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Abstract

Sophisticated computer codes that implement mathematical models of physical pro-

cesses can take hours to produce a single response. Screening to determine the most

active inputs is critical for understanding the input-output relationship. This paper

presents new methodology based on two-stage group screening. In stage 1, groups of

inputs are screened out and, at stage 2, individual active inputs are sought. Inputs

are evaluated through their total effect sensitivity indices (TSIs) which are compared

with a benchmark null TSI distribution. Examples show that, in comparison with with

one-stage procedures, the proposed method provides accurate screening while reducing

computational effort.

KEY WORDS: Active factor; Experimental design; Gaussian process; Latin hyper-

cube design; Low-impact input; Total sensitivity index

1 INTRODUCTION

1.1 Background

A computer model is a numerical implementation of a mathematical description of an input-

output relationship. Such models are prevalent, in a wide range of applications; for example,

in engineering (Fang, Li, and Sudjianto (2005)), biomechanics (Ong, Lehman, Notz, Santner,
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and Bartel (2006)), physical sciences (Higdon, Kennedy, Cavendish, Cafeo, and Ryne (2004)),

and life sciences (Fogelson, Kuharsky, and Yu (2003)).

Over the past 20 years, the use of computer codes as experimental tools has become in-

creasingly sophisticated, and can allow the user to vary environmental and calibration inputs

in addition to inputs that describe different “treatments” (see, for example, Ong, Santner,

and Bartel (2008)). Thus, computer simulators based on sophisticated finite-element or com-

putational fluid dynamic numerical methods can require hours or even days for a single run.

There is a need, therefore, for efficient methods to detect active or influential inputs that

have major impacts on an input-output system. Once identified, researchers can restrict at-

tention to varying these inputs, while setting other inputs to nominal values, thus reducing

the complexity of the emulator to the maximum extent.

The literature contains several proposals for screening inputs in computer experiments

based on the assumption that the deterministic output is modeled as a realization of a random

function. An approach that decomposes the output from the computer simulator into main

effects and interaction effects, has been applied by many authors. For example, Sacks, Welch,

Mitchell, and Wynn (1989), Welch et al. (1992), Oakley and O’Hagan (2004), Schonlau and

Welch (2006), and Morris, Moore, and McKay (2008) use the random function model in

various ways to estimate these effects. An alternative approach by Linkletter, Bingham,

Hengartner, Higdon, and Ye (2006) (hereafter called LBHHY) selects active inputs based on

draws from the posterior distribution of the correlation parameters of a stationary Gaussian

process model with Gaussian correlation function.

This paper extends the use of the group screening methodology from the physical ex-

periments setting to that of computer simulators, and proposes a computationally efficient

method of identifying active inputs. Group screening methodology was first described by

Dorfman (1943) for blood screening and later adapted to physical experiments by Watson

(1961) for identifying active factors (variables) in the presence of many potentially influential
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factors. For more recent work in this area, see Morris and Mitchell (1983), Lewis and Dean

(2001), Vine, Lewis, and Dean (2005), and reviews by Kleijnen (1987) and Morris (2006)).

In two-stage group screening in physical experiments, factors are commonly investigated

at only two settings, where the “high” (“low”) level corresponds to the setting expected to

result in the higher (lower) response. Factors are placed into groups and the high (low) level

of the “grouped factor” occurs when all individual factors within that group are at their high

(low) levels. A first stage experiment is run on the small number of grouped factors and the

analysis screens out groups of factors that have little effect on the response; all factors within

such a group are declared inactive. A second-stage experiment is run on the individual factors

within the active groups, while the inactive factors are held at nominal levels. The analysis

makes a final selection of active individual factors from the set of potentially active factors.

An example of such a screening experiment run in the automobile industry is described in

detail by Vine, Lewis, Dean, and Brunson (2008).

In the computer experiment setting, the response surface is often highly complex and, for a

Gaussian random function predictor to be a well-fitting emulator for the computer simulator,

design points are required to be well-spaced across the experimental region, thus utilizing a

large number of levels for each input variable. Due to the added complexity, it is not obvious

how to group the variables in such a way as to achieve an efficient screening procedure. Thus,

in our proposed screening procedure, GSinCE (Group Screening in Computer Experiments),

described in Section 1.2, we incorporate a grouping phase in which we use data from the

computer simulator to suggest a good grouping of input variables and also to fit a Bayesian

Gaussian Process model for generating data for screening. For clarity of exposition, we

divide the description of each stage of GSinCE into sampling, grouping (for Stage 1 only),

and analysis phases. Sensitivity analyses are performed to select the active inputs. Due to

the deterministic nature of the response, the second-stage analysis is able to use the initial

set of data (taken prior to grouping) from the simulator as well as the second stage data.
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GSinCE enables inputs having small effects (not solely zero effects) to be eliminated.

All of our codes for the screening procedures were written specifically for this paper in the

programming language MATLAB; they call the GPM/SA code (Gaussian Process Models

for Simulation Analysis) of Gattiker (2005) for estimation of parameters in the Gaussian

Process model and to compute sensitivity indices.

1.2 Overview of the Proposed Procedure

Initialization Given that n runs of the computer code are to be made in Stage 1, we

first generate a matrix X∗ with n rows and (n − 1) columns satisfying certain desirable

properties, described in Section 2. The choice of n is based on the anticipated maximum

number of active inputs (see Section 3.1). The columns of X∗ are generated to be centered

and orthogonal and, consequently, X∗ cannot have more than (n−1) columns. The columns

of X∗ are used for two purposes at stage 1; first to provide a design for the f < n− 1 input

variables of interest and, second, to provide a design for the m grouped input variables and

up to n − m − 1 benchmark inputs against which the activity of the group input variables

will be measured. If n is very large, there may be more benchmark columns available

than are needed by our procedure; in this case, we recommend that X∗ be generated with

min(n − 1, f + 50) columns instead of the (n − 1) columns assumed throughout the paper.

Stage 1 In the sampling phase, a set of columns from X∗ is selected to produce a design

matrix X(1). The computer simulator is run at the design points (rows) in X(1) and a

Gaussian process (GP) model is fitted to the output as an emulator for the code. In the

grouping phase, the output is used to place the inputs into disjoint groups. All inputs in the

same group are set equal to the same level, defined by a design matrix G (Section 3.2) and

the fitted GP model is used to predict the output at the design points in G. The analysis

phase (Section 3.3) uses total effect sensitivity indices to determine which groups of inputs

are inactive and which potentially contain active inputs. To judge whether a group is active
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or non-active, an additional “low-impact” input is created to use as a “benchmark” (c.f.

LBHHY and Wu, Boos, and Stefanski (2007)).

Stage 2 The inputs in the groups selected as active in Stage 1 are investigated individually

in Stage 2. In the Stage 2 sampling phase (Section 4.1), a new design matrix X(2) is selected

in such a way that the design points in the combined X(1), X(2) retain, as closely as possible,

the desirable properties identified in Section 2. The computer simulator is run at the design

points in X(2). The Stage 2 analysis phase uses the outputs from both stages in a second

sensitivity analysis to make the final selection of active inputs (Section 4.2).

Detailed descriptions of the Initialization, Stage 1, and Stage 2 are given in Sections 2,

3 and 4, respectively. Among the issues addressed by these sections are: (i) the desir-

able properties for design matrices, (ii) grouping strategies, (iii) the creation of low-impact

inputs, and (iv) the determination of active inputs via sensitivity analysis. Section 5 demon-

strates the methodology via simulated examples and proposes the optimal magnitude of the

low-impact input by studying certain operating characteristics of the procedure. Section 6

presents two examples that demonstrate the performance of GSinCE and compare it with a

one-stage sensitivity analysis and the one-stage screening procedure of LBHHY. It is shown

that the GSinCE procedure is computationally efficient and remarkably stable in its selection

of active inputs. Lastly, Section 7 states our conclusions, including circumstances in which

screening can be problematic for any procedure, as well as possible extensions of the GSinCE

procedure. We note that LBHHY, GSinCE and the one-stage procdure are all based on a

reasonable fit of a Gaussian Process model and estimates of sensitivity indices which assume

that the likelihood is Gaussian. If it were not possible to fit such a model, then one possible

approach to estimating sensitivity indices would be a sampling based method such as those

described by Morris, Moore, and McKay (2006).
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2 GSinCE INITIALIZATION STAGE

Suppose that the range of the jth input is [aj , bj], with aj and bj known constants,

j = 1, . . . , f , and that the domain for the vector of the f inputs is the entire hyper-rectangle
∏f

j=1[aj , bj]. We obtain the design from the scaled input space [0, 1]f and let xij ∈ [0, 1] be

the value of the jth scaled input in the ith run of the design, for i = 1, . . . , n and j = 1, . . . , f .

The computer simulator is run to obtain the output using the unscaled input.

In the Initialization Stage, we construct a preliminary design matrix X∗; we denote the

jth column of X∗ by ξj = (ξ1j , . . . , ξnj)
⊤, j = 1, . . . , n − 1, where ⊤ denotes transpose,

and the ith row of X∗ as x⊤
i = (xi1, . . . , xi(n−1)), i = 1, . . . , n. The design matrices for the

Stage 1 sampling and grouping phases will be drawn from this matrix, as will those for the

low-impact inputs.

We make three requirements for X∗, as follows: (P.1) the columns of X∗ must be un-

correlated to allow independent assessment of the effects of the different inputs; (P.2) the

minimum and maximum values in each column must be 0 and 1, respectively, to prevent

input values with larger ranges from having larger impacts on the response, artificially in-

duced by the design; (P.3) the design X∗ should be “space-filling” whose purpose is to insure

that all regions of the input space are explored (c.f. Sacks et al. (1989), Santner, Williams,

and Notz (2003), ch. 5). There are several ways to define “space-filling” designs; for exam-

ple, maximize the minimum Euclidean interpoint distance measured in (n − 1)-dimensional

space, or minimize the average reciprocal distance between design points in any user-selected

collection of subspaces of the (n − 1)-dimensional space (see Welch (1985)). Here, we select

a criterion that maximizes the minimum interpoint distance within all 2-dimensional sub-

spaces of the input space. Moon, Dean, and Santner (2011) show that not only does the

the construction of such designs save considerable computing time, but the designs tend to

perform well also under a maximin criterion in the (n− 1)-dimensional space. The following

algorithm generates an X∗ that satisfies (P.1), (P.2), and approximately satisfies (P.3).

6



Step 1 Generate an n×(n−1) Latin hypercube design matrix Λ = (λ1, . . . , λn−1), where λi

is a random permutation of {1, 2, . . . , n}, (see McKay, Beckman, and Conover (1979)).

Step 2 Center each column of Λ : vh = λh − (λ⊤
h 1/n)1 for h = 1, . . . , n − 1, where 1 is a

vector of n unit elements.

Step 3 Apply the Gram-Schmidt algorithm to form orthogonal columns uh = (u1h, . . . , unh)
⊤,

uh =






v1, h = 1;

vh −
∑h−1

i=1
u⊤

i vh

||ui||2
ui, h = 2, . . . , n − 1.

If any uh is zero, the original Λ is not full-rank and is re-generated.

Step 4 Scale the values of uh to [0,1] to give ξh (h = 1, . . . , n− 1). Set X = (ξ1, . . . , ξn−1).

Selection of the design X∗ = (ξ1, . . . , ξn−1) which maximizes the minimum inter-point dis-

tance over all projections into 2-dimensional space can be achieved (approximately) by re-

peating Steps 1–4 many times and finding the best among the candidate designs generated.

Alternatively, a genetic exchange algorithm could be used, as discussed by Moon et al. (2011).

3 GSinCE PROCEDURE STAGE 1

3.1 Stage 1 Sampling Phase

The GSinCE procedure is to be used in a screening situation where it is reasonable to assume

that only a small fraction (say 25% or less) of the inputs are active. Loeppky, Sacks, and

Welch (2009) justified “10 × number of inputs” as a rule of thumb for the number of runs in

an effective initial computer experiment. Using this base value, we suggest 5 runs for each

active input in each stage, so with a conservative assumption of a maximum of 40% active

inputs, we take n = 5 × (f × 0.4) = 2f runs in Stage 1. To simplify notation, we write

the Stage 1 design matrix, X(1), as the first f columns of X∗; thus X(1) = (ξ1, . . . , ξf ). A

Bayesian GP model (see Higdon et al. (2004))
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Y (x) = Z(x) + ǫ(x) (1)

is used to fit the computer simulator data y(X(1)). Here Z(·) is taken to be a stationary

Gaussian process with zero mean, and covariance function

Cov(Z(x), Z(x̃)) =
1

λZ
R(x, x̃) =

1

λZ

f∏

j=1

ρ
4(xj−x̃j)2

j , (2)

where x = (x1, . . . , xf ) and x̃ = (x̃1, . . . , x̃f) are two design points. The term ǫ(x) in (1)

represents numerical or other small scale noise and is modeled by a white noise process that

is independent of Z(·) and has mean 0 and (small) prior variance 1/λǫ. The output y(X(1))

is centered to have sample mean 0 and unit variance to conform to the prior specification

when fitting this Bayesian model. The model can be fitted using the GPM/SA software.

The posterior distributions of the model parameters will be used to predict output for the

group variables in the grouping phase in Section 3.2.

3.2 Stage 1 Grouping Phase

Since the objective of the screening procedure is to screen out those inputs that have little

effect on the outputs, an optimal grouping scheme would place these inputs into the same

group. Similarly, grouping of inputs that have similar effects (e.g. linear or quadratic,

increasing or decreasing) on the response is helpful to avoid masking the effects of some

inputs by other inputs. Information from subject experts is extremely valuable in grouping

together the inputs that have similar behavior. Additionally, exploratory data analysis of

the Stage 1 inputs and outputs can be used to suggest groupings.

In the context of our simulation study in Section 5, it was not possible to use expert

opinion for the grouping. Consequently, we developed an automated grouping procedure

based on the Pearson correlation coefficients r(ξj, y(X(1))), (j = 1, . . . , n) which measure

the strength of the linear relationship between the inputs and the output (see the on-line

supplement for details). We used the automated procedure also in our example in Section 6.1
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and found that it works well even though the responses are non-linear in the inputs. Through

a 60-input example in Section 6.2, we discuss a few differences obtained with user-determined

groups and the automated procedure. A further comparison of expert and automatic group-

ings in an experiment run at Los Alamos National Laboratory and involving 61 inputs and

500 runs is described in Section 4.2 of Moon (2010).

After the f individual inputs have been divided into m, say, groups, a design matrix G =

(g1, . . . , gm) is formed from m randomly selected columns from X∗ for the group variables.

From G, design matrix XP = (ξP
1 , . . . , ξP

f ) is constructed in terms of the f individual inputs,

where all the inputs in group k are set to the levels defined by gk, k = 1, . . . , m. For example,

if inputs 1, 5, 6 are assigned to group 1, then ξP
1 = ξP

5 = ξP
6 = g1. The design matrix XP is

used to predict the output based on the fitted GP model (Section 3.1). The resulting values,

ŷ(G), are used in Section 3.3.2 to select the active groups. The training data, y(X(1)), will

be used again in Section 4.2 to help select active individual inputs within the active groups.

3.3 Stage 1 Analysis Phase

3.3.1 Sensitivity Indices

In Sections 3.3.2 and 4.2, total sensitivity indices (TSIs) are used to detect active effects.

This subsection reviews the definition of sensitivity indices when the input region is [0, 1]f .

Sobol´ (1993) showed that the function y(x) can be decomposed as

y(x) = y0 +

f∑

j=1

yj(xj) +
∑

1≤j<h≤f

yjh(xj , xh) + . . . + y1,2,...,f(x1, . . . , xf ) (3)

where the terms are recursively defined by

y0 =

∫

[0,1]f
y(x1, . . . , xf)dx1 . . . dxf

yj(xj) =

[∫

[0,1]f−1

y(x1, . . . , xf )dx−j

]
− y0

yjh(xj , xh) =

[∫

[0,1]f−2

y(x1, . . . , xf )dx−jh

]
− yj(xj) − yh(xh) − y0
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and so on. Here dx−j denotes integration over all inputs except xj , and dx−jh denotes

integration over all inputs except xj and xh. The individual components of the decom-

position are centered and orthogonal; that is, they satisfy
∫ 1

0
yj1,...,js

(xj1, . . . , xjs
)dxjk

=

0, for any 1 ≤ k ≤ s, and
∫
[0,1]f

yj1,...,js
(xj1, . . . , xjs

)yh1,...,ht
(xh1

, . . . , xht
)dx1 . . . dxf = 0,

for any (j1, . . . , js) 6= (h1, . . . , ht). Variance-based indices with respect to the uniform distri-

bution over [0, 1]f for X are obtained by squaring both sides of (3) and integrating (Sobol´

(1993)). This leads to the variance decomposition:

V =

f∑

j=1

Vj +
∑

1≤j<h≤f

Vjh + · · ·+ V1,2,...,f (4)

where V =

[∫

[0,1]f
y2(x1, . . . , xf)dx1 . . . dxf

]
− y2

0,

Vj =

∫ 1

0

y2
j (xj)dxj, and Vjh =

∫ 1

0

∫ 1

0

y2
jh(xj , xh)dxjdxh,

and additional terms are defined similarly. Sensitivity indices are obtained by dividing each

component in (4) by the total variance V . The main effect sensitivity index of the jth input,

is defined to be Sj = Vj/V , and the two-factor sensitivity index of the jth and hth inputs is

defined to be Sjh = Vjh/V . Higher-order sensitivity indices are defined similarly. The TSI

of the jth input (Homma and Saltelli (1996)) is the sum of all sensitivity indices involving

the jth input; that is,

Tj = Sj +
∑

h 6=j

Sjh + . . . + S1,2,...,f . (5)

In this paper, sensitivity indices are computed using the Bayesian method of Oakley and

O’Hagan (2004) as implemented in GPM/SA; the sensitivity index is estimated by the mean

of the posterior distribution which is obtained from the posterior draws of the GP model

parameters via Markov chain Monte Carlo (MCMC).
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3.3.2 A Benchmark Null Distribution for Sensitivity Indices

LBHHY used a reference distribution for variable selection obtained by augmenting the

experimental inputs with an input known to be inert. This approach is attractive since

it removes the need for subjective assessment about which inputs have “large” indicators

of activity. Augmentation with an input which has zero effect on the output can lead to

the selection of inputs with very small effects as being active. In practice, we wish to

eliminate low-impact inputs as well as totally inert ones. LBHHY addressed this issue in

their discussion and suggested that the response could be spiked with some very small effect

(see also, Wu et al. (2007)). We use the latter approach in this paper and modify the output

by adding an input having a small, user-determined, effect. Any group of inputs whose TSI

is smaller than that of the added low-impact input is treated as non-active.

LBHHY selected random columns from the input space for the inert input. However,

since randomly generated columns can be correlated with the columns of the design matrix

for the inputs of interest, this paper instead draws multiple, uncorrelated columns from the

preliminary design matrix X∗ for the low-impact inputs. There are (n − 1) − m columns

of X∗ that are both uncorrelated with the m columns of G and with each other. Thus, by

augmenting G with these n − m − 1 columns in turn, we construct n − m − 1 augmented

group design matrices. Denote the wth such design matrix by

G(w) = (g1, . . . , gm, g
(w)
m+1)

where gi is the column of G for the ith group variable, 1 ≤ i ≤ m, and g
(w)
m+1 is the column

selected from X∗ for the wth low-impact input, 1 ≤ w ≤ n−m− 1. Each G(w) satisfies the

properties (P.1) and (P.2) and approximately (P.3) of Section 2.

We set the magnitude of the low-impact input to be a fraction τ , 0 < τ < 1, of the range

of the output; choices for τ that optimize the performance of the GSinCE procedure are

discussed in Section 5. Let
β =

(
max
1≤t≤n

ŷt − min
1≤t≤n

ŷt

)
τ (6)
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define the magnitude of the effect of the low-impact input, where ŷt is the tth value in the

predicted output ŷ(G) defined in Section 3.2. For the design G(w), a perturbation of the

predicted data ŷ(G) is computed using g
(w)
m+1, to give

ŷ(w) = ŷ(G) + β g
(w)
m+1. (7)

The perturbed output ŷ(w) is used to compute the TSIs in (5) corresponding to the m group

inputs and the wth low-impact input; these quantities are denoted by T
(w)
1 , . . . , T

(w)
m , T

(w)
m+1,

for 1 ≤ w ≤ n − m − 1.

The GSinCE procedure selects the ith group variable as being active if its TSI is larger

than that of the low-impact input. This decision is made based on the pairs of TSIs

(T
(w)
m+1, T

(w)
i ), 1 ≤ w ≤ n − m − 1, using the sign test (see Conover (1999)). The n − m − 1

pairs (T
(w)
m+1, T

(w)
i ) are mutually independent because each pair of TSIs is estimated by the

posterior mean of independent MCMC draws given ŷ(w). We assume the pairs are internally

consistent, in that if P [T
(w)
m+1 < T

(w)
i ] ≤ P [T

(w)
m+1 > T

(w)
i ] for one w then it is true for all w.

Then the hypotheses for the ith TSI, 1 ≤ i ≤ m, are formulated as

H0i : P [T
(w)
m+1 < T

(w)
i ] ≤ P [T

(w)
m+1 > T

(w)
i ], for all w

H1i : P [T
(w)
m+1 < T

(w)
i ] > P [T

(w)
m+1 > T

(w)
i ], for all w

(8)

and tested at significance level α/m to account for the multiple groups, yielding a “family-

wise” significance level α.

4 GSinCE PROCEDURE STAGE 2

4.1 Stage 2 Sampling Phase

Suppose that there are p inputs in total in the groups identified as active at Stage 1; each

of these p inputs is potentially active. Using a sample size justification similar to that

in Section 3.1, we take n1 = 5(f × 0.4) = 2f runs for Stage 1 and n2 = 5p runs for

Stage 2, using conservative assumptions of the proportion of active inputs. Rearrange the
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columns of X∗ to firstly list the p columns associated with potentially active inputs (A),

then those for the (f −p) non-active inputs (N), followed by the low-impact benchmark (B)

columns, to obtain the matrix (X
(1)
A , X

(1)
N , X

(1)
B ). The maximum number of uncorrelated

low-impact benchmark columns that can be included in the design matrix Xc defined below

is δB = min(n1 − f − 1, n2 − p − 1).

Next, we construct an n2 × p stage 2 design matrix X
(2)
A for the inputs from the active

groups, an n2×(f −p) matrix X
(2)
N for the inputs from the non-active groups, and an n2×δB

matrix X
(2)
B for the low-impact inputs. The values in the jth column of X

(2)
N are all set equal

to the median value of the jth column of X
(1)
N . The n2 × (p + δB) matrix (X

(2)
A , X

(2)
B ) is

constructed using Steps 1–4 of the design algorithm in Section 2 so that its columns satisfy

(P.1) and (P.2); Step 5 is implemented so that the combined (n1 + n2) × (p + δB) matrix

Xc =




X

(1)
A X

(1)
B

X
(2)
A X

(2)
B



 = (Xc
A, Xc

B)

is (approximately) maximin. The columns of Xc will satisfy (P.2) but need not be uncorre-

lated (P.1). However, in the examples that we have investigated, their correlations are very

small. The computer code is now run at each set of input values defined by the rows of

X(2) = (X
(2)
A , X

(2)
N ) to obtain the output y(X(2)).

4.2 Stage 2 Analysis Phase

The n1 output values y(X (1)) from Stage 1 are used together with the n2 output values

y(X (2)) from Stage 2; let yc = (y(X(1))⊤, y(X(2))⊤)⊤ = (yc
1, . . . , y

c
n1+n2

)⊤ denote the com-

bined data. We construct δB augmented design matrices by appending, one-by-one, the

(low-impact) columns ξ
c(w)
p+1 (w = 1, . . . , δB) in Xc

B to the combined design matrix for the

potentially active factors, Xc
A. We represent the wth such design by

Xc(w) = (Xc
A, ξ

c(w)
p+1 )

for 1 ≤ w ≤ δB. The effect of the wth low-impact input ξ
c(w)
p+1 is based on the combined
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output,

βc =

(
max

1≤t≤(n1+n2)
yc

t − min
1≤t≤(n1+n2)

yc
t

)
τ (9)

using the same value of τ selected at Stage 1. The perturbed output for the Stage 2 analysis

using ξ
c(w)
p+1 is defined as

yc(w) = yc + βc ξ
c(w)
p+1 . (10)

The output yc(w) is used to compute the TSIs T
(w)
1 , . . . , T

(w)
p , T

(w)
p+1 corresponding to the p

individual inputs and the wth low-impact input. We obtain δB pairs of TSIs to test the

activity level for any given individual input among the p potentially active inputs. Following

the procedure used in Section 3.3, the hypotheses to test that the jth input is active are

formulated as H0j : P [T
(w)
p+1 < T

(w)
j ] ≤ P [T

(w)
p+1 > T

(w)
j ], for all w

H1j : P [T
(w)
p+1 < T

(w)
j ] > P [T

(w)
p+1 > T

(w)
j ], for all w

(11)

and tested at significance level α/p, for j = 1, . . . , p, for a selected familywise significance

level α.

5 SIMULATION STUDIES TO SET τ

We now determine a setting of τ in (6) and (9) to control the operating characteristics

of the GSinCE procedure, using a stochastic test bed of second-order polynomials:

y(z1, . . . , zf) =

f∑

j=1

γjzj +

f∑

j=1

f∑

h=j

γjhzjzh, (12)

where zj ∈ [0, 1], j = 1, . . . , f . The study reported here uses f = 20 factors, n1 = 2f

runs in stage 1, and approximately 25% active factors. Moon (2010) extends the study to

(f, n1) ∈ {(10, 20), (30, 60), (20, 80)} and 35%, 20% and fewer active factors. The hypothesis

tests (8) and (11) are performed with a familywise significance level α = 0.2 at each stage.

The large value α = 0.2 is selected since it is deemed less important to select inactive inputs

than to (incorrectly) screen out active ones.
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Let L, Q, and I denote the set of inputs involved in active linear, quadratic, and interac-

tion effects, respectively. The values of the regression coefficients γj, γjj, and γjh are assigned

under the principles of effect sparsity, hierarchy, and heredity, described in Chipman (2006).

For j = 1, . . . , f , the linear coefficient γj is drawn from the following distribution,

γj ∼






N(µA, σ2
A), with prob qL,

N(µN , σ2
N), with prob 1 − qL,

(13)

where qL = P [j ∈ L] is the probability that the linear effect of input j is active and

µA > 0, µA > µN , σA > σN . Let qQ|A and qQ|N be the conditional probabilities that the

quadratic effect of input j is active given that the linear effect is active or non-active, i.e.,

qQ|A = P [j ∈ Q|j ∈ L] and qQ|N = P [j ∈ Q|j 6∈ L]. We draw γjj from the distribution,

γjj ∼






N(µA, σ2
A) with prob

qQ

2
,

N(−µA, σ2
A) with prob

qQ

2
,

N(µN , σ2
N) with prob 1 − qQ.

where qQ =






qQ|A, if j ∈ L,

qQ|N , if j 6∈ L.

(14)

Similarly, we let q×|AA, q×|AN , q×|NA, q×|NN be the conditional probabilities that the inter-

action between inputs j and h is active given that the linear effects of each of these inputs

is active or non-active. Then γjh is drawn from the distribution,

γjh ∼






N(µA, σ2
A) with prob q×

2
,

N(−µA, σ2
A) with prob q×

2
,

N(µN , σ2
N) with prob 1 − q×.

where q× =






q×|AA, if j ∈ L, h ∈ L,

q×|AN , if j ∈ L, h 6∈ L,

q×|NA, if j 6∈ L, h ∈ L,

q×|NN , if j 6∈ L, h 6∈ L.

(15)

It is straightforward to show that the expected proportion of active inputs is

qL + qQ|N(1 − qL) + (f − 1)
(
q×|ANqL + q×|NN(1 − qL)

)
(1 − qQ|N)(1 − qL). (16)

Table 1 lists four sets of marginal probabilities, labelled P1 − P4, that were selected to

generate second-order polynomials with the expected proportion of active inputs (16) ap-

proximately equal to 0.25. P1 produces the largest number of active linear effects and the
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fewest active quadratic and interaction effects. P3 produces more active quadratic and inter-

action effects whose linear effects are also active. P2 and P4 produce more active quadratic

and interaction effects whose corresponding linear effect is not active, but fewer active linear

effects. P4 is more extreme in this regard. Thus, P2, P3 and P4 can create more complicated

test functions than P1, while having a similar expected proportion of active inputs. Table 1

also lists three sets of coefficient distributions labelled C1−C3. Normal distributions were se-

lected for the active effects and the distribution for the non-active effects is fixed as N(0, 22).

The coefficients drawn for the active effects under C1 are the easiest to differentiate from

those of the non-active effects, and those under C2 are the hardest.

Table 1: Marginal probabilities and coefficient distributions for the simulation study
Choice of Marginal Probabilities Choice of Coefficient Distributions

qL qQ|A qQ|N q×|AA q×|AN q×|NN µA σ2
A µN σ2

N

P1 0.15 0.10 0.005 0.10 0.010 0.005 C1 40 102 0 22

P2 0.10 0.10 0.010 0.10 0.014 0.008 C2 20 52 0 22

P3 0.15 0.90 0.005 0.90 0.010 0.005 C3 30 7.52 0 22

P4 0.05 0.10 0.050 0.10 0.010 0.009

Combinations of Pi and Cj were used to generate a wide variety of functions. Of the

twelve possible combinations, the six listed in Table 2 proved to be the most challenging for

screening.

Table 2: Six combinations used to recommend τ
Combination 1 2 3 4 5 6

Marginal Probabilities P2 P2 P3 P3 P4 P4

Coefficient Distributions C2 C3 C2 C3 C2 C3

In a screening problem, there are two kinds of errors; we can falsely select non-active

inputs, or falsely not select active inputs. The false discovery rate (FDR, see Benjamini and

Hochberg (1995)) and false non-discovery rate (FNDR) are defined as:

• FDR =
number of non-active inputs that are claimed to be active

number of inputs claimed to be active

• FNDR =
number of active inputs that are claimed to be non-active

number of inputs claimed to be non-active
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Two standard positive performance measures are specificity and sensitivity (see, for example,

Altman and Bland (1994)) which are defined to be:

• specificity =
number of true non-active inputs that are claimed to be non-active

number of true non-active inputs

• sensitivity =
number of true active inputs that are claimed to be active

number of true active inputs

When the denominator is 0, then FDR or FNDR is defined to be 0 and specificity or sensi-

tivity is defined to be 1. Our objective is to select a value of τ for the low-impact inputs as

used in (6) and (9) which leads to low FDR and FNDR and high specificity and sensitivity.
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Figure 1: Median Values of FDR (line with circle), FNDR (line with asterisk), specificity
(line with cross), sensitivity (line with diamond) over 200 Test Functions versus τ × 100%.

The GSinCE procedure was applied to each of 200 randomly generated second-order poly-

nomials in each of the six combinations of Table 2 using τ ∈ {0.11, 0.12, 0.13, 0.14, 0.15, 0.16}.

Stage 1 grouping was performed by the automated grouping procedure with a maximum
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group size M = 5. In Figure 1, we plot the median values of FDR, FNDR, specificity, sensi-

tivity for combinations 1–6 of Table 2, when 25% of the total inputs are active on average,

and f = 20, α = 0.2. For these combinations, the values τ ∈ [0.13, 0.15] seem to give a

reasonable compromise between low median FDR and FNDR and high median specificity

and sensitivity. Moon (2010) shows that this range of τ values remains reasonable for 25%

active inputs for the f = 10 and f = 30 cases, and also for an expected 35% active inputs

and f = 10. For a smaller percentage of active inputs, Moon (2010) recommends increasing

τ to approximately 0.2 at Stage 2 to reduce the otherwise large number of false positives.

(Some details are given in the on-line supplement).

6 EXAMPLES

The proposed GSinCE procedure is now illustrated for two examples and compared with

(i) a one-stage method that uses TSI test (11) with p = f , τ = 0.14, and the same number

of runs as GSinCE, and (ii) the LBHHY procedures using τ = 0 and τ = 0.14. Following

the example in LBHHY, the initial design for the LBHHY procedures is selected using the

maximin LHD criterion, and 100 randomly selected columns are added to form a bench-

mark distribution; the procedure judges whether an input is active by the magnitude of the

posterior draws of the parameters of the correlation function R(x, x̃) in (2), and the 10th

percentile of the benchmark distribution is selected as the cut-off for the selection decision.

6.1 Borehole Model

Worley (1987) used the function

y(z1, . . . , z8) =
2πz3(z4 − z6)

ln(z2/z1)
[
1 + 2z7z3

ln(z2/z1)z2

1
z8

+ z3

z5

]

to describe the rate of flow of water (in m3/yr) through a borehole that is drilled from

the ground surface through two aquifers, where z1 ∈ [0.05, 0.15] is the radius of the borehole

(m); z2 ∈ [100, 50000] is the radius of influence (m); z3 ∈ [63070, 115600] is the transmissivity
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of upper aquifer (m2/yr); z4 ∈ [990, 1110] is the potentiometric head of the upper aquifer

(m); z5 ∈ [63.1, 116] is the transmissivity of the lower aquifer (m2/yr); z6 ∈ [700, 820] is

the potentiometric head of the lower aquifer (m); z7 ∈ [1120, 1680] is the length of the

borehole (m); z8 ∈ [9855, 12045] is the hydraulic conductivity of the borehole (m/yr). In

their illustration of a Bayesian variable selection technique for this model, Joseph, Hung,

and Sudjianto (2008) identified z1 as the only important variable among the 8 inputs based

on 27-run experimental design.

To illustrate GSinCE, we add twelve inert inputs z9, . . . , z20 which serve only to add

“noise” to the variable screening process. Then, in our analysis y(·), is considered as a

function of f = 20 inputs. We use n1 = 2f = 40 runs at Stage 1. Using the Stage 1 data,

the automated grouping procedure (see the on-line supplementary material), with maximum

group size M = 5, places the inputs into 7 groups as shown in Table 3; for example, g1

consists of inputs z6 and z7. The GSinCE analysis phase with τ = 0.14 and hypothesis

test (8) with α = 0.2, selects groups g1, g6, and g7. The p = 6 inputs in these groups,

(z1, z4, z6, z7, z8, z19), proceed to Stage 2. Setting n2 = 5p = 30, the 30 × 6 design X(2) is

obtained as in Section 4.1. Following the computation of the 30 additional code runs to

obtain y(X(2)), the inputs z1, z4, z6, z7 are selected as active in Stage 2, three more than

selected by Joseph et al. (2008) (who did not consider the additional 12 inert inputs).

Table 3: Results of applying GSinCE to the borehole model
r∗j range Individual Group Stage 1 Stage 2

Inputs Selection Selection

-0.25 to -0.21 z7, z6 g1
√

z6, z7

-0.07 to -0.03 z17, z3, z10, z14 g2

-0.02 to -0.00 z13, z9, z12, z11 g3

0.02 z16, z18, z2, z15 g4

0.03 to 0.04 z20, z5 g5

0.07 to 0.20 z19, z8, z4 g6
√

z4

1.49 z1 g7
√

z1

Table 4 compares the GSinCE procedure with a 70-run one-stage sensitivity analysis
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and the two LBHHY procedures. The three procedures that use τ = 0.14 to construct the

benchmark select the same set of inputs to be active. However, the GSinCE procedure is

considerably faster than the three one-stage procedures, (the computation times measure

the execution for the MATLAB codes used to implement the four procedures on the same 64

bit Linux machine with 8 cores, 32 GB of RAM, and 2.66 GHz). When used with an inert

benchmark (τ = 0), LHBBY additionally selects input z8, and also declares the inert input

z19 to be active. This shows the importance of using a non-inert benchmark to screen out

inputs that are essentially noise. As a check on the selection of active inputs, we computed

TSIs using training data collected from a fine input grid. The TSIs are 0.866, 0.053, 0.053,

0.053, 0.012, for inputs z1, z4, z7, z6, z8 respectively, compared with the largest TSI for the

inert inputs of 0.00065.

Table 4: Results of applying four Procedures to the borehole model (70 runs)
Procedure τ Selected Inputs Computation Times (1,000 seconds)

GSinCE 0.14 z1, z4, z6, z7 3.0
One-stage 0.14 z1, z4, z6, z7 7.1
LBHHY 0.14 z1, z4, z6, z7 4.6
LBHHY 0 z1, z4, z6, z7, z8,z19 4.5

6.2 A 60-input example

We created a complex function with f = 60 inputs, where z32–z60 are known to be inert.

The output function y(·) is given in detail in the on-line supplement. A computation of

TSIs using training data over a fine grid resulted in TSIs under 0.0127 for the added inert

variables. The largest TSIs for the remaining inputs were 0.214, 0.154, 0.132, 0.124, 0.101,

0.099, for z1, z26, z19, z20, z16, z27, respectively. The next largest TSIs were for inputs z11, z15

with values 0.058, 0.044, respectively, followed by z9, z17, z25, z21 with TSI values in the range

0.025–0.028.

For Stage 1 of GSinCE, with n1 = 2f = 120, we compared the results of the automated

grouping with M = 5 and two groupings that might have been chosen by examining the
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correlations of the input values with the output (which we call “expert groupings”). The

automated grouping results in 18 groups, some of which are listed in Table 5. The expert

grouping combined groups 17 and 18 together. Expert grouping 2 additionally moved input

z1, which has the largest correlation with the output, into a new group 18. The groups

selected by GSinCE using test (8) with τ = 0.14 are are shown in the penultimate row of

Table 5. These pass to Stage 2 where n2 = 2p additional code runs are evaluated.

Table 5: Results of different groupings for the 60-run example
Automatic Grouping Expert Grouping 1 Expert Grouping 2

Grouping

g1 = (19, 26) g1 = (19, 26) g1 = (19, 26)
g2 =(15, 6, 7) g2 =(15, 6, 7) g2 =(15, 6, 7)
...

...
...

g16=(17, 21, 9, 4) g16=(17, 21, 9, 4) g16=(17, 21, 9, 4)
g17 =(11) g17=(11, 27,16, 20,1) g17=(11, 27, 16, 20)
g18=(27, 16, 20, 1) g18=(1)

Selected Groups g1, g2, g16, g18 g1, g2, g16, g17 g1, g2, g16, g17, g18

# inputs selected, p 13 14 14

The top section of Table 6 shows the results of Stage 2 of GSinCE using both the ex-

pert grouping and the automated grouping. Also shown are the results from the one-stage

sensitivity analysis with the same total number of runs and the LBHHY procedures with

τ = 0.14 and τ = 0. It is clear that LBHHY with τ = 0 selects many inputs with very small

sensitivity indices, including some of the inert inputs z32 − z60. All procedures with τ = 0.14

are similar and select 6–8 inputs having the largest TSIs.

If the computer code is slow to run, it is desirable to use as few code runs as possible when

screening. Consequently, we investigated the effect of reducing both n1 and n2 on the success

of each procedure in determining the active inputs. Table 6 shows the results of reducing n2

from the recommended 5p to 4p, 3p, 2p, in GSinCE, while retaining n1 = 2f = 120. With the

expert grouping, the results are remarkably stable, where the six inputs with the largest TSIs

are selected, except for the one case in the automated grouping where the sixth is omitted.

The one-stage and LBHHY procedures with τ = 0.14 and the same number of total runs as
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Table 6: Results of varying n2, when n1 = 120 for expert and automated groupings
Total Method Expert Grouping 1 Total Automated Grouping
Runs Inputs Selected n Runs Inputs Selected n

(5p) GSinCE 1, 26, 19, 20, 16, 27 6 (5p) 1, 26, 19, 20, 16, 27 6
190 One-stage 1, 26, 19, 20, 16, 27, 11, 15 8 185 1, 26, 19, 20, 16, 27 6

LBHHY 1, 26, 19, 20, 16, 27 6 1, 26, 19, 20, 16, 27 6
LBHHY 1, 4, 6-9, 11, 14-17, 19-22, 23 1, 4, 6-9, 11, 15-17, 19-22, 18
(τ = 0) 25-29, 43, 56, 59 25-28

(4p) GSinCE 1, 26, 19, 20, 16, 27 6 (4p) 1, 26, 19, 20, 16, 27 6
176 One-stage 1, 26, 19, 20, 16, 27, 11 7 172 1, 26, 19, 20, 16, 27, 11 7

LBHHY 1, 26, 19, 20, 16, 27, 11 7 1, 26, 19, 20, 16, 27, 28 7
LBHHY 1, 4, 6-9, 11, 15-22, 25-28, 21 1, 4, 6-11, 15-22, 25-30, 45, 25
(τ = 0) 44, 51 47, 54

(3p) GSinCE 1, 26, 19, 20, 16, 27 6 (3p) 1, 26, 19, 20, 16 5
162 One-stage 1, 26, 19, 20, 16, 27, 11, 15, 9 9 159 1, 26, 19, 20, 16, 27, 11 7

LBHHY 1, 26, 19, 20, 16, 27, 11 7 1, 26, 19, 20, 16, 27, 11 7
LBHHY 1, 4, 6-9, 11, 15-22, 25-28, 21 1, 4, 6-9, 11, 15-17, 19-23, 20
(τ = 0) 32, 34 25-28, 33

(2p) GSinCE 1, 26, 19, 20, 16, 27 6 (2p) 1, 26, 19, 20 4
148 One-stage 1, 26, 19, 20, 16, 27 6 146 1, 26, 19, 20, 16, 27, 11 7

LBHHY 1, 26, 19, 20, 16, 27 6 1, 26, 19, 20, 16, 27 6
LBHHY 1, 3, 4, 6, 7, 9, 11, 14-21, 19 1, 4, 6-9, 11, 15-22, 25-28, 21
(τ = 0) 25-28 49, 57

GSinCE are slightly more variable, although LBHHY always selcts 6 or 7 inptus with the

largest TSIs.

Next, we investigated the results of reducing n1 from 5 × 0.4f = 120 to 5 × 0.3f = 90

to 5 × 0.23f = 70 in combination with n2 = 5p and n2 = 2p. As n1 decreased, the number

of low-impact benchmark inputs at Stage 1 consequently decreased from 59 to 29 to 9. The

results are shown in Table 7 for expert grouping 1. When n1 = 90, GSinCE selected groups

containing p = 15 inputs for at Stage 1, so that n2 = 5p = 75 or n2 = 2p = 30 runs were

added at Stage 2. For n1 = 70, GSinCE selected groups containing p = 8 inputs at Stage 1,

so n2 = 5p = 40 or n2 = 2p = 16 runs were added at Stage 2. For n1 = 90, GSinCE selects

the seven inputs with the largest TSIs, but becomes less stable when n1 drops to 70.

For the one-stage sensitivity analysis, the number of low-impact columns was set to 29

or 9 to match Stage 1 of the GSinCE procedure. This analysis selected 6–9 inputs with
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the largest TSIs. Following LBHHY, we added 100 columns for the low-impact benchmark

inputs for their procedures. With 165 runs, LBHHY selected z28 (TSI=0.0165) instead of

z16 (TSI=0.1018), and otherwise selected the 5–8 inputs with the largest TSIs.

In summary, GSinCE seems to be the most stable of the procedures examined. For a

small total number of runs, we recommend that n1 be retained at 2f when 15% to 25% of

inputs are expected to be active and, if necessary, n2 can be reduced to as small as 2p.

Table 7: Results of reducing n1 to 70 and 90 for expert grouping 1
Total Method Selected
Runs Inputs n

165(5p) GSinCE 1, 11, 16, 19, 20, 26, 27 7
n1 = 90 One-stage 1, 16, 19, 20, 26, 27 6

LBHHY 1, 19, 20,26, 27, 28 6
LBHHY (τ = 0) 1-4, 6-9, 11, 14-17, 19-22, 25-29, 37, 39, 52 25

120(2p) GSinCE 1, 11, 16, 19, 20, 26, 27 7
n1 = 90 One-stage 1, 11, 16, 19, 20, 26, 27 7

LBHHY 1, 11, 15, 16, 19, 20, 26, 27 8
LBHHY (τ = 0) 1, 4, 6-9, 11, 15-22, 25-28, 50 20

110(5p) GSinCE 1, 16, 19, 26, 27 5
n1 = 70 One-stage 1, 11, 16, 19, 20, 26, 27 7

LBHHY 1, 11, 16, 19, 20, 26, 27 7
LBHHY (τ = 0) 1, 4, 6-9, 11, 15-17, 19-22, 25-27, 57 18

96(2p) GSinCE 1, 9, 11, 16, 19, 20, 26, 27 8
n1 = 70 One-stage 1, 9, 11, 15, 16, 19, 20, 26, 27 9

LBHHY 1, 16, 19, 20, 26 5
LBHHY (τ = 0) 1, 4-7, 9, 11, 15-17, 19-21, 25-28, 40 18

7 SUMMARY AND DISCUSSION

This paper presents a two-stage statistical methodology, GSinCE, for identifying the

active inputs in computer models with high-dimensional inputs. The use of low-impact

benchmark inputs allows GSinCE to have high specificity and low FDR. GSinCE has an

advantage over other procedures by being computationally efficient, since the number of

inputs is reduced through grouping at Stage 1 and only potentially active inputs are examined
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at Stage 2. We have found that when the proportion of active inputs is in the range 15% to

25%, accurate and stable results are obtained by using n1 = 2f runs at Stage 1 and n2 = 5p

at Stage 2. However, if the budget is tight so that n1 + n2 is bounded, it appears to be

important to retain n1 = 2f runs at stage 1 with consequently fewer runs at Stage 2. This is

likely to be because GSinCE uses data from both stages in the Stage 2 sensitivity analysis.

We generate our designs using Gram-Schmidt orthogonalization to achieve orthogonal

columns, and select from among these under a maximin criterion over all 2-dimensional

projections. Other criteria can be used, and one possibility is to use projections into k-

dimesional space, where k is an upper bound for the anticipated number of active inputs.

When the first stage data y(X) have previously been collected according to some design

X before screening became the goal, our procedure would use these data at the grouping

phase to fit the Gaussian Process model. Other aspects of GSinCE would remain the same,

except that it may be difficult to satisfy (P.2) approximately for Xc unless the original design

were orthogonal.

There are a number of circumstances in which any type of screening is problematic and, in

particular, in which modifications of GSinCE can improve its operating characteristics. First,

when the x → y(x) relationship is non-linear, the sensitivity of GSinCE can be improved

by increasing the number of runs at Stage 1. Second, if y(·) has very few or even no active

inputs, GSinCE with τ = 0.14 at both stages can falsely identify inputs having small effects

as being active, but this can be avoided by increasing τ at Stage 2.

The most problematic case is when y(·) has numerous non-active inputs each having

small effects of the same sign. Here GSinCE can perform poorly in terms of specificity due

to the amalgamation of effects of the factors within the groups. Even in this case, however,

GSinCE can still identify active inputs whose effects are sufficiently large to be separated

from the non-active inputs.
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