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Abstract

Many researchers use computer simulators as experimental tools when physical ex-

periments are infeasible. When computer codes are computationally intensive, non-

parametric predictors can be fitted to training data for detailed exploration of the

input-output relationship. The accuracy of such flexible predictors is enhanced by

taking training inputs to be “space-filling”. If there are inputs that have little or no

effect on the response, it is essential that the design be “non-collapsing” in the sense of

having space-filling lower dimensional projections. This paper describes an algorithm

for constructing space-filling designs for input regions that are bounded convex sets of

possibly high dimension. On-line supplementary materials showing the performance of

the algorithm accompany the paper.

KEY WORDS: Average reciprocal distance; Column-wise algorithm; Computer exper-

iment; Convex bounded region; High-dimensional input space; Maximin design

1 INTRODUCTION

The purpose of this paper is to present an algorithm, named CoNcaD, (Constrained Non-

collapsing Design) for constructing non-collapsing, space-filling designs for bounded convex

non-rectangular input regions, of possibly high dimension, which are to be used as the ini-

tial set of runs of a “computer experiment.” Computer experiments study input/output
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relationships using computer code implementations of physics- or biology-based mathemat-

ical models. In this paper, such simulators are regarded as deterministic, at least up to

numerical noise. Deterministic computer simulators should be contrasted with more tra-

ditional “stochastic computer simulations” which are computer code implementations of

macro-model descriptions of input/output variable relationships. Multiple runs of stochastic

computer simulators are required to understand the mean (system) output corresponding to

a given set of inputs (see, for example, Nelson (1995)).

In many scientific, engineering, and other applications, non-rectangular input regions

occur frequently. Two examples of experiments based on deterministic computational sim-

ulators will be used to illustrate the proposed algorithm. Both example have input regions

of the form Ax ≤ b where x is a p× 1 vector of inputs, A is a r× p matrix, and b is a r× 1

vector.

Example 1.1 Design of a Total Elbow Replacement

Computer simulators are frequently used by biomedical engineers to aid in the engineering

design and/or analysis of mechanical performance of prosthetic devices. For example, in his

PhD thesis, Hayeck (2009) studied the effects of four variables on the functioning of a total

elbow replacement prosthetic device. These variables were the tip displacement (x1), the

rotation of the implant axis about the lateral axis at the tip (x2), the rotation of the implant

axis about the anterior axis at the tip (x3), and the rotation about the implant axis (x4).

Here x1 is measured in mm while x2, x3, and x4 are measured in degrees (◦). The following

constraints were imposed on the inputs based on anatomical considerations:

0 ≤ x1 ≤ 10

−10 ≤ 5x2 + 2x3 ≤ 10

−10 ≤ −5x2 + 2x3 ≤ 10

−15 ≤ x4 ≤ 15 .

For example, these constraints state that the maximum tip displacement is 10 mm and the

rotation about the implant axis is ±15◦. The CoNcaD algorithm proposed in Section 3

was used to provide a 10-point space-filling and non-collapsing design for this 4-dimensional
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region (Hayeck (2009)). The properties of the design are given in Section 6.

Example 1.2 Design of a Tool Coating

To extend the life of tools that are used in tribological configurations, engineers apply

thin, hard coatings to the tool surface. Multilayer systems are one form of protective coating

that have been considered for tool surfaces (Subramanian and Strafford (1993)). Our me-

chanical engineering collaborators at The Ohio State University were interested in studying

the performance of coatings applied to the tool surface in pairs under a constant stress: one

coating was made of titanium nitride (TiN) and the other was pure titanium (Ti) (Nekkanty;

2009). To prevent destructive damage to n potentially very expensive coatings in a physical

experiment, the mechanical engineers implemented a finite element computer model (FEM)

of this physical process that calculated a set of stresses related to the failure mode of the

coating; the inputs to the FEM were the number of Ti/TiN pairs and the thicknesses of

each layer. Let xi, i = 1, ..., T denote the thickness of the ith layer (in microns, µm) where

T ∈ {2, 4, 6, 8} represents the total number of layers. Then the constraint

2 ≤
T∑
i=1

xi ≤ 6 for T ∈ {2, 4, 6, 8}

xi ≥ 0.25 for i = 1, . . . , T

was imposed on the layer system. Some properties of the design produced by the CoNcaD

algorithm for this example are given in Section 6.

Frequently, deterministic computer simulators that are used as experimental tools are

computationally intensive and may require many hours or even days to solve the underly-

ing mathematical model. In such cases, a rapidly-computable statistical predictor of the

computer simulator output, an “emulator” of the code output, is usually developed to un-

derstand more fully the input/output process under investigation. Using a limited number

of (training) runs from the simulator, regression-based mean models are typically not used as

predictors; hence D- or other classic optimality criteria cannot be used to select the training

data input run sites. Instead, highly flexible nonparametric predictors are ordinarily con-
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structed to predict simulator outputs at new input sites (Santner et al. (2003)). Because of

the extreme flexibility of non-parametric predictors, their performance depends heavily on

the ability of the experimental design to provide output from a broad portion of the input

space. This is true, firstly, because process-based predictors are more likely to be accurate

at points where the predictor is interpolating the training data. Secondly, the process-based

uncertainty quantification of a predicted values at a given input site depends on the “dis-

tances” between that input site and the input sites of the training data; space-filling designs

can minimize the distance between an arbitrarily selected point in the input space and the

nearest point in the training data (see Simpson et al. (2001) or Bursztyn and Steinberg

(2006) for additional justifications for choosing space-filling designs).

To achieve space-fillingness, Johnson, Moore and Ylvisaker (1990) advocated maximin

and minimax criteria for computer experiment designs with the theoretical justification being

that, in an asymptotic sense as the correlations become weak, the maximin designs are D-

optimal.

When integration of the output is of primary interest, uniform designs and Hamers-

ley sequence designs are alternative methods for devising space-filling designs. In addi-

tion, a p-dimensional uniform design imposes good one-dimensional projections as well as

p-dimensional uniformity (Fang et al. (2000)).

None of the above approaches deal with one additional important consideration in de-

termining desirable experimental designs: projections of the inputs onto subspaces of the

design should also be space-filling. This “criterion” is motivated by the following two facts.

First, computer codes are deterministic and thus it is wasteful to replicate runs at the same

input site because the same output is returned. Second, in cases where only a subset of

the input variables are “active,” input design points which coincide in any subset of co-

ordinates give essentially duplicate runs. We call such designs “collapsing”. A number of

authors have added the space-fillingness of projections to their list of design considerations.

As examples, McKay, Beckman and Conover (1979) introduced Latin hypercube designs for
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applications with rectangular input regions that have good one-dimensional projection prop-

erties. Morris and Mitchell (1995) advocated selecting from among Latin hypercube designs

using a maximin criterion. Recently, van Dam (2008) constructed two-dimensional minimax

Latin hypercube designs. Tang (1993) used strength r orthogonal arrays to construct Latin

hypercube designs which improve the one-dimensional projection properties of Latin hyper-

cube designs to r-dimensional projections. Audze and Eglais (1977) introduced an intuitive,

“energy” based average reciprocal distance (ARD) criterion that can explicitly account for

projections onto user-specified r-dimensional subspaces of the input space. Welch (1985)

and Liefvendahl and Stocki (2006) implement and provide empirical studies of statistical

features of the ARD criterion.

The vast majority of the literature on the construction of experimental designs for com-

puter experiments, including the papers mentioned above, considers input regions that are

hyperrectangles. Some contributions to the constuction of designs for non-rectangular in-

put regions in physical experiments are given by Montgomery et al. (2002) and Nguyen

and Piepel (2005) who present heuristic algorithms for constructing approximate D– (and

other) optimal designs for polynomial models based on a gridding of a non-rectangular in-

put region. In the computer simulator setting, Sasena, Papalambros and Goovaerts (2002)

developed methodology to deal with global optimization over disconnected design regions.

Trosset (1999) described an algorithm to construct approximate maximin designs for con-

strained regions by employing non-linear programming (NLP) and an Lp criterion. Stinstra

et al. (2003) also used an algorithmic approach to construct maximin designs in constrained

regions; as with Trosset (1999), their algorithms solve an NLP problem to obtain a con-

strained maximin design. Chuang and Hung (2010) developed an algorithm that produces a

nearly uniform design in any convex experimental region. However, none of the procedures

mentioned above guarantee the resulting design to be non-collapsing.

This paper introduces the CoNcaD algorithm for constructing non-collapsing and space-

filling designs for a computer experiment whose input region need not be rectangular. Sec-
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tion 2 discusses some criteria that can be used to define space-fillingness. Section 3 gives

details on the proposed algorithm, CoNcaD, while Section 4 describes some important tech-

nicalities that are essential in the design building process. Section 5 explores some additional

applications of CoNcaD. Section 6 considers the choice of tuning parameters and discusses

the properties of the designs obtained using CoNcaD for the two experiments introduced in

this section and the criteria highlighted in Section 2.

2 SPACE-FILLING DESIGN CRITERIA

This section gives a brief review of the space-filling criteria used in this paper. The maximin

(Mm) criterion (Johnson et al.; 1990) is an intuitive design construction criterion whose goal

is to prevent design points from being too close to each other, thereby ensuring that they

are spread across the design space. The Mm criterion accomplishes this task by employing a

measure which quantifies the distance between the design points. Let p denote the number

of inputs, X ⊂ IRp denote the set of all feasible design points, and let the rows of n × p

matrix X represent n design points selected from X . The set of all possible n × p design

matrices is labeled D. Let xi represent the ith row of X, i.e. the setting of inputs at which

the ith computer simulator run will be made.

Define the zth order distance, ρz, between two points xi and xj in X as,

ρz(xi,xj) =

[ p∑
`=1

|xi` − xj`|z
]1/z

(1)

where xi` is the `th element of xi. A design XMm ∈ D is maximin provided it maximizes

the minimum interpoint distance (MIPD) between pairs of design points, i.e.,

min
x1,x2∈XMm

ρz(x1,x2) = max
X∈D

[
min

x1,x2∈X
ρz(x1,x2)

]
. (2)

Audze and Eglais (1977) introduced a criterion for space-fillingness in which the average

reciprocal distance between points in the design is minimized. We use a modification of this
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criterion that adds a requirement that the selected design have good projection properties

onto a given set of subspaces of the p-dimensional design space; this same requirement could

be added to the minimax or maximin criterion. Suppose the projections of a design X ∈ D

onto all the subspaces defined by an index set J ⊆ {1, 2, . . . , p} are to be considered. For

each j ∈ J let Xkj, 1 ≤ k ≤
(
p
j

)
denote the kth design, ordered in some fashion, among the(

p
j

)
j-dimensional projections of the points in X.

Assuming X ⊂ [0, 1]p and given fixed, real numbers z ≥ 1 and µ ≥ 1, a design XARD ∈ D

is said to be minimum ARD provided it minimizes the average reciprocal distance (ARD)

projection function

av(z,µ)(X) =

 1(
n
2

)∑
j∈J

(
p
j

) ∑
j∈J

(p
j)∑

k=1

∑
x?
h
,x?

i∈Xkj

[
j1/z

ρz(x?h,x
?
i )

]µ
1/µ

(3)

among all X ∈ D. In (3), x?h denotes the projection of xh onto Xkj. The numerator, j1/z,

acts as a scaling factor for points in [0, 1]j in that j1/z is the maximum distance apart of

any two points in j-dimensional space. Thus a minimum ARD design is space-filling for

projections in all sub-dimensions defined by the set J . The ARD, at least for J = {p} and

Euclidean distance, can be interpreted as the minimum of the potential energy of repulsive

forces for a set of points of unit mass assuming that the magnitude of these repulsive forces

is inversely proportional to the squared distance between the points.

The CoNcaD algorithm is presented in Section 3 for non-collapsing designs using the

MIPD, ARD, or a criterion that accounts for both MIPD and ARD, but it is important

to note that these critria can be replaced by any other space-filling criterion of the user’s

choosing.

Calculating the ARD in (3) for a large design when the number of projections is also

large is computationally burdensome. To simplify the computation, we develop a one-point

update formula for av(z,1)(X) when µ = 1 and restrict attention to µ = 1 hereafter. Let

X ∈ D be an (n− 1)× p non-collapsing design with n− 1 ≥ 2 rows and w be a 1× p row

vector representing a point in the design space X such that X augmented by w is also a
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non-collapsing design. Then

av(z,1)

X
w

 =
1(

n
2

)∑
j∈J

(
p
j

) ∑
j∈J

(p
j)∑

k=1

 ∑
x?

h,x?
u∈Xkj

j1/z

ρz(x?h,x
?
u)

+
n−1∑
i=1

j1/z

ρz(x?i ,w)



=

(
n−1
2

)
(
n
2

)∑
j∈J

(
p
j

) ∑
j∈J

(p
j)∑

k=1

 1(
n−1
2

) ∑
x?

h,x?
u∈Xkj

j1/z

ρz(x?h,x
?
u)



+
1(

n
2

)∑
j∈J

(
p
j

) ∑
j∈J

(p
j)∑

k=1

[
n−1∑
i=1

j1/z

ρz(x?i ,w)

]
(4)

=
n− 2

n
av(z,1)(X) + ∆,

where ∆ is the second term in (4). Thus only ∆ need be computed in the search for an

additional design point, avoiding the unnecessary computation of
(
n−1
2

)
interpoint reciprocal

distances for every Xkj, j ∈ J , k = 1, . . . ,
(
p
j

)
. In the algorithm, the updating formula is

applied within s-dimensional subspaces of the p-dimensional space. An analogous formula for

updating the MIPD in (2) can be developed. For the remainder of the paper, only Euclidean

distance between the design points will be considered (z = 2 in (1)).

3 THE CoNcaD ALGORITHM

Existing results on the construction of designs for rectangular input regions under different

space-filling criteria are difficult to extend to non-rectangular input regions because the levels

for different inputs cannot be chosen independently. One could proceed to obtain an optimal

design by (i) constructing an exhaustive p-dimensional grid of points, (ii) removing those

points from the grid which do not satisfy the constraints, and (iii) choosing design points

from the remaining sub-grid which satisfy a desired criterion. However, even with the today’s

technology, this brute force method becomes infeasible even when p is rather small.

The CoNcaD algorithm proposed in this paper constructs a design by adding columns

sequentially to the design matrix, thus removing the computational burden of searching

within a large p-dimensional grid. CoNcaD chooses the values for the first input variable

from a one-dimensional grid of valid points. These selected values represent the first column

8



of the design matrix X. Given selected values for the first input and taking into account the

constraints and the optimality criterion, the design values for the second input are chosen

from an appropriate one-dimensional grid of points. The algorithm adds further columns

to X, adapting the grid dynamically to be non-collapsing until values for all p inputs are

chosen. The details are given below.

Before the design construction begins, the algorithm scales all inputs so that each input

has marginal range [0,1]. For example, if the design region of the form Ax ≤ b, this scaling

is determined from the lower and upper extrema for xk, k = 1, . . . , p, which are obtained by

solving the following pair of linear programming problems:

minxk subject to

 Ax ≤ b

L ≤ x ≤ U
and maxxk subject to

 Ax ≤ b

L ≤ x ≤ U
(5)

where A is a matrix containing joint constraints while L and U are vectors which contain

any explicitly stated lower and upper bounds for individual xk. Design regions which are

not polytopes will use other formulations to solve the marginal extremal problems, (e.g.

Section 5).

In Example 1.1, x1 and x4 have individual bounds [0, 10] and [-15, 15], respectively,

which determine L and U while the ranges for x2 and x3 must be derived from the joint

constraints. Solving (5) for the constraints of this example, we obtain xmin
2 = −5, xmax

2 = 5

and xmin
3 = −2, xmax

3 = 2.

In general, given its extrema, say (xmink , xmaxk ), xk is transformed to [0, 1] by

xscaledk =
xk − xmink

xmaxk − xmink

, k = 1, . . . , p.

Then xk = (xmaxk − xmink )xscaledk + xmink is substituted into Ax ≤ b, k = 1, . . . , p, to obtain

Ascaledxscaled ≤ bscaled. From now on, it will be assumed that the scaling has been performed

and, for simplicity, the “scaled” superscript notation will be dropped.

As described above, the algorithm selects design point values for each input sequentially.

At the conclusion of each step s with s < p, a matrix M (s) having Q (≥ n) rows and
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s columns is produced as the “current design matrix” for the first s inputs. The rows of

M (s) are selected from a matrix C(s) which holds the candidate design points. The M (s)

constructed in one step provides the foundation for constructing C(s+1), and hence M (s+1),

in the next step. The integer Q is a tuning parameter whose function is to allow greater

flexibility to the algorithm in constructing designs by allowing it to carry more than the

required number of n points until the final step. The effect of the magnitude of Q on the

design characteristics is discussed in Section 6.

One component of the algorithm is the elimination at step s, s < p, of those rows

(x1, x2, . . . , xs) from a given candidate set C(s) for which it is impossible for these s values

to result in a design point x = (x1, x2, . . . , xs, . . . , xp) that satisfies Ax ≤ b. The matrix

A and vector b contain the simultaneous constraints involving all p inputs. Let C(s) denote

and initially proposed set of candidates that might be added to M (s−1) and let C(s)(i, :)

denote the ith row of C(s). Row C(s)(i, :) is eliminated C(s) if A(s)(C(s)(i, :))> > b(s) where

A(s) contains the first s columns of A and a subset of the rows of A. The rows (ai,1, . . . , ai,p)

selected from A have ai,1, . . . , ai,s are not all zero, and all the remaining (p−s) entries, ai,s+1,

. . . , ai,p, non-negative. The following example illustrates these ideas.

Example 3.1 Suppose the constrained region for inputs (x1, x2, x3) is defined by 0 ≤ xi ≤ 1

for i = 1, 2, 3, 0.2 ≤ x2 + x3 ≤ 0.6, 0.2 ≤ x1 + x2 − x3 ≤ 0.7, and
∑3
i=1 xi ≤ 0.8, then

A =



0 1 1

0 −1 −1

1 1 −1

−1 −1 1

1 1 1


, b =



0.6

−0.2

0.7

−0.2

0.8


, L =


0

0

0

 , and U =


1

1

1

 . (6)

When s = 1, the constraints for x1 are determined by A(1) = [1] and b(1) = [0.8]. This is

because the elements in Rows 1 and 2 of the first column of A are zero and place no constraint

on x1. Rows 3 and 4 of A do not put definitive restrictions on x1 because of the negative

coefficients of x3 and x2 in these rows, respectively, mean that linear combinations involving

(x1, x2, x3) might indeed satisfy Ax ≤ b even if x1 is greater than the corresponding element
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of b. Thus, the only definitive conclusion is that any x1 listed in C(1) that is greater than

0.8 can be eliminated.

Continuing the example, for s = 2, the first and last two rows of A and b form constraints

that need to be considered, giving

A(2) =


0 1

−1 −1

1 1

 and b(2) =


0.6

−0.2

0.8

 .

Then, given A and the values of x1, the first constraint implies that x2 values in the final

design have to be less than or equal to 0.6, while the second and third constraints imply

that x2 has to satisfy (0.2− x1) ≤ x2 ≤ (0.8− x1). Any rows of C(2) which do not conform

to A(2)(C(2))> ≤ b(2) are eliminated. At the last step, when s = 3, A(3) = A and b(3) = b

and the rows of C(3) for which A(3)(C(3))> ≤ b(3) does not hold are deleted.

The CoNcaD algorithm is flexible in that allows the user to choose among multiple

criteria. Specifically, our current implementation allows the choice of either the maximin

criterion (2), or the minimum ARD criterion which minimizes (3) with user-specified J , or

considers a combination of both criteria, by minimizing the quantity

αRankMIPD + (1− α)RankARD (7)

for a user-specified α, 0 ≤ α ≤ 1. Larger values of α put more weight on the maximin

characteristic of the design while the smallest values favor an ARD optimized design. It is

important to note, however, that any other criterion could be subsituted for (7).

The criterion (7) is applied as follows. Given the current design matrix M (s) for inputs

1, 2, . . . , s (≤ p) and ns (≤ Q) points, each row in the candidate set C(s) is added in turn

to M (s) and the minimum interpoint distance (MIPD) and ∆ shown in (4) are computed.

Then all points in C(s) are ranked with that point having the largest MIPD receiving rank 1

and that point with the smallest ∆ value receiving rank 1. The combined ranking for each

of the points in C(s) is computed from (7) using the given α. The point with the lowest

value of (7) is added to M (s).
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The steps of the CoNcaD algorithm are summarized as follows.

Step 1: Fix the desired design size (n, p), input constraints (A, b,L,U), tuning parametersQ ≥

n and u ≥ 2, and the design objective (7), or user-specified replacement. Construct

the grid vector m whose ith element is mi = i/u where i = 0, 1, . . . , u. Set s = 1. Go

to Step 2.

Step 2: If s = 1 then set C(1) = m and proceed to Step 4, otherwise go to Step 3.

Step 3: Given 2 ≤ s ≤ p and M (s−1), construct the Qu× s candidate set C(s) by

C(s) =


M (s−1) m11Q
M (s−1) m21Q

...
...

M (s−1) mu1Q


where 1Q is a Q× 1 vector of ones; thus each mi is appended to a copy of each row of

M (s−1).

Step 4: Let C(s)(i, :) denote the ith row of C(s). Construct A(s) and b(s) as in the discussion

above. Eliminate those rows C(s)(i, :) from C(s) for which A(s)(C(s)(i, :))> > b(s) in

any component.

Step 5: Choose the first row for M (s) from C(s) randomly.

Step 6: As described in Section 4, adapt C(s) to implement non-collapsingness.

Step 7: If the number of rows of M (s) ≥ Q go to Step 8. Otherwise select that row C(s)(i, :)

of C(s) so that the augmented design

M (s) =

 M (s)

C(s)(i, :)


minimizes (7). Add this row to M (s) and eliminate it from C(s). Go to Step 6.

Step 8: Set s = s + 1. If s < p, then go to Step 3. If s = p, then set Q = n and go to Step 3.

If s = p+ 1, then set X = M (p) and finish.
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The following section describes, the grid adaptation used in Step 6. This step provides the

algorithm with the necessary flexibility to handle high-dimensional design construction.

4 GRID ADAPTATION

Step 6 allows CoNcaD to build designs with unique input values for each one of the p input

variables, i.e. non-collapsing designs. Step 6 also provides flexibility to the design building

process because, without it, the candidate set C(s) could become empty before the final n-

point design has been constructed. To illustrate this last point in a visually simple setting,

consider the candidate set C(2) shown in Figure 1(a) that is associated with the region

constrained by 0.2 ≤ x1 + x2 ≤ 1.2. Suppose that the first two points selected are (0.1, 0.8)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
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0.
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0.
4

0.
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0.
8

1.
0

x1

x2
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Figure 1: Candidate Set After Choosing Two Points Randomly

and (0.55, 0.25); Figure 1(b) plots these two points as black squares at the intersections of

the solid lines. If there is no adaptation of the grid, then all other points in Figure 1(a) that

lie on the vertical or a horizontal lines through these points must be removed from C(2) in

order for the remaining selection of (x1, x2) points to produce a non-collapsing design. In

this case, only 19 unique x1 coordinates remain and thus designs with n > 21 design points

are infeasible.

13



In contrast, Figure 1(b) shows the same starting C(2) with the grid adaptation employed

by CoNcaD. Adaptation replaces each point in C(2) whose x1 value is equal to 0.1 or 0.55

or whose x2 value is equal to 0.8 or 0.25 by alternative nearby values. For example, in

Figure 1(b) the lines x1 = 0.1 and x1 = 0.55 have been replaced by the lines x1 = 0.125

and x1 = 0.525, respectively. The value of 0.125 lies half way between the chosen value 0.1

and the next larger x1 value in C(2) which is 0.15, and, hence, does not coincide with any

previously listed x1 values in C(2). The same idea is applied to the second x1 value of 0.55

which is replaced by x1 = 0.525, half way between 0.55 and the next lowest value in both

C(2) and M (2). Similarly, the horizontal lines x2 = 0.8 and x2 = 0.25 are replaced by the

lines x2 = 0.775 and x2 = 0.225, respectively. Apart from any new points falling outside the

feasible design region, such an adaptation leaves the number of candidate points remains

unchanged.

A similar adaptation is applied to each of the inputs x1, x2, . . . , xs at step s of the algo-

rithm (s = 3, . . . , p). The new value of xi is taken to be half way between the chosen value

of xi and either the next larger or the next smaller value in the combined C(s) and M (s),

whichever is further away. A random selection is made if the distance above and below the

chosen point is the same.

5 OTHER APPLICATIONS OF CoNcaD

The CoNcaD algorithm, described in Section 3, constructs space-filling designs for input

regions of the form Ax ≤ b. This section gives examples of the use of the basic algorithm

in two other settings.

5.1 Use in Bounded Non-polygonal Regions

CoNcaD can be adapted for use with non-polygonal bounded regions by replacing Ax ≤ b

in Step 4 of the algorithm by whichever constraints define the constrained region. All other
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steps of the algorithm remain the same. As an example, the results of such a modification are

shown below for a quadrant/ball region defined by the constraints 0 ≤ xi ≤ 1, i = 1, . . . , p,

and
∑p
i=1 x

2
i ≤ 1 in p = 2 and p = 10 dimensions. Table 1 shows the maximum MIPD for

designs produced by the modified CoNcaD algorithm using 100 random starts, α = 1, and

(Q, u) = (3n, 100). For comparison, the results for these problems using SFDP* and SFDP**

and reported by Stinstra et al. (2003) (in their Table 2) are also listed. Lastly, Table 1

shows the results for this problem using Lp-optimization as described by Trosset (1999) and

again reported by Stinstra et al. (2003). For large n × p, the SFDP* formulation required

too many constraints to be implemented using the non-linear programming software and

hardware available to Stinstra et al. (2003), but their SFDP** Gauss Seidel type algorithm,

was able to obtain solutions for all the quadrant/ball cases considered in Table 1.

The designs produced by the SFDP methods are not guaranteed to be non-collapsing,

and, indeed, can be collapsing, as their figures illustrate. Under the maximin criterion, even

with the non-collapsing constraint, CoNcaD gives maximum MIPD values that are close to

those of SFDP* when the latter is implementable. The designs produced by CoNcaD have

maximum MIPD values which are either larger than, or close to, those for designs produced

by SFDP**. For p = 10, the designs produced by the Lp algorithm are noticably worse

than those of any of the other three methods. Finally, we note that, if ARD- or weighted

Mm/ARD- optimal designs are desired, then the algorithms of Stinstra et al. (2003) and

Trosset (1999) cannot be used but CoNcaD is able to construct non-collapsing designs that

have good properties for these criteria.

5.2 Design Augmentation

Another application of the CoNcaD algorithm is to construct augmented designs as would,

for example, be required to construct a sequence of nested designs. Qian (2009) notes that

such designs are natural to use in performing multiple computer experiments with different

levels of accuracy. Given an arbitrary design X, where X need not be non-collapsing nor
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Table 1: Minimum Interpoint Distances for Two- and Ten-Dimensional Ball Examples (the
number of constraints was too large for SFDP* to be solved for NA cased)

p n SFDP* SFDP** Lp CoNcaD Ave. CoNcaD
Run Time (sec)

2

10 0.3587 0.3522 0.2554 0.3400 0.29
20 0.2394 0.1966 0.2212 0.2124 1.31
50 0.1403 0.1188 0.1336 0.1204 9.00
100 NA 0.0486 0.0660 0.0789 59.13
200 NA 0.0259 0.0070 0.0539 302.75

10

10 1.4142 1.2167 0.5017 1.3027 5.62
20 1.0323 0.9591 0.4138 0.8364 29.24
50 0.8811 0.7588 0.2952 0.6747 296.89
100 NA 0.6248 0.2753 0.5838 1915.44
200 NA 0.5235 0.2559 0.5160 21107.09

satisfy constraints imposed upon the additional design points, Step 5 can be modified to

incorporate all rows from X into the new design before any choices are added from the

candidate set. In order to allow initial designs X that contain replicates or are collapsing,

the calculation of the desired distance measure (MIPD and/or ARD) omits distances between

pairs of design points in the initial design X.

As an example, Figure 2 shows a nested design constructed using this modified CoNcaD

algorithm. The initial design (solid triangles) was a 10 × 2 maximin Latin hypercube design

in [0, 1]2 (and had no additional constraints). An additional 10 points (solid circles) were

added to optimize the Mm/ARD criterion with (α,J) = (0.5, {1, 2}) and so as to satisfy

0.2 ≤ x1 + x2 ≤ 1, yielding a final design with 20 points for two inputs. The solid lines

represent the boundary of the constrained region for the augmented portion of the design.

The design shown in Figure 2 has MIPD of 0.1562 and ARD of 5.3580. Aside from illus-

trating the ability of CoCcaD to augment (one or several) designs, this example illustrates

the difference between using the Mm and combined Mm/ARD criteria, a point that will be

discussed again in Section 7. If a pure Mm criterion had been used to select the 10 additional

points, there would be no “hole” in the set of additional design points shown in Figure 2.
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Figure 2: Augmented Design Constructed by CONcaD with α = 0.5 and J = {1, 2}; the
first stage design is denoted by solid triangles and the second stage by solid circles

Indeed, if an 11th point were added using the combined Mm/ARD criterion selected for this

example, this hole would be filled.

6 TUNING PARAMETERS AND STARTING RUNS

6.1 Choice of Tuning Parameters for Random Start Designs

The CoNcaD algorithm is not deterministic when using random starts to construct M (s) and,

whether using random or fixed starts, by its occasional random choice in the grid adaptation

process (Section 4). Therefore, the algorithm should be run multiple times and the best

design selected. The number of random starts should be selected so that CoNcaD produces

stable maximum MPID and minumum ARD values and this is a function of p, u, Q, A, and

b. We recommend (u,Q) = (100, 3n) and 100 random starts. These recommendations are

based on the numerical evidence from numerous examples which is illustrated for a typical

case in the following paragraph.

Table 2 lists the cumulative maxima of MIPD values produced by CoNcaD after 100,

200, . . . , and 500 random starts for Example 1.1 where (n, p) = (10, 4) and the constraints

Ax ≤ b and L ≤ x ≤ U are
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A =


0 5 2 0

0 −5 2 0

0 −5 −2 0

0 5 −2 0

 , b =


10

10

10

10

 , L =


0

−∞
−∞
−15

 , and U =


10

∞
∞
15

 . (8)

The maximum MIPD values listed in Table 2 were computed for the scaled designs, i.e. the

designs with [0, 1] marginal ranges for all inputs and for u ∈ {20, 100, 200}, Q ∈ {n, 3n, 5n},

and α = 1.

Table 2: Cumulative Maximum, after 100, 200, . . . , 500 Random Starts, of the MIPD Values
Produced by CoNcaD for Example 1.1 with n = 10 when α = 1.0 and using various (u,Q)

u Q
Number of Starts For Runs 1 to 100

100 200 300 400 500 Avg.Time (sec) SD (sec)

20
10 0.6793 0.6955 0.7068 0.7068 0.7068 0.1485 0.0048
30 0.7262 0.7471 0.7471 0.7574 0.7574 0.7152 0.0396
50 0.7644 0.7644 0.7644 0.7644 0.7644 1.8522 0.0896

100
10 0.7164 0.7164 0.7164 0.7164 0.7164 0.3264 0.0147
30 0.7666 0.7666 0.8011 0.8011 0.8011 2.3137 0.0294
50 0.7689 0.8044 0.8044 0.8044 0.8044 7.0379 0.3332

200
10 0.6705 0.7126 0.7126 0.7178 0.7178 0.5304 0.0234
30 0.7626 0.7995 0.7995 0.7995 0.7995 4.3009 0.0853
50 0.7921 0.7921 0.7929 0.7929 0.7929 12.8428 0.1930

As Q and u increase, the set of potential designs becomes denser but their evalution

requires additional computing time. Table 2 shows that, as Q increases, the gain in maximum

MIPD is not linear but that the increase in maximum MIPD is much greater as Q increases

from 10 to 30 than from 30 to 50. Since the execution time for a Q = 30 design is less than

half of the time for a Q = 50 design, the small gain in maximium MIPD for the Q = 50

design appears to be offset by the increase in execution time. Therefore, from this and other

examples we have studied, we recommend Q = 3n.

Fixing Q = 3n, Table 2 shows clear increases in maximum MIPD values when u increases

from 20 to 100, while there is no significant increase in maximum MIPD values when u

increases further to 200. Thus we recommend using u = 100, although the average execution
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time roughly triples as u increases from 20 to 100. (It further doubles as u increases from

100 to 200). Finally we note that, as can be seen in Table 2, the increase in the maximum

MIPD can improve on the order of about 3-5% as the number of random starts increases

from 100 to 500 while the increase in the computational time increases by roughly 400 times

the cost of a single run, in this example by 400× 2.3137 sec ≈ 925 sec for (u,Q) = (100, 30).

Again, this is a user decision depending on the application, but for most applications using

100 starts will produce reasonable results.
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Figure 3: ARD and MIPD Values for the Designs with Fixed First Design Point

6.2 Deterministic Starting Runs

We next illustrate how one can produce more stable final designs by replacing random starts

with deterministic ones. This is accomplished by fixing a starting point, i.e., choosing a

starting design X with a single row and letting the algorithm construct the remaining rows.

The only randomness in the execution of the algorithm results from the gridding process.

This stability is illustrated for a variant of Example 1.2 when T = 2 where a grid with

mesh size 0.05 was constructed in the 2−d polygonal input region 0.2 ≤ x1 + x2 ≤ 1.0 with

0.0 ≤ x1, x2 ≤ 1.0 that is shown in Figure 2. Each of the grid points was used, in turn,
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as a starting point to construct ten Mm/ARD (α = 0.5) and ten Mm (α = 1.0) designs

where (u,Q) = (100, 3n). For every fixed grid start point, all ten Mm/ARD designs had

identical ARD values; these values are plotted in Figure 3(a). Most, but not all, of the fixed

start points resulted in Mm designs that had identical MIPD values. Figure 3(b) shows

the maximum MIPD values for each set of ten Mm designs. Because smaller values are

desired for ARD and larger values are preferable for MIPD, Figure 3 suggests that it is more

reasonable to take a grid of starting design points centered at the centroid of the constrained

region and use these as fixed starts instead of using random starts. The same conclusions

hold when the constrained region is defined as in Example 1.1.
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Figure 4: Two-dimensional Projections of the Best Mm and ARD Designs for Example 1.1

7 SUMMARY and DISCUSSION

This paper describes an algorithm, CoNcaD, for constructing space-filling, non-collapsing

designs for computer experiments where the input space can be a bounded non-rectangular

region and that allows the user to choose among multiple design criteria. The use of this

algorithm is illustrated using two (hyper-)polygonal regions arising from the engineering
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applications, Examples 1.1 and 1.2. Examples for 2- and 10-dimensional balls are given

in Section 5.1. It is possible that points produced by this algorithm may lie on a set of

parallel planes and hence be collapsing with respect to an affine transformation of the input

space; in our experience this phenomenon has only been seen to occur in problems when the

maximin criterion puts points on a bounding facet of the input space. In Example 1.1, the

constraints on x1, x4 form a rectangular region, but those on x2, x3 for a diamond-shaped

region. Although the x2, x3 space could be rotated, a non-collapsing design in the rotated

space does not guarantee a non-collapsing design in the original space.

The algorithm can also be used to augment a given design as illustrated in Section 5.2.

Comparisons of the maximum MIPDs for CoNcaD designs with some maximin (hyper-

rectangular) LHDs centered on the subcubes defining the LHD are given in Supplementary

Material I and further exploration of the abilities of the algorithm to produce good designs

for thin regions is given in Supplementary Material II.

The code that implements CoNcaD for bounded polygons Ax ≤ b is available at

http://www.stat.osu.edu/~comp exp/CoNcaD; it is written in the open-source software R.
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Figure 5: Two-dimensional Projections of the Best α = .05,J = {1, 2} Design for Exam-
ple 1.1 with 500 Runs and Column Order x2, x1, x4, x3

Our empirical work shows that the distance criteria and projection properties of the

final non-collapsing designs appear to be reasonably invariant to the sequential nature of
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the algorithm. To illustrate, Figure 5 displays two-dimensional projections for a design

constructed from the constraints of Example 1.1, where the variables were added in the

order x2, x1, x4, x3 instead of the order x1, x2, x3, x4 shown in Figure 4(b). The MIPD and

ARD values for the best design found from 500 random starts of the algorithm for the order

x2, x1, x4, x3 are 0.5555 and 3.2208, respectively as compared with the values 0.6348 and

3.1670 for the original input ordering.

A question raised by a referee of this paper which deserves further research is that of

perturbing or “jittering” the design points in a maximin (or other type of space-filling)

collapsing design to make it non-collapsing; in particular, under the maximin criterion,

“how uniform the projections can be made with this jittering operation without substantially

changing the criterion value”. Certainly, the size of the jitter would need to be less than .25

times the grid spacing, otherwise different pairs of points could collapse after jittering. But

not all jitters of this magnitude would result in larger distances than the cirrent minimum

and not all jitters would be within the boundaries of the non-rectangular design space. For

other criteria, such as ARD, which involve all the design points in calculating the criterion

value, the question becomes more complicated.

If the experimenter’s main goal is to obtain a design whose points are as far apart as

possible in p-dimensional space, then the usual maximin computed in in p-dimensional space

is clearly the best choice of design criterion. However, such designs completely ignore the

projection properties of the design, which is undesirable if there are inputs which do not affect

the response. In such a case, Mm/ARD designs, with say α = 0.5 provide an improvement

over maximin designs. An investigation of the trade-off between these two criteria is given

in the example below.

Example 1.1 (Continued)

We illustrate the trade-off between the best Mm and the best compromise Mm/ARD

designs for the (n, p) = (10, 4) experiment of Example 1.1. The best α = 1 design produced

by CoNcaD in Table 2 when (u,Q) = (100, 3n) with 500 random starts has MIPD value
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0.8011 and ARD of 11.6503; this design required an average of 2.3137 seconds to compute

each component design over the 500 starts. In contrast, the best (α,J) = (0.5, {1, 2})

Mm/ARD design for this same selection of CoNcaD tuning parameters, using 500 random

starts in order to be comparable, shows roughly a 370% improvement in the ARD which

decreases to 3.1481, with 28% degradation in MIPD value to 0.5768; however, an average of

241.0498 seconds were required to compute each component design over the 500 starts. In

addition, the best compromise Mm/ARD design which is shown in Figure 4(b) has visually

more attractive one- and two-dimensional projections than the Mm design (Figure 4(a)).

This is because the Mm designs tend to explore the corners of the space first, resulting in

poor exploration of the center of the design region. To contrast the use of CoNcaD with

recommended number of 100 random starts for this problem results in a design with MIPD

of 0.5959, ARD of 3.1434, and required a total of 278 minutes to construct.
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