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Abstract Many engineering design optimization problems contain multiple
objective functions all of which it is desired to minimize, say. One approach
to solving this problem is to identify those inputs to the objective functions
that produce an output (vector) on the Pareto Front; the inputs that pro-
duce outputs on the Pareto Front form the Pareto Set. This paper proposes
a method for identifying the Pareto Front and the Pareto Set when the ob-
jective functions are expensive to compute. The method replaces the objective
function evaluations by a rapidly computable approximator based on an in-
terpolating Gaussian process (GP) model. It sequentially selects new input
sites guided by an improvement function; the next input to evaluate each
output is that vector which maximizes the conditional expected value of this
improvement function given the current data. The method introduced in this
paper provides two advances within this framework. First, it proposes an im-
provement function based on the modified maximin fitness function. Second,
it uses a family of GP models that allow for dependent output functions but
which permits zero covariance should the data be consistent with a model
of no association. GP models with dependent component functions have the
potential to provide more precise predictions of competing objectives than
independent GPs. A closed-form expression is derived for the conditional ex-
pectation of the proposed improvement function when there are two objective
functions; simulation is used to evaluate this expectation when there are three
or more objectives. Examples from the multiobjective optimization literature
are presented to show that the proposed procedure can improve substantially
previously proposed statistical improvement criteria for the computationally
intensive multiobjective optimization setting.

Keywords Computer experiment · Kriging · Gaussian Process · Pareto
optimization · Nonseparable model · Computer simulator
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1 Introduction

This paper proposes an algorithm for sequentially designing a sequence of
inputs at which to evaluate a set of functions so to identify the Pareto Front
of this set of functions and the Pareto Set of inputs producing function values
on the Pareto front. Stated in detail, it assumed that there are m functions
of interest which are denoted by y1(x),. . . ,ym(x)). The number of inputs to
the functions is denoted by d and x = (x1, . . . , xd) denotes a generic input of
the function. The input space for x is denoted by X which, therefore, subset
of IRd. The objective is to find the complement of the set of dominated inputs
x. The input x1 ∈ X is said to be dominated if there is an input x2 ∈ X with
x2 6= x1 for which if yi(x1) ≤ yi(x2) for all i = 1, . . . ,m. Geometrically, y(x1)
dominates y(x2) if y(x1) is to the “southwest” of y(x2). Stated in other words,
the goal is to find the set of all nondominated inputs x ∈ X ; the latter set is
called the Pareto Set. The set of y1(x),. . . ,ym(x)) corresponding to inputs x

in the Pareto set is termed the Pareto Front. Stating the goal geometrically,
we propose an algorithm which adaptively determines a sequence of inputs x
that identifies the “southwest” boundary of the set of function values y(x) for
x ∈ X .

In most real-world applications, the Pareto front is an uncountable set and
cannot be found analytically. Therefore this paper, as do virtually all papers
that identify Pareto Fronts/Sets, finds a discrete approximation to the Pareto
front. In addition, many current methodologies for approximating the Pareto
front and the Pareto set, such as the weighted sum method, the ǫ−constrained
method, and multiobjective evolutionary algorithms, require a large number
of function evaluations. This paper proposes methodology for cases when y(·)
is expensive-to-compute and thus a budget with a severely limited number of

evaluations are possible.

Broadly, the approach used in this paper is to build a cheap-to-compute
surrogate, a “meta-model,” for y(·), and then use the surrogate to guide the
search for nondominated points. The authors will employ an interpolator for
y(·) based on a Gaussian process (GP) model (see [15]). While the use of
interpolator/expected improvement has been considered previously in the lit-
erature (see [16], [11], [12], [6], and [13]) the methodology proposed in this
paper provides two key improvements in its detailed implementation over pre-
vious research. First, the improvement criterion is based on the maximin fit-
ness function (see [2]). Second, it is the only proposed multiobjective expected
improvement approach that considers the use of stochastic prediction mod-
els which allow for dependence among the components of y(·); depending on
the application and dependence model, there have applications where allowing
dependence can lead to improved procedure performance ([?], [?], []).

The remainder of this paper is organized as follows. To provide context,
Section 2 reviews the expected improvement approach proposed in [16] and
[11] for single-objective functions. Section 3 describes the multivariate Gaus-
sian process model that forms the basis for the proposed objective function
emulators. Section 4 introduces the proposed improvement criterion and de-
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scribes its implementation. Section 5 presents the sequential algorithm used
to approximate Pareto Front and Pareto Set. Section 6 presents two exam-
ples that contrasts the new method with previous proposals from [12]. Finally,
Section 7 contains recommendations as to which methods should be used in
practice, compares the proposed approach to the hypervolume-based method
of [6], and discusses future research regarding the expected improvement ap-
proach to multiobjective optimization.

2 Optimization of a Single Black-Box Function

To facilitate understanding the multivariate optimization proposal given in this
paper, the present section introduces the key ideas for the simpler problem of
minimizing a single (expensive) real-valued function defined on a d-dimensional
input space X . The method described is due to [16] and [11] who introduced
a method for minimizing y(·) based on a Gaussian stochastic process model
which they called the “efficient global optimization” (EGO) algorithm. Given
the probabilistic assessment of y(x) that is provided by the GP model, the
authors compute the (conditional) expectation of a heuristically selected im-
provement function given the current data in order to determine the informa-
tion in each potential x about the global minimum of y(·).

Suppose that y(·) has been evaluated at each input in Dn = {x1, . . . ,xn} ⊂
X . Let yn = (y(x1), . . . , y(xn))

T denote the corresponding vector of outputs.
The deterministic output y(x) is regarded as a draw from a stationary GP,
Y (x), with mean β, variance σ2, and correlation function

R (x,x′;ρ, θ) = exp

{
d∑

i=1

θi |xi − x′
i|
ρi

}
. (1)

The parameters (β, σ2, θ1, . . . , θd, ρ1, . . . , ρd) are unknown and must be esti-
mated to complete specification of the GP model. This GP provides the basis
for interpolation of y(·) and uncertainty assessment of the predicted values.

It can be shown that the best linear unbiased predictor (BLUP) of y(x) is
the mean of Y (x) conditional on Y n = (Y (x1), . . . , Y (xn)) equal to yn ([14]).
When the covariance parameters σ2, θ, ρ are known, the BLUP of y(x) is

ŷ(x) = β̂ + r′R−1
(
yn − 1β̂

)
, (2)

where R = (Rij) is the n × n matrix with Rij = R (xi,xj ;ρ, θ), r = r(x) =
(ri) is the n× 1 vector with ri = R (x,xi;ρ, θ), and

β̂ =
1TR−1yn

1TR−11
. (3)

The mean square prediction error (MSPE) of ŷ(x), which is used to assess
its accuracy is defined to be s2(x) ≡ E{(Y (x) − ŷ(x))2|yn} which can be
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shown to be

s2(x) = σ2

[
1− rTR−1r +

(
1− 1TR−11

)2

1TR−11

]
. (4)

In practice, σ2, θ and ρ are unknown. The frequentist approach to address-
ing this situation is to estimate the unknown parameters by, say, maximum
likelihood and apply formulas (2) and (4) with estimated parameters produc-
ing an “empirical” BLUP and MSPE. Then, conditional on yn, the process
Y (x) is (approximately) a normally distributed random variable with mean
ŷ(x) and variance s2(x). An alternative modeling approach to the problem
of unknown parameters is the Bayesian solution in which priors are identified
that embody knowledge about these quantities. While both approaches can
be applied below, this paper will follow [16] and [11] and substitute estimated
parameters into the BLUP and MSPE formulas.

The EGO algorithm is based on a heuristically selected improvement func-
tion defined for each new potential input x. [16] and [11] selected the theoret-
ical improvement function

I(y(x)) = (ynmin − y(x)) 1[yn
min

>y(x)], (5)

where ynmin is the smallest element in yn and 1E is 1 if E is true and 1E is 0
if E is false. Of course, I(y(x)) is unknown but a probabilistic assessment can
be made of its possible values by substituting Y (x) for y(x). The expected
improvement is defined to be conditional expection of I(Y (x)) given yn, i.e.,
EI(x) = E {I(Y (x))|yn}, is approximately

EI(x)

=

[
(ynmin − ŷ(x))Φ

(
ynmin − ŷ(x)

s(x)

)
+ s(x)φ

(
ynmin − ŷ(x)

s(x)

)]
1[s(x)>0] (6)

where Φ(·) is the standard normal cumulative distribution function and φ(·) is
the associated density function. The value of EI(x) will be large if either the
predicted value ŷ(x) is much smaller than ynmin or s(x) is large (which means
there is a large amount of uncertainty in the estimated y(x)). The steps of the
EGO algorithm are

1. Evaluate y(·) at an initial space-filling design Dn = {x1, . . . ,xn}, such as
a maximin Latin hypercube.

2. Estimate the stochastic process parameters β, σ2, θ and ρ based on yn.
3. Find xn+1 ∈ argmaxEI(x).
4. Evaluate y(xn+1), increment n, and go to Step 2 unless a stopping criterion

has been met.

This paper will generalize the philosophy of the EGO algorithm to construct
a finite approximation to the Pareto set and the Pareto front.
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3 Modeling Multiple Outputs using Multivariate Gaussian

Processes

Let y(x) = (y1(x), . . . , ym(x)) denote an m-dimensional black box function
with a d-dimensional input x in X . Throughout it will be assumed that y(x)
can be described as a draw from an m-variate Gaussian process Y (x). This
paper considers Y (x) processes of the form

Y (x) = β +AZ(x) (7)

where A = (aij) is a symmetric m×m positive-definite matrix,

β = (β1 . . . βm)T , (8)

and Z(x) = (Z1(x), . . . , Zm(x))T is an m× 1 vector of mutually independent
stationary Gaussian processes with zero mean and unit variance. The mean of
the process Y (·) is β; its variance-covariance is determined by A.

In more detail, it is assumed that the process Zi(x) is assumed to have
correlation function of the form

R(x,x′; θi) = exp





d∑

j=1

θi,j (xi − x′
i)

2



 . (9)

Under these assumptions it is straightforward to show

Cov(Y (x),Y (x′)) = Adiag (R(x− x′; θ1), . . . , R(x− x′; θm))AT , (10)

so that, when x = x′,

Cov(Y (x),Y (x)) = AAT = AA ≡ Σ0. (11)

Thus the model states that the components of Y (x) have a correlation and
variance structure that is the same for all x and that the component process
Yi(x) is stationary with variance

∑m

j=1 a
2
ij .

Suppose that y(·) has been evaluated at the n inputs inDn = (x1, . . . ,xn) ⊂
X . Let ym,n = (yT (x1), . . . ,y

T (xn))
T denote the associated mn × 1 stacked

vector of outputs and Y m,n the associated process values. Let Σmn denote the
mn×mn covariance matrix of Y m,n; it is easy to compute that Σmn is




Σ0 Cov(Y (x1),Y (x2)) · · · Cov(Y (x),Y (xn))
Cov(Y (x1),Y (x2)) Σ0 · · · Cov(Y (x2),Y (xn))

...
...

. . .
...

Cov(Y (x1),Y (xn)) Cov(Y (x2),Y (xn)) · · · Σ0


 . (12)

For any given input x0, the m×mn covariance of Y (x0) and Y m,n is denoted
by

Σ0,m,n = (Cov(Y (x0), (Y (x1)), . . . , Cov((Y (x0), (Y (xn))) . (13)
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This paper will consider two general choices of form for A. The first form
assumes that A is a diagonal matrix with positive entries. This assumption is
equivalent to fitting a separate Gaussian process to each yi(·), 1 ≤ i ≤ m and
hence is termed the independence model. The second assumed form for A is
any symmetric, positive-definite matrix. This assumption permits dependence
among the various outputs and hence is termed the nonseparable dependence

model. The nonseparable dependence model, A is to be thought of as the
unique matrix square root of Σ0 (which can be calculated via eigen decompo-
sition). Note that while some geostatistics literature proposes treating A as
the lower triangular Cholesky decomposition of Σ0 (see [10] and [3]), [9] shows
that such a specification induces artificial asymmetry into the covariance struc-
ture and therefore argues that the eigen decomposition is more appropriate
for modeling functions having no a priori hierarchy of dependence.

Assuming that β, A, and θ = (θ1, . . . , θm) are known, the Gaussian as-
sumption gives that

[(
Y (x0)
Y m,n

)∣∣∣∣β
]
∼ N

([
Im

F

]
β,

[
Σ0 Σ0,m,n

ΣT
0,m,n Σm,n

])
, (14)

where F = 1n ⊗ Im. Therefore, standard multivariate normal results yield

[Y (x0)|Y m,n = ym,n,β]

∼ N
(
β +Σ0,m,nΣm,n(y

m,n −Fβ), Σ0 −Σ0,m,nΣ
−1
m,nΣ

T
0,m,n

)
. (15)

Hence integrating out β with respect to the standard non-informative uniform
prior yields

[Y (x0)|Y m,n = ym,n] ∼ N (ŷ(x0), S(x0)) , (16)

where
ŷ(x0) = β̂GLS +Σ0,m,nΣm,n(y

m,n −F β̂GLS), with (17)

β̂GLS = (FTΣ−1
m,nF)−1FTΣ−1

m,ny
m,n, (18)

and estimated prediction uncertainty

S(x0) = Σ0 −Σ0,m,nΣ
−1
m,nΣ

T
0,m,n + (Im −Σ0,m,nΣ

−1
m,nF)

×(FTΣ−1
m,nF)−1 × (Im −Σ0,m,nΣ

−1
m,nF)T . (19)

When A (assumed to be one of the two model forms) and θ are unknown,
this paper estimates them using restricted maximum likelihood (REML) and
their estimates are plugged into (17), (18), and (19). Specifically, the estimated
A and θ are

(
Â, θ̂

)
∈ argmax

{
−1

2
log (|Σm,n|)

1

2
log
(
FTΣ−1

m,nF
)

− 1

2

(
ym,n −F β̂GLS

)T
Σ−1

m,n

(
ym,n −F β̂GLS

)}
(20)

where the maximum is over the assumed form for A.
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4 The Expected Maximin Improvement Function

This section proposes an improvement function tailored to the Pareto opti-
mization problem. Let Pn

Y denote the set of nondominated outputs among the
first n computed output vectors, and let Pn

X =
{
x∗
1, . . . ,x

∗
p

}
, say, denote the

associated set of x inputs; thus p ≤ n and Pn
Y =

{
y(x∗

1), . . . ,y(x
∗
p)
}
.

The proposed generalization of I(y(x)) is the maximin improvement func-

tion

IM (y(x)) ≡ − max
xi∈Pn

X

min
j=1,...,m

(yj(x)− yj(xi))

× 1[
− max

xi∈Pn
X

min
j=1,...,m

(yj(x)− yj(xi)) < 0

] . (21)

where the indicator function 1E is 1 or 0 according as the event E is true or
not.

A non-truncated version of (21) (i.e., lacking the indicator function com-
ponent) was introduced in [4]. Both improvement functions are based on the
“modified maximin fitness function”

max
xi∈Pn

X

min
j=1,...,m

(yj(x) − yj(xi)) (22)

presented in [2] and was originally introduced as a component of a multiob-
jective evolutionary algorithm. The expected improvement function

EIM(x) = E{IM (Y (x))|Y n,m = yn,m} (23)

is used below.
Before describing the calculation of EIM(x), some properties of IM (y(x))

will be discussed. First, when m = 1, it is straightforward to show that
IM(y(x)) = I(y(x)) so that single-objective improvement function is just a
special case of the maximin improvement function. As noted by [2], it is easy
to show that IM (y(x)) > 0 if and only if y(x) is not dominated by any vector
in Pn

Y , and IM (x) = 0 if and only if y(x) is dominated by a vector in Pn
Y .

Additionally, IM (x) is monotonic with respect to Pareto dominance, in the
sense that IM (y(x)) ≥ IM (y(x′)) provided that y(x) � y(x′).

Lastly, it is noted that IM(y(x)) is closely related to the additive Binary-ǫ
indicator; the Binary-ǫ indicator is a popular Pareto set approximation quality
indicator introduced in [19]. This indicator allows one to compare two Pareto
Front approximations B and C in the objective space. Roughly, the additive
binary-ǫ indicator of C relative to B measures how much “better” C is than
B in terms of dominance; specifically, the additive binary-ǫ indicator of C
relative to B is the smallest real number that must be added to all vectors in
C (thus “worsening” C) so that B dominates the degraded C, i.e.,

Iǫ+ (B,C) = inf
ǫ∈R

{
∀ y2 ∈ C ∃ y1 ∈ B : y1i ≤ ǫ+ y2i ∀ i = 1, . . . ,m

}
. (24)



Expected Maximin Improvement 9

To describe the relationship between the expected maximin improvement and
the additive binary-ǫ indicator, first let Pn+1

Y (x) be the current Pareto front

if ym,n is augmented by y(x). Then, one could think of Iǫ+
(
Pn
Y ,Pn+1

Y (x)
)

as quantifying how much better Pn+1
Y (x) is than Pn

Y , i.e., how much y(x)
improves upon our current best Pareto front approximation. It is reasonable,
then, to use Iǫ+

(
Pn
Y ,Pn+1

Y (x)
)
as an improvement function, replace y(x) by

Y (x) in Iǫ+
(
Pn
Y ,Pn+1

Y (x)
)
and choose x to maximize

E
{
Iǫ+
(
Pn
Y ,Pn+1

Y (x)
)
|Y m,n = ym,n

}
. (25)

However, as the following theorem shows, such a strategy is actually equivalent
to the expected maximin fitness approach.

Theorem 1 Let Pn+1
Y (x) be the set of nondominated points in the set Pn

Y ∪
{y(x)}. Then, Iǫ+

(
Pn
Y ,Pn+1

Y (x)
)
= IM (y(x)).

Proof See Online Reseource 1

Therefore, using the maximin improvement function to control the search for
the Pareto front is essentially equivalent to using the additive binary-ǫ indica-
tor to control the search for the Pareto front.

There is a final practical issue one must resolve before calculating EIM(x).
The maximin improvement function and its expectation both depend upon
the scaling of the various outputs y1(·), . . . , ym(·). Therefore, the outputs are
empirically scaled so that, for each objective yi(·), min {yi(x1), . . . , yi(xn)} = 0
and max {yi(x1), . . . , yi(xn)} = 1.

4.1 Calculation of EIM(x)

When m = 2 there is a nearly a closed-form expression for EIM(x) that can
be implemented quite accurately in computer code. When m ≥ 3, one must
use Monte Carlo methods to estimate EIM(x) (detailed in next section).

Returning to the m = 2 case where Y (x) = (Y1(x), Y2(x)) has conditional
mean and covariance

ŷ(x) =

[
ŷ1(x)
ŷ2(x)

]

and

S(x) =

[
s21(x) ρ(x)s1(x)s2(x)

ρ(x)s1(x)s2(x) s22(x)

]
, say,

respectively, where ρ(x) is the correlation between the two outputs.
Without loss of generality, assume that the points are labeled so that

y1(x
∗
1) ≤ . . . ≤ y1(x

∗
p). As a consequence of the fact that Pn

Y cannot con-
tain any dominated points, it must be the case that y2(x

∗
1) ≥ . . . ≥ y2(x

∗
p).

For notational convenience, let y1(x
∗
p+1) = y2(x

∗
0) = ∞, k(1) = 2, k(2) = 1,

h(1, j) = j−1, and h(2, j) = j+1. It is straightforward to prove that IM(y(x))
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Fig. 1 Regions of integration R1,1, . . . , R1,p, R2,1, . . . , R2,p and RD for a p = 3 point Pareto
Front

partitions R2 into 2p+1 regions R1,1, . . . , R1,p, R2,1, . . . , R2,p and RD, where,
for i = 1, 2 and j = 1, . . . , p, Ri,j is given by

{(
yi, yk(i)

)
: yi ≤ yi(x

∗
j ),

yk(i)(x
∗
j )− yi(x

∗
j ) + yi ≤ yk(i) ≤ yk(i)(x

∗
h(i,j))− yi(x

∗
j ) + yi

}
(26)

and

RD =
{
(y1, y2) : {(y1, y2)} ≺ Pn

Y

}
. (27)

Figure 1 shows an example of this set of regions.
In the general case, IM(y(x)) is equal to yi(x

∗
j ) − yi for x ∈ Ri,j , while

IM(y(x)) is equal to 0 for x ∈ RD. Therefore, letting

Inti,j =

∫ yi(x∗
j )

−∞

∫ yk(i)(x∗

h(i,j))−yi(x∗
j )+yi

yk(i)(x∗
j
)−yi(x∗

j
)+yi

[
yi(x

∗
j )− yi

]
f(y1, y2)dyk(i)dyi(28)

where i = 1, 2, j = 1, . . . , p, and f(y1, y2) is the bivariate conditional normal
probability density function of Y (x) gives

EIM(x) =

2∑

i

p∑

j

Inti,j . (29)
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Finally, accounting for the different upper and lower bounds for each Inti,j ,
we can prove the following theorem:

Theorem 2

EIM(x) =
2∑

i=1

p∑

j=1

(
Int1i,j(x) + Int2i,j(x) + Int3i,j(x)

)
(30)

where

Int1i,j(x) = si(x)φ

(
d(i, j)

si(x)

)

×


Φ


−d(k(i), j) + ρ(x)sk(i)(x)d(i, j)/si(x)√

(1− ρ2(x))s2
k(i)(x)




− Φ


−d(k(i), h(i, j)) + ρ(x)sk(i)(x)d(i, j)/si(x)√

(1− ρ2(x))s2
k(i)(x)




 ,

Int2i,j(x) =
√
q(i, j)

si(x)− sk(i)(x)ρ(x)√
2π(1− ρ2(x))s2

k(i)(x)

×


exp



−1

2


 ŷ

2
i (x)

s2i (x)
+

(
yi(x

∗
j )− d(k(i), j) + ρ(x)sk(i)(x)ŷi(x)/si(x)

)2
√
(1− ρ2(x))s2

k(i)(x)







× exp

{
1

2
q(i, j)v2(i, j)

}
Φ

(
yi(x

∗
j )− q(i, j)v(i, j)√

q(i, j)

)

− exp



−1

2


 ŷ

2
i (x)

s2i (x)
+

(
yi(x

∗
j )− d(k(i), h(i, j)) + ρ(x)sk(i)(x)ŷi(x)/si(x)

)2
√
(1− ρ2(x))s2

k(i)(x)







× exp

{
1

2
q(i, j)v2(i, h(i, j))

}
Φ

(
yi(x

∗
j )− q(i, j)v(i, h(i, j))√

q(i, j)

)]

and

Int3i,j(x) =
(
yi(x

∗
j )− ŷi(x)

)

×



∫ u(i,j)

0

Φ


d(i, j)− d(k(i), j) + (sk(i)(x)ρ(x)− si(x))Φ

−1(w)√
(1 − ρ2(x))s2

k(i)(x)


 dw

−
∫ u(i,j)

0

Φ


d(i, j)− d(k(i), h(i, j)) + (sk(i)(x)ρ(x)− si(x))Φ

−1(w)√
(1− ρ2(x))s2

k(i)(x)


 dw



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with constants

u(i, j) = Φ

(
d(i, j)

si(x)

)

v(i, j) =
ŷi(x)

s2i (x)
+

y2(x
∗
j )− d(k(i), j) + ρ(x)sk(i)(x)ŷi(x)/si(x)√

(1− ρ2(x))s2
k(i)(x)

q(i, j) =
(1− ρ2(x))s2k(i)(x)s

2
i (x)

s2i (x) + s2
k(i)(x)− 2ρ(x)si(x)sk(i)(x)

d(i, j) = yi(x
∗
j )− ŷi(x).

Proof We prove this result in Appendix ?? by showing that Inti,j = Int1i,j +

Int2i,j + Int3i,j .

5 An Algorithm for Approximating the Pareto Front and Set

First, an outline of our proposed multiobjective optimization algorithm based
on the expected maximin fitness function will be stated. Then some of the
computational details and issues in its implementation will be discussed.

1. Evaluate y(·) at an initial space-filling design Dn = (x1, . . . ,xn) ⊂ X .
Let ym,n = (yT (x1), . . . ,y

T (xn))
T . Empirically scale the ouputs so that

min {yi(x1), . . . , yi(xn)} = 0 and max {yi(x1), . . . , yi(xn)} = 1.
2. Estimate θ and A using REML based on the ym,n (or another method

such as maximum likelihood).
3. Calculate the current Pareto set Pn

X and current Pareto front Pn
Y . These

are the nondominated inputs and outputs, respectively, in Dn and ym,n.
4. Find xn+1 ∈ argmax EIM (x).
5. Evaluate y(xn+1). Repeat Steps 2 - 5 with

ym,n+1 = (yT (x1), . . . ,y
T (xn),y

T (xn+1))
T (31)

until the computational budget has been exhausted or other stopping cri-
teria met.

While the computational budget will often be the reason that determines
stopping, there are other possible stopping criteria. Perhaps the most impor-
tant of these is to use the maximum expected improvement, max EIM (x)
given the data at collected to date. If the maximum expected improvement is
sufficiently small, then one might consider terminating sampling ([16]). Alter-
natively, because the correlation parameters are re-estimated after each new
run, the sequence of maximum expected improvements need not be monotone
decreasing; hence a stopping criterion based on having a sufficiently small
maximum expected improvement after a sequence of, say 5, addition inputs
are specified, is often used as a more cautious stopping criterion ([?]).

In the examples below, the initial space-filling design was taken to be a
maximin LHD constructed using the MATLAB function bestlh, available in



Expected Maximin Improvement 13

on-line supplementary material for [8]. In the case of independent outputs,
REML estimates of the covariance parameters (and then ŷ(x), and S(x))
were obtained using MPErK software, which can be obtained by contacting
the second author. In the nonseparable dependence model, the MATLAB func-
tion ga, also available as a component of the on-line supplementary material
to [8], was used to obtain the initial estimate of θ and A; these values were
taken to be the initial point in an application of the MATLAB fmincon

function to produce the final estimates of θ and A. These estimates are then
used to calculate y(x), and S(x). The MATLAB function paretoset.m (writ-
ten by Y. Cao and available at http://www.mathworks.com/matlabcentral/
fileexchange/15181-pareto-set) was used to calculate Pn

X and Pn
Y .

NOMADm, Mark Abramson’s MATLAB implementation of a mesh adap-
tive direct search (MADS) algorithm (see [1]) available at http://www.gerad.
ca/NOMAD/Abramson/nomadm.html, was used to optimize EIM (x). Whenm =
2, EIM (x) can be directly calculated and was optimized in a straightforward
manner. When m ≥ 3, EIM (x) was optimized via sample average approxima-
tion (SAA, described in [17]). The idea of SSA is to construct an approxima-
tion to EIM (x) based on a random sample from the conditional distribution
of Y (x) given the current data; then this easy-to-calculate approximation
is optimized. In detail, first an independent, identically distributed sample
Z1, . . . ,ZS were generated from a N(0m, Im) distribution. For any given x,
letting C(x) be the Cholesky decomposition of S(x); each Zi is transformed
into a random variable Y i(x) = C(X)Zi + ŷ(x) ∼ N(ŷ(x),S(x)). Thus,
Y 1(x), . . . ,Y S(X) is a sample from the conditional distribtion of Y (x) given

the data. The sample average function ÊIM (x) = 1
S

∑S

s=1 I
s
M(x) is a deter-

ministic function for a particular realization of the random sampleZ1, . . . ,ZS)
where

IsM (x) = − max
xi∈Pn

X

min
j=1,...,m

(
Y s
j (x)− yj(xi)

)

× 1[
− max

xi∈Pn
X

min
j=1,...,m

(
Y s
j (x) − yj(xi)

)
< 0

]. (32)

The next input is found by calculating xn+1 ∈ argmax ÊIM (x) via a MADS
algorithm.

6 Examples

The performance of the expected maximin improvement (EMMI) will be com-
pared with that of two other competing improvement criteria.The first crite-
rion from [12] proposed choosing xn+1 to maximize the conditional probability
that Y (x) is not dominated by the Pareto front, given the first n evaluations
of y(·), i.e., to select xn+1 to maximize

IPI(x) = P
{
Y (x) 6� y ∀ y ∈ Pn

Y

}
. (33)
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Equation (33) is termed the probability improvement (PI). The advantage of
this criterion is that it is not dependent on the scaling of the output.

A second criterion for selecting xn+1 proposed in [12] maximizes the weighted
conditional probability

ICWPI(x) = P
{
Y (x) 6� y ∀ y ∈ Pn

Y

}
(34)

× min
xi∈Pn

X

√√√√
m∑

k=1

(
Y k(x)− yk(xi)

)2
(35)

where Y (x) is the centroid of the n outputs; Y (x) is defined to be the ratio
of the conditional quantities

Y (x) =
E
{
Y (x)1[Y (x) 6�y ∀ y∈Pn

Y)

}

P
{
Y (x) 6� y ∀ y ∈ Pn

Y

}

(see also [8]). In words ICWPI(x) is centroid weighted version of the PI crite-
rion and hence we call it the CWPI criterion. Unlike PI, the relative scaling of
the various objectives must be resolved when implementing this method, just
as with EIM(x). Using ICWPI(x) can be shown to be a generalization of the
single-objective expected improvement function.

In addition to their visual fit, this section will use two real-valued quantities
to summarize the quality of the Pareto Front produced by the competing
criterion. The two methods are the hypervolume indicator and the additive

binary-ǫ indicator. The latter has already been described in Section 4. In the
following paragraph a brief description of the former will be given; readers
should refer to [18] for an in-depth discussion of Pareto set approximation
quality indicators.

The hypervolume indicator of a Pareto front approximation measures the
area of the region dominated by this approximation with respect to a given
reference point. To calculate the hypervolume indicator of a finite set which
is a Pareto Front approximation, say B, a reference point, say R, must be
identified that is weakly dominated by all vectors in the output space (see
Figure 2). The hypervolume indicator of B is defined to be

IH (B,R) =

∫

IRm
1{y | y � R, B � {y}}dy. (36)

In words, IH (B,R) is the volume of the set of points y in the objective space
that dominate R and which are dominated by one or more points in B so
that the larger IH (B,R), the better the approximating set B. Figure 2 shows
IH (B,R) as the shaded area for an m = 2 dimensional example with a five
point B where R is the upper right-hand corner of the shaded area.

While the hypervolume indicator will be used in this section to compare the
effectiveness of the expected maximin improvement criteria with the Pareto
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Fig. 2 The filled circles are five-point set B, the filled square is the reference point R, and
the shaded shaded region is IH (B,R)

Front approximators presented in [12], it is also possible to use the hypervol-
ume indicator to construct alternative improvement functions (see [6]). Ad-
ditional remarks about the effectiveness and computational feasibility of such
an approach will be discussed in Section 7.

6.1 MOP2 Function

The first example considered in the section is commonly referred to as the
MOP2 problem; this test problem was first described in [7]. MOP2 has a

d = 2-dimensional input space X = [−2, 2]
2
, and m = 2 objective functions

which are

y1(x) = 1− exp

{
−

2∑

i=1

(
xi −

1√
2

)2
}

and (37)

y2(x) = 1− exp

{
−

2∑

i=1

(
xi +

1√
2

)2
}
. (38)

The Pareto set is the line segment

PX =

{
x : x1 = x2 and − 1√

2
≤ x1 ≤ 1√

2
, − 1√

2
≤ x2 ≤ 1√

2

}
. (39)

A discrete approximation to PY was determined by evaluating (y1(x), y2(x))
at 201 x points uniformly spread in PX . This close approximation to PY served
as the basis for comparing the various Pareto front approximations constructed
for this example,

An initial 10 point (5 per input dimension) maximin Latin hypercube de-
sign was determined using the MATLAB function bestlh from [8]. The initial
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Table 1 Summary of quality indicators in five runs of each algorithm for the MOP2 problem

Iǫ+ (PY ,P10

Y
) IH (P10

Y
)

Method Mean Range Std Dev Mean Range Std Dev
EMMI-Ind 0.0706 0.0705-0.0707 0.0001 0.2886 0.2883-0.2890 0.0002
CWPI-Ind 0.0862 0.0668-0.0927 0.0112 0.2710 0.2649-0.2789 0.0060
PI-Ind 0.1368 0.0937-0.2334 0.0552 0.2531 0.2420-0.2638 0.0096
EMMI-Dep 0.0770 0.0715-0.0882 0.0067 0.2851 0.2811-0.2889 0.0037
CWPI-Dep 0.0937 0.0879-0.0977 0.0041 0.2609 0.2570-0.2647 0.0028
PI-Dep 0.1229 0.0978-0.1608 0.0256 0.2529 0.2306-0.2772 0.0226

design was augmented sequentially with 10 new inputs using EMMI and the
two competing methods sketched above. In all three cases both the indepen-
dence GP model and the nonseparable dependence GP model (introduced in
Section 3) were used in the conditional probability calculation. While CWPI
and PI methods can be implemented using the code provided in [8], this ex-
ample utilizes code written by the authors provides more favorable results for
PI and CWPI in terms of the hypervolume and additive binary-ǫ indicators.

To compare the Pareto front approximations, both graphical methods and
the Pareto set approximation quality indicators were employed. The true
Pareto front and various Pareto front approximations were plotted to allow vi-
sual inspection of the approximations; the spread of the approximation and its
closeness to the the true front were examined. The value of Iǫ+(PY ,P20

Y ) was
calculated for each approximation, where P20

Y denotes the Pareto Front based
on all 20 observations. Smaller values represent better approximations to the
true Pareto front. Lastly, the hypervolume indicator of the various approxi-
mations was computed using R = (1, 1) as the reference point; larger values of
the hypervolume indicator represent better approximations. While all of the
expected improvement algorithms are deterministic, in principal, they all use
maximization algorithms with stochastic search components. Therefore, these
quality indicators are random variables in practice. Hence each algorithm was
run five times and the mean, range, and standard deviations of the Pareto set
approximation quality indicators were computed.

From the results in Table 1, it appears that EMMI, calculated using ei-
ther the independence or dependence GP model, performed significantly better
than either the CWPI and PI implementations using either the dependent or
independence process model for (Y1(x), Y2(x)). The area of the dominated
hypervolume when using EMMI is above 0.28 on average using both the inde-
pendence and dependence models, while CWPI and PI are below 0.28 and 0.26
on average, respectively. The additive binary-ǫ indicator is, on average, larger
for CWPI and PI than for EMMI when using either the independence and
dependence model. It should also be noted that CWPI appears to outperform
PI, regardless of the dependence model assumed, which is consistent with the
results in [12]. The plots in Figure 3 show the results for one of the five runs;
the spread and uniformity of these points support the superiority of EMMI as
well as the numerical measures. While CWPI and PI do not perform poorly,
they do not appear as efficient as EMMI because both methods have sequen-
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Fig. 3 Sequentially added points using an independence model (left) and dependence model
(right) with CWPI (diamonds), EMMI (stars), and PI (circles). The initial 10 outputs are
denoted by crosses. The smooth curve running from the top left to the bottom right of each
plot is the true Pareto front.

tially added points that are not on but only near the true Pareto front. The
PI criterion appears to suffer from some clustering issues, because under both
the independence and dependence GP models it has a tendency to sequential
add inputs with similar outputs, while CWPI criterion appears to be more
effective at spreading out the sequentially added evaluations of the objective
function.

The somewhat surprising result here is that the dependence GP model
appears to offer little advantage over the less computationally demanding in-
dependence model. In fact, on average, it seems to perform slightly worse for
almost all improvement criteria, with the lone exception of the binary-ǫ indi-
cator for the PI criterion, where slightly smaller binary-ǫ values are produced
using the dependence model. One possible explanation is that the nonsep-
arable dependence GP model does not model this particular function well.
Perhaps a different dependence model for Y (x) is more appropriate. Another
possible explanation is that the particular dependence model is appropriate,
but our estimated covariance parameters, at some stages of the sequential de-
sign algorithm, are not globally optimal. Recall that obtaining estimates of the
covariance parameters for the dependence model requires maximization of a
restricted likelihood function which is a function of seven parameters. This is
computationally more difficult than the parameter estimation in the indepen-
dence model, which requires us to maximize two seperate restricted likelhihood
functions, each of which depends on two parameters. It is worth noting that
in other examples that the authors have run, which were constructed to sat-
isfy the form of the nonseparable dependence model used here, EMMI with
a nonseparable dependence structure produces larger hypervolume indicator
and smaller binary-ǫ comparisons with the true Pareto front.
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Table 2 Summary of the quality indicators for five runs of each algorithm for the DTLZ2

problem

Iǫ+ (PY ,P40

Y
) IH (P40

Y
)

Method Mean Range Std Dev Mean Range Std Dev
EMMI-Ind 0.2436 0.2329-0.2519 0.0077 0.7381 0.7308-0.7447 0.0059
CWPI-Ind 0.3023 0.2557-0.3324 0.0317 0.6684 0.6323-0.7120 0.0292
PI-Ind 0.4294 0.3675-0.4476 0.0345 0.5968 0.5738-0.6261 0.0215
EMMI-Dep 0.3044 0.2925-0.3221 0.0117 0.6960 0.6684-0.7130 0.0173
CWPI-Dep 0.2980 0.2762-0.3192 0.0178 0.6894 0.6445-0.7193 0.0278
PI-Dep 0.3926 0.2838-0.4435 0.0681 0.6273 0.5887-0.6563 0.0272

6.2 DTLZ2 Function

This example evaluates the performance of the various methods in a higher-
dimensional case. To do so, the DTLZ2 test function, described in [5], is used.
DTLZ2 was designed to be scalable in both the number of inputs and outputs.
This example considers the case where there are m = 4 outputs and d = 4
inputs. The input space is X = [0, 1]

4
. The outputs are

y1(x) = (1 + g(x4)) cos
(πx1

2

)
cos
(πx2

2

)
cos
(πx3

2

)
(40)

y2(x) = (1 + g(x4)) sin
(πx3

2

)
cos
(πx1

2

)
cos
(πx2

2

)
(41)

y3(x) = (1 + g(x4)) sin
(πx2

2

)
cos
(πx1

2

)
(42)

y4(x) = (1 + g(x4)) sin
(πx1

2

)
(43)

where

g(x4) = (x4 − 0.5)
2
. (44)

The Pareto set is PX = {x : x4 = 0.5} and PY is the concave set where
g(x4) = 0. A discrete approximation to PY was created by evaluating DTLZ2
at 20, 000 points uniformly spread in PX .

Proceeding in a similar fashion to the MOP2 example, an initial 20 point
maximin Latin hypercube design was constructed using the MATLAB function
bestlh from [8]. Then the original design was augmented sequentially with
20 new points chosen via EMMI, CWPI, and PI. The computations were
implemented using the independence and dependence GP models for all three
improvement criteria.

In this m = 4 dimensional example, graphical methods are problematic
to evaluate; thus only the hypervolume indicator IH(P40

Y ) and the additive
binary-ǫ indicator Iǫ+(PY ,P40

Y ) were used to compare the various methods.
As in the previous example, each algorithm was run five times and the mean,
range, and standard deviation of the two quality measures are reported in
Table 2.

The DTLZ2 results based on the independence GP model are similar to the
MOP2 results. In every run, EMMI-Ind outperforms CWPI-Ind and CWPI-Ind
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outperforms PI-Ind in terms of both the binary-ǫ indicator and the hypervol-
ume indicator. For the dependence GP model the results differ from those of
the MOP2 example. EMMI-Dep has a slightly larger hypervolume indicator
than CWPI-Dep on average, but CWPI-Dep has a slightly smaller binary-ǫ
indicator than EMMI-Dep on average. The range of both performance mea-
sures shows considerable overlap between the two improvement criteria. On the
other hand PI-Dep is still performs considerably worse than both EMMI-Dep
and CWPI-Dep.

The higher dimensional DTLZ2 example also provides some evidence of
the usefulness of the nonseparable dependence GP model. While EMMI-Dep
performs considerably poorer with the dependence model in regards to the two
Pareto set quality indicators, both CWPI-Dep and PI-Dep seem to have, on
average, slightly better performance when using the dependence model. The
major downside of the dependence model in this example is that this model
depends on 26 parameters which must be estimated. This is much more difficult
than the optimization problem posed by the independence model, which only
requires maximization of four separate restricted likelihood functions, each of
which depends on four parameters.

7 Conclusions and Discussion

This paper introduces a sequential design for a computer experiment involving
m ≥ 2 expensive-to-evaluate computer simulators to approximate determine
their Pareto Front and Pareto Set. The design uses an expected improvement
algorithm based on an interpolating stochastic process. Two versions of the
algorithm are implemented: the first uses independent processes to model each
output and the second uses a multivariate process that allows dependence
among the outputs. The latter was considered to potentially provide additional
predictive accuracy in applications where knowledge of the value of one output
at the current set of input data provides information about the value of a
different output at “nearby” inputs.

A closed-form expression is given for the proposed expected improvement
function when m = 2; a Monte-Carlo approximation to the expected improve-
ment function is presented when m ≥ 3. Based on the examples presented in
the paper and additional ones that are given in the Supplementary Material,
the authors recommend using the expected maximin improvement computed
using independent Gaussian process models (EMMI-Ind) for problems where it
is not possible to supply information concerning possible dependencies among
the output functions and where scaling of the objectives can be roughly de-
termined.

We mention one alternative criterion to EMMI-Ind that has attractive
performance but is more difficult to implement than EMMI-Ind. This criterion
is based on the hypervolume improvement function suggested in [6]. While
originally presented as a method of pre-screening inputs in a multiobjective
evolutionary algorithm (MOEA), one could use the hypervolume improvement



20 Joshua D. Svenson, Thomas J. Santner

function in the framework presented in Section 5. To do so, define

IH(y(x)) =





0 if y(x) � Pn
Y

or y(x) 6� R

IH
(
{y(x)} ∪ Pn

Y ,R
)
− IH

(
Pn
Y ,R

)
otherwise.

(45)

Then select xn+1 to maximize the expected hypervolume improvement

EIH(x) = E [IH (Y(x)) |Y m,n = ym,n] . (46)

While the authors have found that when EIH(x) can be implemented, it pro-
duces Pareto Front approximations that are competitive with those created
using EIM(x). However, the implementation of EIH(x) can be difficult for

two reasons. First, it is well-known in the MOEA literature that IH(·, ·), and
thus IH (y(x)), requires considerable computational overhead, even for mod-
erately sized m. Therefore, creating the sample average approximation based
on a sample of size S that we suggest for maximizing EIH(x) would require S
expensive hypervolume calculations. Second, EIH(x) requires the additional
specification of the dominated point R to carry out this method. If the ob-
jective function are truly black box functions, R can be difficult to identify.
Furthermore, even if one can specify upper bounds for all objectives, the value
of EIH(x) will depend on particular choice of the upper bound.

Based on the performance in the examples presented in Section 6 and in
other examples that are described in the Supplementary material, both the
expected maximin improvement and the expected hypervolume improvement
criteria are highly effective in approximating Pareto Fronts (and Pareto Sets).
However, the authors recommend the EMMI-Ind procedure because it is sim-
pler to implement, and requires considerably less computational overhead.

All of EIM(x), ICWPI(x), and EIH(x) require scaling each output. In the
case of EIM(x), Step 1 of our Section 5 Algorithm creates an empirical scaling
that is used with each output based on the initial training data; this strategy
performed well in all the examples we investigated. However, if one requires a
truly scale invariant improvement criterion, the probability of improvement is
a reasonable alternative. Additionally, using either the probability of improve-
ment or the centroid-based expected improvement criteria in conjunction with
the dependence GP model shows promise in larger m examples.

We conclude by summarizing the several additional research topics iden-
tified above that appear to be potentially fruitful, depending on ones’ appli-
cation needs. These include the development of improved prediction models
for multiple-output functions, updating strategies that add points in batches
rather than one-at-a-time, and the investigation of alternative scale invariant
improvement criteria.
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