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Abstract

We generalize results in the literature to obtain a general family contingent response
models. These models have ternary outcomes constructed from two Bernouli out-
comes, where one outcome is only observed if the other outcome is positive. This
family is represented in a canonical form which yields general results for its Fisher in-
formation. D and c optimal designs found numerically for a contingent response model
with expected response probabilities taken from a bivariate extreme value distribution
illustrate the model and motivate limiting results. Optimal designs for even modestly
complex nonlinear response models cannot be expressed in closed form; and this in-
cludes the contingent response model. Limiting D optimal designs obtained in closed
form can be used to approximate exact D and c optimal designs, as they are shown to
be efficient over a wide range of parameter values, or they can be used to provide start-
ing values in numerical searches for exact optimal designs. To provide a motivating
context, we describe the two binary outcomes that compose the contingent responses
as toxicity and no efficacy. Efficacy or lack thereof is assumed only to be observable
in the absence of toxicity, resulting in the ternary response {toxicity, efficacy without
toxicity, neither efficacy nor toxicity}. The rate of toxicity, and the rate of efficacy con-
ditional on no toxicity, are assumed to increase with dose. The results provided in this
paper are useful for the construction of efficient designs under a broad class of such
models.
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1 INTRODUCTION
Dose response models with single binary outcomes are used extensively in science and
industry. Bivariate response models are of importance in numerous clinical trials, en-
gineering strength tests and other applications. In clinical trials, a bivariate response
may be efficacy (yes/ no) and toxicity (yes/ no). A subject’s response to a drug then
falls in one of four categories: 1) toxicity with no efficacy; 2) toxicity with efficacy; 3)
no toxicity with efficacy (success/cure); and 4) no toxicity and no efficacy. Draglin &
Fedorov (2006) numerically found optimal designs for several four outcome models;
Draglin et al. (2008) introduced methods for dose finding based on (numerically ob-
tained) penalized optimal designs for the bivariate probit model.

Sometimes efficacy can only be observed contingent on no toxicity. This happens
when toxicity is lethal, or so serious that the subject is then treated ”off protocol”.
Durham et al. (1998) describe such an application in some detail. In such applica-
tions, response categories, 1 and 2 are not distinguishable, and combining them yields
a ternary response. In this context, Fan & Chaloner (2001, 2004) studied Bayesian
designs for the continuation ratio model [which was introduced by Cox (1972) and
is described in Agresti (2002)] applied to two binary responses. Rabie & Flournoy
(2004) studied the contingent response model of Li et al. (1995) (see also Durham et
al. (1998)); they later recognized that the continuation ratio model applied to two bi-
nary responses is a special case of the general contingent response model we call the
logistic–logistic model. The contingent response model is described in Section 2.

Denote a K point design by ξ = {xi, ξi}K
i=1 , where {xi} is the set of design points

and {ξi} are their corresponding frequencies of use. Rabie & Flournoy (2004) ob-
tained the following invariance property for D optimal designs, generalizing a proof
for the logistic–logistic model (Fan & Chaloner, 2001, 2004): if the design ξ∗0 =
{x∗i , ξi}K

i=1 is locally D optimal, then the design with location-scale parameters (α, β),
ξ∗ = {(x∗i − α)/β, ξi}K

i=1 , is locally D optimal. This invariance property has also
been shown to hold for the examples of c optimality in this paper, but the invariance
for c optimality must be proven on a model by model basis.

In this paper, we find D and c optimal designs for the contingent response model.
Motivated by the limiting optimal designs of Fan & Chaloner (2001, 2004), we show,
for contingent response models that are constructed from continuous distribution func-
tions, limiting D optimal designs can be constructed from the D optimal designs derived
by considering the toxicity and conditional efficacy response models separately. We il-
lustrate this using extreme value functions.

We also conjecture that the limiting c optimal designs for the dose maximizing the
probability of efficacy without toxicity consist of at least two points. We prove that
the limiting c optimal design is two points for a contingent response model constructed
from extreme value functions. It is important to note that the c optimal design does not
coincide with the well intended practice of seeking to place subjects at the dose that
maximizes the chance of efficacy without toxicity.
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Figure 1: Examples of positive–negative extreme value models. a : F̄ (x) =
exp(− exp(x − 4)), G(x) = (exp(− exp(−x))); b : F̄ (x) = exp(− exp(x −
25)), G(x) = (exp(− exp(−x))); H(x) = F̄ (x)G(x).

Fisher information for the canonical contingent response model is written as a block
diagonal matrix. We show that, as the two failure functions diverge, the blocks con-
verge to the information matrices for the separate component models. We evaluate
optimal designs and describe their behavior as the component models diverge. The
limiting D and c optimal designs can be obtained in closed form, and they are found to
be efficient for a variety of parameter values.

2 The Contingent Response Model

In the contingent response model, there are two types of failure. The failure types will
have different labels in different applications, but in order to provide context, we call
one failure type toxicity and the other no efficacy. We assume efficacy is contingent on
no toxicity in that efficacy is only observed in the absence of toxicity. The probability
of toxicity and the conditional probability of efficacy given no toxicity are assumed to
increase with the dose.

Figure 1 shows examples of contingent response models in which the probabilities
of ‘ toxicity’ and ‘efficacy given no toxicity’ are modeled by the negative extreme
value function with α1 = −6 and −20, β1 = 1 and the positive extreme value function
G(x) = (exp(− exp(−x))).
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To be more specific, define

Y1j =

{
1 if the jth subject has a toxic response
0 else

Y2j =

{
1 if the jth subject has no efficacy
0 else

for j = 1, . . . , N . In the contingent response model, only three outcomes are observ-
able for each subject, namely, success (i.e., no toxicity and efficacy) when {Y1j = 0,
Y2j = 0}, no toxicity and no efficacy when {Y1j = 0, Y2j = 1} and toxicity when
{Y1j = 1}.

Here when we refer generally to the contingent response model, we mean one that
is a concatenation of two continuous location–scale cumulative distribution functions
(cdf): a toxicity function P{Y1j = 1 | x} = Fα1,β1 , α1 ∈ R1, β1 > 0 and a condi-
tional efficacy function P{Y2j = 0 | Y1j = 0, x} = Gα2,β2 , α2 ∈ R1, β2 > 0, with
F̄ = 1−F and Ḡ := 1−G. We assume F and G have the same support space and that
the stimulus x has been transformed onto the same space as is arg F (x) and arg G(x).
In addition, we assume that there exist link functions ηF and ηG such that

ηF (Fα1,β1) = α1 + β1x;
ηG(Gα2,β2) = α2 + β2x.

Selected cumulative distribution functions that are commonly used to model monotone
dose-response functions are given in Table 1. The same models, or others, can be used
for G. When 1 − F is the negative extreme value model, it is convenient to let G
be the positive extreme value model which is G(x) = exp(−exp(−ηG)), β2 ≥ 0.
Rabie & Flournoy (2004) showed that the continuation–ratio model studied by Fan &
Chaloner (2001, 2004) is a contingent response function with logistic link functions
for both F and G. The logistic link is popular in clinical studies; the probit is popular
in acute toxicity studies; and the positive–negative extreme value link is popular in
engineering. The extreme value model is attractive in that it is not symmetric and we
use it for illustration.

The probability of success (that is, efficacy without toxicity) is

H(x) = P{Y2j = 0 | Y1j = 0, x}P{Y1j = 0 | x} = F̄ (x)G(x), (1)

and the probability of no efficacy and no toxicity is P (Y1j = 0, Y2j = 1) = F̄ Ḡ. We
define the optimal dose, if it exists, to be the dose that maximizes H(x), and denote it
by ν = argmaxxH(x). Li et al. (1995) give conditions for the existence and unique-
ness of ν. For the positive–negative contingent response model, there is an explicit
expression for the optimal dose which is ν = log(β2/β1)− (α1 + α2)/(β1 + β2).

We consider two sets of parameters: Θ = (α1, β1, α2, β2) and Θ = (α1, β, α2),
where β1 = β2 = β. When α2 = 0 and β2 = 1, we say that the model is in canon-
ical form. Because of the invariance property mentioned in the introduction we can,
without loss of generality, work with models in their canonical form.
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Table 1: Selected toxicity function information.

Toxicity function F̄ (x) vF (x) = F
′2

(1−F )F

Negative extreme value exp(− exp(ηF ))
exp(2ηF ) exp(− exp(ηF ))

1− exp(− exp(ηF ))

Logistic
exp(ηF )

1 + exp(ηF )
exp(ηF )

(1 + exp(ηF ))2

Probit
∫ ∞

ηF

exp(−(ηF )2/2)
2π

dx
exp(−(ηF )2)

2πΦ(ηF )(1− Φ(ηF ))

Exponential exp(ηF ); x ≤ −α1/β1
exp(ηF )

1− exp(ηF )

3 FISHER’S INFORMATION

3.1 Preliminary Results
Let IF (x) and IG(x) be the Fisher information matrices for a single subject treated
under the component response functions F and G, respectively:

IF (x) = vF (x)
(

1 x
x x2

)
and IG(x) = vG(x)

(
1 x
x x2

)
,

where vW (x) = W ′2(x)/
[
W (x)W̄ (x)

]
, W is a continuous cumulative distribution

function (e.g., F, G), W̄ = 1 − W , and W ′ is the derivative of W with respect to
ηW . Ford et al. (1992) introduce vW (x) as weights in expressions of information for
analogous models with only one outcome. Weights vF are given in Table 1 for selected
cumulative distribution functions. To simplify notation, define vWj = vW (zj) and
vWji = vW (zji). We have the following proposition for these weight functions.

Proposition 3.1 Let W be a parameter free cumulative distribution function and let
η = α + βx. Suppose | η |a vW (η) has a limit for a ∈ {0, 1, 2} that is either finite or
infinite as η → −∞; then this limit must be zero.

The proof is in Appendix 1.
The following lemma gives the information matrix, I(x), for a single subject treated at
dose x under the general contingent response model. The proof can be found in Rabie
(2004)

Lemma 3.1 (i) If Θ = {α1, β1, α2, β2}, then I(x) = diag (A,B), where A =
IF (x) and B = F̄ (x)IG(x);

(ii) If Θ = {α1, β, α2}, where β1 = β2 = β, then

I(x) = vF (x)




1 x 0
x x2 0
0 0 0


 + F̄ (x)vG(x)




0 0 0
0 x2 x
0 x 1


 . (2)
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3.2 Parameter Set I: Θ = {α1, β1, α2, β2}
It is well known that D optimal designs for commonly used sigmoidal response func-
tions are two point designs [cf. Atkinson & Donev ( 1992)]. We now show that, as
α1 → −∞, the information in a four point design under the four parameter contin-
gent response model is a concatenation of information in two independent two point
designs. In Section 4, we show that, as α1 → −∞, the limiting D optimal design
under the canonical contingent response model is composed of the elements from the
two D optimal designs under F and G separately.

Many optimal designs obtained in the paper were found to be symmetric, contain-
ing both a dose x and−x. Thus it is convenient to define standardized transformations:

z1 = (−x− α1)/β1; z1i = (−xi − α1)/β1;
z2 = (x− α2)/β2; z2i = (xi − α2)/β2.

Define equally weighted two-point experiments under F and G, respectively:

ξF =
(

z11 z12

0.50 0.50

)
; ξG =

(
z21 z22

0.50 0.50

)
. (3)

The information matrices for these two experiments, respectively, are

MF = 0.5
2∑

i=1

IF (z1i) = 0.5
2∑

i=1

vF (z1i)
(

1 z1i

z1i z2
1i

)
;

MG = 0.5
2∑

i=1

IG(z2i) = 0.5
2∑

i=1

vG(z2i)
(

1 z2i

z2i z2
2i

)
.

A design that contains all the points from two separate designs, each with half of its
original weight, we call a concatenation of the two separate designs. So the concatena-
tion of ξF and ξG is

ξC =
{

z11 z12 z21 z22

0.25 0.25 0.25 0.25

}
.

We now show how the limiting information matrix at ξC decomposes into the compo-
nent information matrices at ξF and ξG. By Lemma 3.1, the information matrix for the
contingent response model at ξC is

MC =
(

MCA 0
0 MCB

)
, (4)

where

MCA = 0.25
2∑

i=1

[IF (z1i) + IF (z2i)] ; (5)

MCB = 0.25
2∑

i=1

[
F̄ (z1i)IG(z1i) + F̄ (z2i)IG(z2i)

]
. (6)

Lemma 3.2 MC → 0.5
(

MF 0
0 MG

)
as α1 → −∞.
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Proof:
For the canonical model, z2i = xi does not depend on parameters and neither does
F̄z1i

and vG2i. For a ≤ 2 and i = 1, 2, it follows from Proposition 3.1 that za
2ivF2i

and za
1ivG1i as functions of α1 both go to zero as α1 → −∞. This implies a. the second

term in (5) goes to zero as α1 → −∞. and hence MCA
converges to 0.25

∑2
i=1 IF (z1i) =

0.5MF . b. the first term in (6) together with the fact that F̄z1i does not depend on pa-
rameters goes to zero. Now F̄z2i

→ 1, i = 1, 2 when α1 → −∞, which implies that
the second term in (6) converges to 0.25

∑2
i=1 IG(z2i) = 0.5MG. This concludes the

proof. ¤
It is interesting to note that as α1 →∞,MCA

→ 0.5MF , but MCA
→ 0.

3.3 Parameter Set II: Θ = {α1, β, α2}, where β1 = β2 = β

Consider the special case in which β1 = β2. For example, if the toxicity rate equals the
rate of failure to benefit the subject, one would have β1 = β2 = 1. The following infor-

mation for the four point design ξD=
{

z11 z12 z21 z22

ξ11 ξ12 ξ21 ξ22

}
is used in Section 4

for deriving D optimality in this special case:

MD =
2∑

k=1

2∑

i=1

ξkiI3x3(zki)

=
2∑

k=1

2∑

i=1

ξki


vFki




1 zki 0
zki z2

ki 0
0 0 0


 + F̄ (zki)vGki




0 0 0
0 z2

ki zki

0 zki 1





 .

(7)

Lemma 3.3 Let M̃D = limα1→−∞MD then

M̃D =
2∑

i=1


ξ1ivF1i




1 z1i 0
z1i z2

1i 0
0 0 0


 + ξ2ivG2i




0 0 0
0 z2

2i z2i

0 z2i 1





 . (8)

Proof: By Proposition 3.1, for a ≤ 2, za
1ivF2i and za

2ivG1i both go to zero as α1 →
−∞ for the canonical model. Note F̄ (z1i), vF1i, and vG2i do not depend on param-
eters. This implies that the second and the third elements in (7) go to zero. Also
F̄ (z2i) → 1 as α1 → −∞. This implies that MD can be approximated by (8) when
the individual response functions sufficiently diverge. ¤

4 LOCALLY OPTIMAL DESIGNS

4.1 D optimality
Locally D optimal designs maximize the log determinant of Fisher’s information with
respect to the parameters. Optimization procedures produce continuous designs where
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the weight ξi for each point xi is a positive number and
∑K

i=1 ξi = 1 [cf. Atkinson
& Donev ( 1992), pp. 93]. Let ni denote the number of subjects treated at xi with
N =

∑
i ni. To implement ξ, set ni as close as possible to Nξi.

For nonlinear response functions, optimal design points are functions of the un-
known parameters rather than real numbers, but implementation can be accomplished
with a sequential treatment allocation procedure that mimics numerical iterative pro-
cedures for finding optimal design points. See Wynn (1970), Fedorov (1974), Silvey
(1980); Cook & Nachtsheim ( 1982), Atkinson & Donev ( 1992), and Fedorov & Hackl
(1997).

The directional derivative for the D optimality criterion under a model with infor-
mation matrix M is DM = Tr[I(x)M∗−1] , where I(x) varies with x and M∗ is the
information evaluated at the optimal design, ξ∗. By the General Equivalence Theorem
(Kiefer, 1974), a design is D optimal if and only if DM ≤ p for all x with equality
holding for x ∈support( ξ∗), where p is the number of parameters. Optimal designs de-
scribed in the example below were found numerically as described in Rabie (2004)and
verified using the General Equivalence Theorem.
Example
Table 2 provides locally D optimal designs for selected canonical positive-negative ex-
treme value model with Θ = {α1, β1, 0, 1} (also see Table 3 in Appendix 5). We found
locally D optimal designs consisting of two, three, and four points for small, moder-
ate and large negative values of α1 and different β1 values, respectively. For positive
values of α1, optimal designs consist of two and three design points depending on the
value of β1.

Note as −α1 gets larger, optimal designs come to consist of four approximately
equally weighted design points. These design points are roughly the same as the con-
catenated D optimal design points found for two separate experiments under the com-
ponent models F (z1) and G(z2), respectively. Whereas optimal design points under
the separate component models have closed form expressions, the design points for the
contingent response model must be found numerically. In Section 5, we illustrate how
the designs derived from the component models F (z1) and G(z2) can be used to ap-
proximate optimal designs. Table 4 (Appendix 5) shows the locally D optimal designs
assuming Θ = {α1, 1, 0}. Fan & Chaloner (2001, 2004) found similar results for the
logistic–logistic model. That is, D optimal designs were found to consist of two, three,
and four points depending on values of α1.

4.2 c optimality
In the contingent response model, the dose ν = arg max H(x) is of great interest. The
corresponding c optimality criterion minimizes the asymptotic variance of the maxi-
mum likelihood estimate of ν.

For positive–negative extreme value models and logistic–logistic models, it has
been shown (Rabie & Flournoy, 2004; Fan & Chaloner, 2004) that if ξ∗0 is the locally
c optimal design for the canonical {α1, β1, 0, 1} or {α1, 0, 1} models, then designs ξ∗

are locally c optimal for the general {α1, β1, α2, β2} and {α1, β, α2} models, respec-
tively. We conjecture that this location-scale invariance holds for the class of contingent
response models considered herein, but proofs must be done model by model.
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Table 2: D-optimal designs for selected canonical positive–negative extreme value
models

α1 β1 = 0.5 β1 = 1 β1 = 2
Design Points Weight Design Points Weight Design Points Weight

0 -1.2752 0.4720 0.4755 0.5000 -1.2158 0.4391
0.5985 0.3382 -1.2808 0.5000 -0.17186 0.2660
1.948 0.1898 0.34168 0.2945

-1 -1.0982 0.4005 -1.1222 0.4087 -1.1287 0.3566
0.8243 0.3635 0.4647 0.3447 0.08121 0.3725
3.9569 0.2360 1.8530 0.2466 0.9055 0.2708

-3 -0.9329 0.3312 -0.9414 0.3092 -1.0136 0.2810
1.4913 0.4200 1.2863 0.4393 0.7675 0.4573
7.6891 0.2488 3.8609 0.2515 1.9332 0.2618

-5 -0.9101 0.2931 -0.8454 0.2717 -0.9256 0.2584
1.6895 0.3729 2.2797 0.477 1.5614 0.4831
7.6511 0.0948 5.8125 0.2513 2.9311 0.2585
11.6989 0.2392

-10 -0.9778 0.2509 -0.973 0.25 -0.8987 0.2418
1.3465 0.2524 1.362 0.2515 1.3106 0.1511
17.3336 0.2473 8.6396 0.2793 4.0744 0.3544
21.955 0.2493 10.9725 0.2491 5.4483 0.2526

-15 -0.9796 0.2500 -.9795 0.2500 -0.9709 0.2476
1.3379 0.2500 1.3381 0.2500 1.3222 0.2385
27.3247 0.2500 13.6618 0.2500 6.7937 0.2635
31.9592 0.2500 15.9795 0.2500 7.9835 0.2505

-20 -0.9796 0.2500 -0.9784 0.2496
1.3378 0.2500 1.3352 0.2485
18.6623 0.2500 9.3257 0.2519
20.9796 0.2500 10.4889 0.2501

Tables 5- 7 (Appendix 5) show c optimal designs for selected canonical {α1, β1, 0, 1}
and {α1, 1, 0} positive-negative extreme-value models, respectively. With and without
assuming equal slopes, the c optimal designs are found to consist of two design points
over a wide range of parameters. These designs were obtained numerically and veri-
fied using the General Equivalence Theorem (Kiefer, 1974). Singular optimal designs
occur. In such cases, Silvey’s Theorem (Silvey, 1980) was used to verify optimality.
For large positive values of α1 the maximum probability of success is negligible for all
doses which leads to numerical instabilities when trying to find the optimal design.
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5 LIMITING LOCALLY OPTIMAL DESIGNS

5.1 Limiting D optimality when Θ = {α1, β1, α2, β2}
Let M∗

F and M∗
G denote the information matrices evaluated at the optimal designs ξ∗F

and ξ∗G for the separate response functions F and G, respectively. Let ξ¦C denote the
concatenation of ξ∗F and ξ∗G, whereas ξ∗C denotes the D optimal design for contingent
response model. Lemma 3.2 and Proposition 3.1 lead to

Theorem 5.1 ξ¦C −→ ξ∗C as α1 → −∞.

By the General Equivalence Theorem, Theorem 5.1 is true iff limα1→−∞DMC
≤ 4

for all x ∈ support(ξC) with equality holding for x ∈ ξ¦C . To provide insight into
the proof of Theorem 5.1, Figure 2 shows directional derivatives for some positive-
negative extreme value models. Figure 2(a) displays directional derivatives for three
component models: DMG

= Tr
[
IG
−1M∗

G
−1

]
, where G is the negative canonical

extreme value model and DMF
= Tr

[
IF
−1M∗

F
−1

]
, where F with β1 = 2 and

α1 = −10,−15,−25. The information matrices, M∗
F and M∗

G, are evaluated at the op-
timal designs, ξ∗F and ξ∗G, respectively, so each curve reaches 2, the number of model
parameters, at the optimal design points for the respective model. Compare these with
Figure 2(b), which shows 2 (DMG

+DMF
) for β1 = 2 and α1 = −10,−15,−25.

The height of 2 (DMG
+DMF

) at its modes is not equal to 4 when α1 = −10; when
α1 = −15, the height at the modes is closer to 4; but when α1 = −25, they equal 4
indicating that the optimal design ξ∗C has been found. Note that the modes shift with
α1 until they are located at the same points as are the modes shown in Figure 2(a) of
DMF

with α1 = −25 and canonical DMG
.

Proof
The proof amounts to showing that limα1→−∞DMC

− 4 is nonpositive and attains its
supremum at all x ∈ support ( ξ¦C). By Lemma 3.2,

M−1
C =

(
M−1

CA
0

0 M−1
CB

)
−−−−−→
α1→−∞

2
(

M−1
F 0
0 M−1

G

)
.

Hence
DMC (x)− 4 −−−−−→

α1→−∞
2 (DMF (x) +DMG(x))− 4.

Consider DMF = Tr
[
IF (x)M∗

F
−1

]
. By Proposition 3.1, each element of IF (x) goes

to zero as ηF (x) → −∞, while M∗
F
−1 is fixed. Therefore, DMF → 0 as ηF (x) →

±∞, which for fixed x occurs if α1 → −∞, and vise versa. Thus, given εF > 0 ,
there exists points, say x1

F and x2
F , such that DMF

(x) < εF for all x ≤ x1
F and for all

x ≥ x2
F . Analogously, DMG

→ 0 as ηG(x) → ±∞, and given εG > 0, there exists
points, say x1

G and x2
G, such that DMG(x) < εG for all x ≤ x1

G and for all x ≥ x2
G.

With the model in canonical form, x1
G and x2

G are fixed, while x1
F and x2

F shift with
the location parameter α1. Thus, letting εF and εG go to zero, the following scenarios
develop as α1 becomes increasingly negative and F shifts toward infinity:
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1. Case 1a. α1 << 0 and x1
G < x1

F < x2
G < x2

F :

DMC
=





0 if x < x1
G;

DMG
if x1

G ≤ x < x1
F ;

DMC
if x1

F ≤ x < x2
G ;

DMF
if x2

G ≤ x < x2
F ;

0 if x ≥ x2
F .

(9)

2. Case 1b. α1 → −∞, so x1
G < x2

G < x1
F < x2

F : (9) goes to

DMC
=





0 if x < x1
G;

DMG
if x1

G ≤ x < x2
G ;

0 if x2
G ≤ x < x1

F ;
DMF

if x1
F ≤ x < x2

F ;
0 if x ≥ x1

F .

(10)

Now for any point x∗ ∈ (
x2

G, x1
F

)
, the directional derivative for design ξ¦C is

DMC
− 4 −−−−−→

α1→−∞
2 (DMF

+DMG
− 2) =

{
2(DMG − 2) x ≤ x∗

2(DMF
− 2) x > x∗.

Now (DMG
−2) and (DMF

−2) are the directional derivatives for G and F, respectively.
By the General equivalence theorem each is non-positive and attains its maximum at
ξ∗F and ξ∗G. ThusDMC

(x)−4 is non-positive and attains its maximum at ξ¦C , therefore
ξ∗C is the D-optimal design for the contingent response model. ¤

Corollary 5.1 (i) For the canonical positive–negative extreme value model with Θ
= {α1, β1, α2, β2}, the locally limiting D optimal design is given by

ξ∗C =
{ −0.9796 1.3377 0.9796−α1

β1

−1.3377−α1
β1

0.25 0.25 0.25 0.25

}
. (11)

(ii) For the canonical logistic–logistic model with Θ = {α1, β1, α2, β2}, the locally
limiting D optimal design is given by

ξ∗C =
{ −1.543 1.543 1.543−α1

β1

−1.543−α1
β1

0.25 0.25 0.25 0.25

}
. (12)
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Figure 2: (a): The directional derivatives for the canonical extreme value for G, DMG
,

and F , DMF
, for several values of α1. b: 2(DMF

+DMG
).

Proof

(i) The optimal design points for a single positive extreme value function with scale
parameter β2 = 1 and location parameter α2 = 0 are (−0.9796, 1.3377) with
equal weights. The optimal design points for the negative extreme value func-
tion, when β1 = 1, α1 = 0, are (0.9796,−1.3377). For more detail see Ford et
al. (1992). By the invariance property of the D optimal designs for linearly trans-
formed design spaces, the optimal design points for the negative extreme value
function with scale parameter β1 and location parameter α1, are (0.9796−α1)/β1

and (−1.3377− α1)/β1 with equal points. Hence by Lemma 3.2, ξ∗C is the lim-
iting optimal design for the canonical model.

(ii) The optimal design points for a single logistic response with equal weights are
(−1.543, 1.543) when α1 = 0 and β1 = 1 (White , 1975). The result follows
from the same argument as in (i).

¤
Fan & Chaloner (2001) obtained the result for logistic–logistic model using a different
method of proof.

5.2 Limiting D optimality when Θ = {α1, β, α2}, β1 = β2.
In this section, we derive closed form for the limiting D optimal designs based on the
results given in Table 4 (Appendix 5) for the canonical positive–negative extreme value
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model.

Theorem 5.2 For the canonical positive–negative extreme value model with Θ = {α1, 1, 0},
the limiting locally D optimal design is given by

ξ∗D =
{ −0.8537 1.0773 (0.8537− α1) (−1.0773− α1)

0.2900 0.2100 0.2900 0.2100

}
.

The detailed proof in Appendix 2 amounts to maximizing the determinant of M̃D

in Lemma 3.3 and then showing that the directional derivative DM̃D
− 3 goes to zero

as α1 → −∞. Although ξ∗Dconsists of four design points, these points are not the
points obtained from concatenating the optimal designs points of the separate positive
and negative extreme value models. An analogous result for the logistic–logistic model
was found by Fan & Chaloner (2004). They found the limiting optimal design consists
of four equally weighted points: {1.223− α1,−1.223− α1,−1.223, 1.223}.

5.3 Limiting c optimality when Θ = {α1, β, α2}
We conjecture from Tables 5 – 7 in Appendix 5 that locally c optimal designs for
the canonical model for estimating the dose with maximum success probability consist
of two design points with weights depending on β and α1. Thus we conjecture that
the limiting c optimal design will also have two points. In particular, when β2 = β1

for the canonical model, we conjecture that these points are z∗1 = arg maxx vF and
z∗2 = arg maxx vG.

We have this result for the positive–negative extreme value model:

Theorem 5.3 For the canonical positive–negative extreme value model with {Θ } =
{α1, 1, 0}, the locally limiting c optimal design is given by

ξ∗E =
{

arg maxx vF arg maxx vG

0.5000 0.5000

}
,

where z∗2 = arg maxx vG = −0.466 and z∗1 = arg maxx vF = 0.466− α1.

The proof is in Appendix 3. The analogous locally c optimal design for the logistic–
logistic model is two equally weighted points at arg maxx vF = −α1 and arg maxx vG =
0 [Fan & Chaloner (2004)].

6 EFFICIENCY OF THE LIMITING OPTIMAL DE-
SIGNS

Now we illustrate the efficiency of limiting D and c optimal designs for the canonical
positive-negative extreme value model. Efficiency is defined as the sample size n with
the optimal design ( ξ∗) that produces the same criterion value as does the sample size
from the limiting design ξ∗L. For D and c optimality, respectively, the efficiency is
n = [det[ML]/ det[M∗

L]]1/p and n = ( ν̇ det[M∗
L]−1 ν)/( ν̇M−1

L ν), where ν̇ is the

12



−20 −15 −10 −5 0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

a

alpha1

n

Beta1= 0.5
Beta1= 1
Beta1= 2
Beta1= 3
Beta1= 4

−12 −10 −8 −6 −4 −2

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

b

alpha1
n

Figure 3: a: Efficiency of limiting D optimal for β1 = 0.5, 1, 2, 3, 4 and b: c optimal
designs when β1 = β2 = 1, for several values of α1 for canonical positive-negative
extreme value models.

derivative of ν and p is the number of parameters. Figure 3a displays the reduced
sample size n required as function of α1 when Θ = {α1, β1, α2, β2} for different
values of β1/β2, which is equal to β1 for the canonical extreme value model. The
efficiencies for large negative values of α1 approach 1.00 with both large and small
values of β1/β2. For small to moderate values of |α1|, the efficiencies vary with the
value of β1/β2, and they range from .71 − .91. It can be seen that the efficiencies are
higher for β1/β2 = 0.5 and β1/β2 = 1 than larger values of β1/β2, but they are still
reasonable. Figure 3b and Figure 1 in Appendix 6 show the efficiencies versus α1 for
limiting D and c optimal designs when Θ = {α1, β, α2}, respectively. For D optimal
designs, these efficiencies are all higher than .92 and they approach .96 for large values
of |α1| examined here. For the c optimal designs, the efficiencies of limiting optimal
designs are higher than 0.965 over the range we examined.

7 CONCLUDING REMARKS
Generalizing models in the literature, we presented a family of contingent response
models in which one binary response can only be observed contingent on another.
Writing these models in a canonical form simplified characterization of their Fisher
information. We have shown that when the two response functions diverge, the in-
formation matrix for contingent response model converges to a block diagonal ma-
trix in which each block contains the information matrix of a single response treated
separately. This result was used to show that limiting D optimal designs consist of
the concatenation of the optimal designs of each single response. Thus limiting D
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optimal designs can be surmised from the knowledge of individual optimal designs
found separately under single response models, F and G. In spite of recent progress
in finding optimal designs analytically for some classes of three and four parameter
models (see Li & Majumdar (2008) and Yang (2010)), it is not clear these results
extend to the contingent response family. However, optimal designs for many common
two–parameter single response models are available in the literature, and we show
how they can be used directly to construct efficient approximate optimal designs un-
der three and four parameter contingent response models, avoiding the challenge of
numerical searches. Alternatively, the limiting designs can serve as starting values in
numerical searches for exact optimal designs or as initial designs in Bayesian or fre-
quentist sequential procedures. The c optimal design for the optimal dose (i.e., the
dose that maximizes the probability of efficacy without toxicity) was found to be a
two point design for the positive–negative extreme value model, as is also the case for
the logistic–logistic model (Fan & Chaloner (2001, 2004)). We conjecture the theorem
holds generally for other models in this family, but the proof must be done case by case.
This is an important result.Minimizing the variance of a percentile in toxicity studies
often results in one point optimal designs at the target dose. In such cases, the optimal
design is consistent with the popular use of procedures that seek to treat subjects at
the target dose. This strategy has been transferred to the toxicity–efficacy setting, with
procedures proposed that seek to place subjects at the optimal dose. However, in the
toxicity–efficacy setting, the objective of treating subjects at the optimal dose and the
objective of estimating that dose efficiently conflict. This conflict needs to be more
widely recognized and trade–offs in the objective functions consciously considered in
the design process. These findings extend the results of Fan & Chaloner (2001, 2004)
and Rabie & Flournoy (2004) and support the use of limiting optimal designs with
contingent response models other than the logistic–logistic and the positive-negative
extreme value models, such as the probit–probit and the logistic–exponential models.
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Appendix 1

PROOF OF PROPOSITION 3.1
1. Case I : lim|x|avF (x) → 0 as x →∞.

Let h(x) = F̄ (x). Then the following are true: h(x) ≥ 0, h
′
(x) ≤ 0 and

h(x) → 0 as x →∞. Since F (x) → 1 as x →∞, we only need to show

|x|a(h
′
(x))2

h(x)
→ 0 as x →∞. (13)

Suppose that the limiting value of (13) is either finite and non zero or infinite.
Then there exists K > 0 and k > 0 such that

xa/2|h′(x)|√
h(x)

> k, ∀ x > K.

Now suppose h′(x) ≤ 0; then for any y > K, we have

−h
′
(x)√

h(x)
> kx−a/2 ⇒ −

∫ y

K

h
′
(x)√
h(x)

dx >

∫ y

K

kx−a/2dx

The left hand integral is evaluated to 2
√

h(K) −
√

h(y), which has a limiting
value of 2

√
h(K),

as y →∞ since h(y) → 0 as y →∞. However, the right hand integral becomes
unbounded as y → ∞ since the exponent −a/2 ≥ −1 which contradicts the
assumption. Therefore, we conclude that if (13) has a limiting value it must be
zero.

2. Case II : lim|x|avF (x) → 0 as x → −∞.
The proof is exactly as in Case I with h(x) = F (x).

¤

Appendix 2

PROOF OF THEOREM 5.2
Maximizing the determinant of M̃D for the canonical positive–negative extreme value
model using the NPSOL algorithm of Gill et al. (1998) yields z11 = −0.8536657,
z12 = 1.077288, z21 = −(z11 + α1),and z22 = −(z12 + α1) with weights ξ11 =
ξ21 = 0.2895051 and ξ12 = ξ22 = 0.2104949. To confirm that this solution is glob-
ally optimal, we appeal to the General Equivalence Theorem. That is, we show that
limα1→−∞DMD

− 3 is non-positive and its maximum is zero for x ∈ ξD.

DM̃D
= Tr

(
I(x)M−1

D

)

= Tr
(

I(x)M̃−1
D

)
+ Tr

(
I(x)

(
M−1

D − M̃−1
D

))
.
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Because each element of I(x) is a bounded function, Tr[I(x)(MD
−1 − M̃−1

D )] → 0
as α1 → −∞. So limα1→−∞DMD

= limα1→−∞DM̃D
.

We now showDM̃D
−3 ≤ 0. Denote vF (x) and F̄ (x)vG(x) by vx and wx, respectively.

For the canonical positive–negative extreme value model,

vG(x) =
exp(−2x) exp(− exp(−x))

1− exp(− exp(−x))
.

Maple software provides the following equality:

DM̃D
= vx[−2.091898121α1 + 3.023967019α2

1 + 4.732702573]

+2vxx[−1.045949058 + 3.023967013α1] + 3.023967012vxx2

+3.023967012wxx2 + 2.091898118wxx + 4.732702591wx.

Recall that that wx ≤ vG(x) for all x.

1. Case 1: x < −α1/2.
Assuming different large negative values of α1, for each sequence such that x <
−α1/2 the following statements were verified by S-plus: vx < v−α1/2, −(x +
α1)vx < (−α1/2)v−α1/2 and (x + α1)2vx < (α2

1/4)v−α1/2. Assuming these
inequalities hold and keeping four significant digits, we rearrange terms to obtain

DM̃D
= 3.0240(x + α1)2vx − 2.0919(x + α1)vx + 4.7327vx

+(3.0240x2wx + 2.0919xwx + 4.7327wx)
< 3.0240(α2

1/4)v−α1/2 + 2.0919(−α1/2)v−α1/2 + 4.7327v−α1/2

+(3.0240x2vG(x) + 2.0919xvG(x) + 4.7327vG(x))
≤ 3.0240(α2

1/4)v−α1/2 + 2.0919(−α1/2)v−α1/2 + 4.7327v−α1/2

+max(3.0240x2vG(x) + 2.0919xvG(x) + 4.7327vG(x))
= 3.0240(α2

1/4)v−α1/2 + 2.0919(−α1/2)v−α1/2

+4.7327v−α1/2 + 3.

2. Case 2: x ≥ (−α1/2).
For each sequence of x values such that x > −α1/2 with different series of
large negative values of α1 the following statements hold. They were veri-
fied by S-plus: vG(x) < vG(−α1/2), xvG(x) < (−α1/2)vG(−α1/2) and
x2vG(x) < (α2

1/4)vG(−α1/2). Assuming these inequalities hold and keeping
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four significant digits, we rearrange DM̃D
as

DM̃D
= 3.0240(x + α1)2vx − 2.0919(x + α1)vx + 4.7327vx

+(3.0240x2wx + 2.0919xwx + 4.7327wx)
≤ (3.0240(x + α1)2vx − 2.0919(x + α1)vx + 4.7327vx)

+(3.0240x2vG(x) + 2.0919xvG(x) + 4.7327vG(x))
< (3.0240(x + α1)2vx − 2.0919(x + α1)vx + 4.7327vx)

+3.0240(α2
1/4)vG(−α1/2) + 2.0919(−α1/2)vG(−α1/2)

+4.7327vG(−α1/2)
≤ max(3.0240(x + α1)2vx − 2.0919(x + α1)vx

+4.7327vx) + 3.0240(α2
1/4)vG(x)|(−α1/2)

+2.0919(−α1/2)vG(−α1/2) + 4.7327vG(−α1/2)
< 3 + 3.0240(α2

1/4)vG(−α1/2) + 2.0919(−α1/2)vG(−α1/2)
+4.7327vG(−α1/2.)

Note that v(−α1/2) = vG(−α1/2) =
exp(u) exp(− exp(α1/2))/(1− exp(− exp(α1/2))) → 0 as α1 → −∞, which
implies that DM̃D

→ 3.

Therefore, the directional derivative DM̃D
is non-positive and the maximum is zero as

α1 → −∞ and the proof of Theorem 5.2 is complete. ¤

Appendix 3

PROOF OF THEOREM 5.3
The proof for the positive-negative extreme model with Θ ={α1, β, α2} involves
showing that the limiting directional derivative is non-positive and has a maximum
of zero at ξE∗ . Denote this model by 3PNEM. The limiting directional derivative is
given by

lim
α1→−∞

FD = lim
α1→−∞

ν̇T M−1
E∗ I(x) M−1

E∗ ν̇ − ν̇T M−1
E∗ ν̇, (14)

where I(x) is given in Lemma 3.1; ME∗ is Fisher’s information given design ξE∗ ; the
optimal dose is ν = arg maxx H(x) = −(α1 + α2)/2β for the PNEM with gradient
ν̇= ∂ν/∂(α1, β, α2) =

( −1/2β (α1 + α2)/2β2 −1/2β
)T

, which reduces to ν̇

= 1/2
( −1 α1 −1

)T
for the canonical 3PNEM.

Using Maple software, we establish (with details below) that (14) simplifies to

lim
α1→−∞

FD = vG(x)v−2
F1 − vF1

−1. (15)

Evaluated at z∗2 = arg maxx[vG(x)], the limit (15) attains its maximum of zero; this
can be seen by noting that z∗1 = arg maxx[vF (x)] = −z∗2 −α1 and vG2 = vF1, where
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vG2 is vG(x) evaluated at z∗2 . Thus the directional derivative (15) is non-positive. We
then show that vG(x) has a unique maximum at z∗2 = −0.466 We conclude that z∗2 and
z∗1 are the optimal design points and the proof of Theorem 5.3 is complete. ¤

Appendix 4

Preliminary Results for the canonical 3PNEM

To simplify notation, let F̄i = F̄ (zi) and wi = F̄ivGi, i = 1, 2. Note

F̄1 = G2 = exp
(−e−z2

)
;

vF1 = vG2 =
exp (−e−z2) e−2z2

1− exp (−e−z2)
;

The following limits, taken as α1 → −∞, can be easily verified:

G1 = F̄2 = exp
(−eα1+z2

) → 1;

vG1 = vF2 =
exp (−eα1+z2) e−2(α1+z2)

1− exp (−eα1+z2)
→ 0;

w1 = F̄1vF2 → 0;
w2 = F̄2vG2 → vF1.

Consider F̄ and νF as an exponential functions of α1, then F̄ goes to 1 and by Propo-
sition 3.1 νF goes to zero. Hence the information matrix

I(x) =




νF xνF 0
xνF x2(νF + F̄ νG) xF̄νG

0 xF̄νG F̄ νG




goes to I(x) = vG




0 0 0
0 x2 x
0 x 1


 .

Using Lemma (3.1), the information in the two equally weighted points {z1, z2 under
the canonical 3PNEM can be written as

ME =
1
2




vF1 + vF2 −vF1(z2 + α1) + vF2z2 0
−vF1(z2 + α1)

+vF2z2

(vF1 + w1)(z2 + α1)2

+(w2 + vF2)z2
2

w2z2

−w1(z2 + α1)
0 w2z2 − w1(z2 + α1) w1 + w2


 .

Maple software establishes the following propositions.
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1. Proposition. M−1
E = 1

det(ME)

(
mij

)
, i, j = 1, 2, 3, where det denotes the

determinant and

4 det(ME) = (vF1vF2 (w1 + w2) + (vF2 + vF1)w1w2) (z2 − z1)2;

2m11 = (vF2 (w1 + w2) + w2w1) z2
2

+ (vF1 (w1 + w2) + w1w2) (z2 + α1)2 + 2w1w2z2(z2 + α1);

2m12 = 2m21 = −vF2 (w1 + w2) z2 + vF1 (w1 + w2) (z2 + α1);

2m13 = 2m31 = vF2w2z
2
2 + vF1w2(z2 + α1)2

− (vF1w2 + vF2w1)z2(z2 + α1);

2m22 = vF2 (w1 + w2) + vF1 (w1 + w2) ;

2m23 = 2m32 = −(vF1 + vF2)w2z2 + (vF1 + vF2)w1(z2 + α1);

2m33 = (vF1w2 + vF1vF2 + vF2w2)z2
2

+ (vF1vF2 + vF2w1 + vF1w1)(z2 + α1)2 + 2vF1vF2z2(z2 + α1).

2. Proposition. The row vector Y = ν̇T M−1
E has elements {y1, y2, y3} determined

by

−4 det(ME)y1 = 2 (vF1w1 + vF2w2 + 2w2w1) z2
2

+ (vF2w2 + 3vF1w1 + 4w1w2) α1z2

+ (w1w2 + vF1w1) α2
1;

4 det(ME)y2 = 2(vF2w2 − vF1w1)z2 + (vF2w2 − vF1w1)α1;

−4 det(ME)y3 = 2 (2vF1vF2 + vF1w1 + vF2w2) z2
2

+ (4vF1vF2 + 3vF1w1 + vF2w2)α1z2

+ (vF1vF2 + vF1w1) α2
1.

3. Combining results from Proposition 1 and 2 we have

8 ν̇T ME
−1 ν̇ =

(vF1vF2 + vF1w2 + vF2w1 + w2w1)(z2 − z1)2

det(ME)
;

lim
α1→−∞

Y =
(
− 2

vF1(1 + exp(exp(−z2))
0 − 1

vF1.

)
,

and finally (15) follows from

lim
α1→−∞

ν̇T ME
−1 ν̇ = v−1

F1 ;

lim
α1→−∞

ν̇T ME
−1I(x)ME

−1 ν̇ = lim
α1→−∞

Y T I(x)Y = vG(x)v−2
F1 .

Proof of arg maxx vG(x) = −0.466
arg maxx vG(x) = −0.466 We show that the maximum of vG(x) is unique and equals
to −0.466. Define u(x) = 1/vG(x) which equals e2x+e−x − e2x for the positive-
negative extreme value model. Now u̇(x) = e2xh(x), where h(x) = (2 − e−x)e−2x
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−2. Note that h(x) and u̇(x) have the same sign and vG(x) and u̇(x) have opposite
sign. There is only one solution to h(x) = 0; it is between x = −0.46601083 and
x = −0.46601084. We show that u̇(x) has a minimum at x = 0.466, that is, we need
only to show that

u̇(x) ≤ 0 when x ≤ −0.466
u̇(x) ≥ 0 when x ≥ −0.466.

which means vG(x) has a maximum at x = 0.466. Because

ḣ(x) = e−x+e−x (
e−x − 1

)
{
≥ 0 when x < 0
≤ 0 when x > 0,

h(x) is increasing when x < 0 and decreasing when x > 0. Because h(−0.466) = 0,
h(0) > 0, limx→∞ h(x) = 0 and h(x) is a decreasing function when x ≥ 0, implies
that h(x) > 0 when x > 0. Also, because h(0) > 0, limx→−∞ h(x) = −∞ and h(x)
is a increasing function when x ≤ 0, it follows that h(x) < 0 when x ≤ −.466 and
h(x) > 0 when x ≥ −.466. Because h(x) and u̇(x) have the same sign, it follows that
u̇(x) ≤ 0 when x < −.466 and u̇(x) ≥ 0 when x > −.466. ¤
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Appendix 5

TABLES

Table 3: Table D-optimal design points for the canonical positive–negative extreme
value models with unequal slopes at selected values of α1, and β1 = 3 and 4.
α1 β1 = 3 β1 = 4

Design Points Weight Design Points Weight
3 -1.5878 0.5000 -1.3721 0.5000

-0.8112 0.5000 -0.6477 0.5000
1 -1.2783 0.4145 -1.2976 0.308

-0.5062 0.26675 -0.4986 0.3971
-0.1083 0.3188 -0.0501 0.2949

0 -1.2187 0.3374 -1.2558 0.2796
-0.2938 0.3749 -0.2914 0.4365
0.2638 0.2878 0.2099 0.2839

-1 -1.1701 0.2956 -1.2133 0.2649
-0.0434 0.4275 -0.07508 0.4578
0.6136 0.2769 0.4649 0.2773

-3 -1.081 0.2621 -1.1278 0.2534
0.5085 0.4702 0.3732 0.4768
1.2903 0.2676 0.9683 0.2698

-5 -1.0481 0.2505 -0.9980 0.2530
0.8347 0.4838 1.0965 0.4838
1.4682 0.2657 1.9570 0.2632

-10 -0.8393 0.25 -0.8149 0.2499
2.6464 0.4912 2.02326 0.489
3.618 0.2588 2.7155 0.2611

-20 -0.9663 0.2464 -0.9337 0.2413
1.3088 0.231 1.2397 0.1814
6.1891 0.2716 4.6004 0.3235
6.9873 0.251 5.2322 0.2538
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Table 4: D-optimal design points for canonical positive–negative extreme value models
with equal slopes at selected values of α1; θ = (0, 1, α1).
α1 Design Points Weight α1 Design Points Weight
5 -6.3369 0.3316 3 -4.1760 0.3333

-4.0204 0.3305 -1.7889 0.6667
-2.5862 0.3379

2 -3.5131 0.3334 1 -1.3120 0.6164
-1.2554 0.6667 0.0031 0.3836

-1 -0.5911 0.6496
1.8519 0.3504

-2 -0.6450 0.4091 -5 -0.6986 0.3367
0.5111 0.2675 2.101 0.3407
2.7947 0.3233 5.6449 0.3226

-8 -0.8299 0.2949 -10 -0.8462 0.2897
1.1613 0.2140 1.0914 0.2084
6.8574 0.2001 8.9041 0.2113
8.8203 0.2910 10.8483 0.2906

-12 -0.8522 0.2595 -20 -0.8537 0.2895
1.080 0.2101 1.0773 0.2105

10.9189 0.2107 18.9227 0.2105
12.8526 0.2897 20.8537 0.2895

-25 -0.8537 0.2895 -30 -0.8537 0.2895
1.0773 0.2105 1.0773 0.2105
23.9227 0.2105 28.9223 0.2105
25.8537 0.2895 30.8537 0.2895

Table 5: c-optimal design points for canonical positive–negative extreme value models
with different slopes at selected values of α1 and β1 = 0.5, 1, 4.
α1 β1 = 0.5 β1 = 1 β1 = 4

Design Points Weight Design Points Weight Design Points Weight
1 -1.4536 0.6030 -1.3700 0.6223

0.1765 0.3970 -0.1773 0.3777
0 -0.5830 0.5265 -1.0323 0.5435 -1.2425 0.5736

2.3137 0.4735 1.0106 0.4565 0.0110 0.4264
-1 0.1037 0.6005 -0.5643 0.5437 -1.1319 0.5185

3.8163 0.3995 1.7731 0.4563 0.1980 0.4815
-3 1.4519 0.7756 0.3817 0.5890 -0.9528 0.4088

6.4685 0.2244 2.9918 0.4110 0.5817 0.5912
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Table 6: Continued c-optimal design points for canonical positive–negative extreme
value models with different slopes at values of α1 when β1 = 2 and 3.
α1 β1 = 2 β1 = 3

Design Points Weight Design Points Weight
1 -1.4635 0.6294 -1.4163 0.6336

-0.05416 0.3706 -0.1217 0.3664
0 -1.2133 0.5842 -1.2376 0.5923

0.3745 0.4158 0.1390 0.4077
-1 -0.9531 0.5489 -1.0712 0.5415

0.7419 0.4512 0.3743 0.4585
-3 -0.5054 0.4444 -0.8121 0.4184

1.3595 0.5556 0.8361 0.5816
-5 -0.1536 0.3206 -0.6112 0.3081

1.9746 0.6794 1.3181 0.6919
-7 0.2305 0.2370 -0.4127 0.2265

2.6208 0.7631 1.8120 0.7735
-9 0.7077 0.1910 -0.1820 0.1704

3.2801 0.8090 2.3099 0.8296

Table 7: c-optimal design points for positive–negative extreme value models with equal
slopes at selected values of α1

α1 Design Points Weight α1 Design Points Weight
3 -4.2617 0.1729 -1 -0.1399 0.6299

-1.6981 0.9827 1.5914 0.3702
-3 -0.3822 0.5162 -5 -0.4489 0.5024

3.514 0.4838 5.4782 0.4977
-8 -0.4647 0.5001 -10 -0.4659 0.5001

8.4670 0.4999 10.4663 0.5000
-12 -0.4600 0.5000 -15 -0.4600 0.50000

12.4600 0.5000 15.46 0.5000
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Appendix 6

FIGURES
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Figure 4: Efficiency plot for limiting D optimal designs for the canonical extreme value
model when β1 = β2 = 1.
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