line with the rows of boxplots forλ = ±3 in Figure 3.

These plots illustrate the differing performance of the fiveestimators. In ad-
dition to good parameter estimates we would also like our estimate to signal the
presence of outliers if the model fitted to the data is incorrect. Accordingly, we
calculated the average power, that is the average number of observations correctly
detected as being contaminated, that is the average number of observations from
M2. In testing for the presence of outliers we again used a test of Bonferronised
sizeα∗. The results are in Figure 5. Outliers are not detected for central values
of λ as the parameter estimates are sufficiently corrupted by observations from
M2 that no observations appear outlying. As the means of the twopopulations
move apart, the number of outliers detected increases. Overmost of the range FS
has the highest power and LTSr the lowest. The other three estimates lie between
these extremes with MM having lower power for values ofλ near zero. As with
any power curves calculated for tests whose exact sizes are not known, we need
to calibrate these findings against the size of the tests. This we do in§5.

As a second example we stay with a single explanatory variable but now
choose a trajectory forλ such thatθ0

1 6= θ1, so that most of the observationsy2 are
outlying. Figure 6 shows scatterplots of typical samples for four values ofλ. In
the first, forλ = 1.5, there is a set of horizontal outliers, which can be expected
not appreciably to affect the estimate of slope. Asλ increases the observations
from M2 rise above those fromM1, generating increasingly remote vertical out-
liers. (In reading this plot, note the rescaling ofx in the third and fourth panels.)

The difference between this example and Example 1 is made clear in the plot
of the measures of overlap in the upper panels of Figure 8. Thetheoretical over-
lapping index has a value close to one as, for lower values ofλ, observations from
M2 have a high probability of lying inside the strip aroundM1. However, the em-
pirical index has a lower value since, as the first panel of Figure 6 showed, few of
these observations fall withinX . For larger values ofλ both indices have values
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close to zero. Since the centres of the two populations are never identical, the
minimum value of the squared Mahalanobis distance is greater than zero.

The behaviour of the five estimators for this new situation issummarized in
the partial sum plots of Figure 7. The scatterplots of Figure6 suggest that the two
populations should be adequately separated by the timeλ = 4. For the moment
we ignore FS and focus on these lower values ofλ for which S and LTS have
similar biases forβ, but these are now the highest. The biases forα do not show
much difference for lower values ofλ. The plots of variances are much simpler to
interpret: S and LTS have high variance for bothα andβ over the whole range of
λ with MM and LTSr having low values. These two estimators alsohave similar
low biases forβ and much the same bias as all other rules forα.

This discussion is for that part ofΛ for which the two populations are rel-
atively close. The right-hand halves of the plots of bias show that S and LTS
provide unbiased estimates for smaller values ofλ than do MM. Since it will not
be known when analysing data, how far away any contaminants are from the main
population, it is sensible to choose an estimator that behaves well over all ofΛ. In
this example the FS again has excellent properties; it has the lowest bias for both
parameters and a variance which is close to those from MM and LTSr. However,
the plots of bias show that the values for LTSr do not become zero (remember
these are partial sums that are plotted) even when the populations are very well
separated.

To conclude the analysis of the second example we look at the plot of average
power in the lower half of Figure 8. As in Figure 5, FS has the highest power and
LTSr the lowest, but now the difference between LTS and the other rules is much
greater. S and MM have indistinguishable performances withLTS closer to that
of LTSr.

Our final example, which we treat more briefly, has five explanatory variables
(p = 6). Typical scatterplots ofy against eachx are shown in Figure 9 for this
larger example, withn1 = 200 andn2 = 60. As λ increases from−1 to 2.6
the outliers “rise through” the central observations, a feature more visible in the
coloured pdf version of the paper. However, sinced 6= 0, the centres of the two
distributions are never identical. Unlike our other two examples, this one does
not include outliers at leverage points, so that the differences in behaviour of the
methods are, to some extent, reduced.

We summarize the behaviour of the five estimators in the partial sum of vari-
ance and bias plots of Figure 10. With five explanatory variables the major con-
tribution to the mean squared error of the parameter estimates comes fromβ, so
we only consider these values. With independentxi the bias and variance are the
sums of those for the individual components. The most obvious feature of the plot
is the poor behaviour of LTS. LTSr and S have medium behaviourfor bias and
variance, with the order reversed for the two properties, while MM and FS have
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the same, lowest values for bias and similar values for variance untilλ = 1 when
that for FS increases, although staying below that for S. Unlike the other two ex-
amples, the relative behaviour of the estimators is little affected by the value ofλ,
a reflection of the stability of the outlier pattern overΛ. Of course, the magnitude
of the outliers is largest for extreme values, but leverage points are not introduced
or removed.

The plot of average power is in Figure 11. As in the other plotsof average
power FS has the highest power and LTSr the least. The other three estimators
have very similar properties to each other. However, in assessing power we need
to be sure that we are comparing tests with similar sizes. Thezoom in the centre
of the plot for values ofλ close to one shows that we are not, with FS and LTSr
having the smallest values. For accurate comparisons we need to scale the other
three tests downwards, which will reduce the curves below the plotted values.
However, even whenλ = 1 the outliers are still present and, sinced 6= 0, we are
not exactly looking at the null distribution of the test statistics. We consider null
distributions and the resulting size of tests in the next section.

5 Size Comparisons

In order to establish the size of the outlier tests we ran simulations for sample sizes
n from 100 to 1,000 for several different dimensions of problems. The results for
p = 6 and 11 are in Figure 12. In the simulations the samples were allowed
to grow, so that larger values ofn contained smaller ones, leading to smoother
curves. Both the response and the explanatory variables were simulated from
independent standard normal distributions, with all regression coefficients set to
one. Since all methods are affine equivariant, these arbitrary choices do not affect
the results. For each value ofn we present the average of 10,000 simulations,
in which we counted the number of samples declared as containing at least one
outlier, with the tests conducted at the 1% Bonferronised level.

The figure shows that, for three out of the five rules, the sizesare very far
from the nominal value. Forn = 100 the sizes For MM, LTS and S whenp = 6
range between 0.13 and 0.25. Forp = 11 the range for these rules is 0.36 to 0.81.
The sizes decrease withn, but are even so still around 2% for these rules when
n = 1, 000. The size for LTSr is closer to nominal, being around 3% and 6%for
n = 100 and decreasing rapidly withn. Only FS has a size around 1% for both
values ofp and alln.

These calculations of size show that FS is correctly orderedas having highest
power. The curves, such as those in Figure 11, for LTSr do not need appreciable
adjustment for size. However size adjustment for MM, LTS andS may well lead
to procedures with less power than LTSr.
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A simple method of adjusting power for size is a normal, or logistic, plot of the
power curves, as in Figure 8.12 of Atkinson (1985), when the slope of the curve
indicates power and the intercept size. Although such a comparison would be
possible here, our purpose is not to establish the exact properties of outlier tests.
Rather we are concerned with introducing a general framework for the comparison
of methods for very robust regression.

6 Discussion

In §3 we stipulated that the carriers be random. In defence Huberand Ronchetti
(2009, p. 197) comment that “Some authors have made unqualified, sweeping
claims that their favorite estimates have a breakdown pointapproaching 1/2 in
large samples. Such claims may apply to random carriers, butdo not hold in
designed situations”. They then use an argument based on a saturated D-optimum
design withp support points (for example Atkinson, Donev, and Tobias 2007,
p. 222) to show that the breakdown point is, at best,1/(2p). They encourage the
joint study of robustness and experimental design. An example is Müller (1997).

Our comparisons show that FS has the best performance of the five estimators,
particularly, but not only, when we look at the comparisons of power. In making
these comparisons we have used Bonferroni levels to determine outliers. Even so
we do not avoid the impression given by LTS for largep and smalln of finding
“Outliers Everywhere” as Cook and Hawkins (1990,§6) did in their investiga-
tion of the related MVD method for multivariate data. We think that the superior
performance of FS comes from the data-dependent flexibilityof the number of
observations included in the final fit. All algorithms use fitsto subsets ofp ob-
servations as, at least part, of the estimation method. In LTS all subsets are of
sizep. In LTSr subsets of sizep determine the final subset of sizen − k (§3). S
estimators are also found starting fromp observations. In our examples, with up
to 23% outliers we tookKc in the second stage to give an asymptotic nominal ef-
ficiency of 85%. Small numerical experiments indicate that even slight increases,
for example to a nominal efficiency of 87%, result in very low breakdown and
estimates similar to those from least squares. Several authors, for example Cook,
Hawkins, and Weisberg (1993) and Hawkins and Olive (2002), have commented
on the persistence of the effects of the initial estimator, even asymptotically. The
FS escapes such persistence because, although the subset used in fitting grows in
size, observations can be deleted as well as added. This behaviour is apparent in
random start forward searches for both regression and multivariate data. Figure 10
of Atkinson and Riani (2007) shows the trajectories of 300 searches starting from
randomly selected subsets of sizep. For a single population, perhaps with some
outliers, the subsets become the same (the trajectories converge) in the last 1/3 of
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the search. If there are several populations, some trajectories are initially attracted
to each, and families of trajectories reveal the populations. Such plots indicate
that we do not have to have at least half of the observations coming from one
population. Huber and Ronchetti (2009, p. 198) discuss methods when very high
contamination or mixture models are an issue and suggest a straight data analytic
approach through projection pursuit. We would argue that, in the regression con-
text, the FS is a natural method for disentangling mixtures and revealing outliers,
even when no population gives rise to a majority of the data.
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7 Appendix A: The Theoretical Overlapping Index

The response and the explanatory variables lie in a space of dimensionp + 1. Let
these variables bew. Then the regression plane can be written asbT w − c = 0.
The equation of the normal to the plane through a pointw0 on the plane is

z1 = w0 + bd, (A1)

14



where the scalard is the distance from the plane. The outlying observations,
including the response, have a multivariate normal distribution. Let these beW ∼
N (µ, Σ). We require the probability thatW lies on one side of the plane. To
obtain this rotateW to a set of variablesZ with z1 (A1) the normal to the plane.
Integrating out the otherp variables shows that the required probability comes
from the marginal distribution ofZ1 ∼ N (bTµ, bT Σb). Let the distance in thez1

direction fromµ to the plane bed(c). Then, from (A1), at the planebT w = c =
bT µ + bT bd(c), so that

d(c) = (c − bT µ)/bT b. (A2)

Since the distanced(c) in thez1 direction has been rescaled by the factor1/bT b
the required probability is

Pr(bT W > c) = Pr(Z1 > c − bT µ) = Φ{d(c)bT b/(bT Σb)0.5} = Ψ(c), say,
(A3)

whereΦ is the cdf of the (univariate) standard normal distribution. We require this
probability in terms of the regression model, which we now write asy = α+βT x.
Then

bT = (1 − βT ), wT = (y xT ) and c = α.

Finally, we require the probability thatW lies between two planes. For anyx the
required strip around this model isy ± 2σǫ. The two planes then are defined by
constantsc+ = α + 2σǫ andc− = α − 2σǫ. From (A3) the required probability is
Ψ(c+) − Ψ(c−).
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Figure 1: Example 1. Simulated data sets withn1 = 100 andn2 = 30 for nine
values ofλ. As λ increases observations fromM2 become close to those from
M1 and then become remote again. The parallelogram defines the region for the
empirical overlapping index
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Figure 2: Example 1. Upper panel: theoretical and empiricaloverlapping indices
for the data in Figure 1, showing maxima atλ = 1. Lower panel: squared Maha-
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Figure 11: Example 3. Simulated average power of the five procedures overΛ
with an inset zoom of the central part of the figure
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p = 6 and forp = 11. Note the different vertical scales in the two panels
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