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Abstract

An overview is given of statistical methodology for estimating sensitivity indices,

including moment-based, quadrature-based, and process-based estimators of global

sensitivity indices. The paper, together with the on-line Supplementary material,

derives the specific formulae needed for the computation of process-based Bayesian

and empirical Bayesian global sensitivity indices for a broad class of regression plus

stationary Gaussian process models using the Gaussian, Bohman, or cubic correla-

tion functions. It is shown how to restrict the parameter space for the compactly

supported Bohman and cubic correlation functions so that (at least) a given pro-

portion of the training data correlation entries are zero. This feature is important

in the situation where the set of training data is large. Formulae are given in a form

suitable for computation, and the estimation methods are illustrated and compared

via examples.
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1 Introduction

A computer experiment uses a computer simulator based on a mathematical model of a

physical process as an experimental tool to determine “responses” or “outputs” at a set of

user-specified input sites. These input sites constitute the design for the computer experi-

ment. Sophisticated computer codes may take hours or even days to produce an output and,

therefore, a flexible and rapidly-computable predictor, sometimes called a “code emulator”,

is often fitted to the inputs/outputs of the design, which are then called training data. An

emulator allows the detailed, albeit approximate, exploration of the output over the entire

experimental region. In preliminary stages of study using the simulator, emulators also allow

the researcher to assess the sensitivity of the output to individual inputs or groups of inputs,

i.e., to conduct a “sensitivity analysis”.

The purpose of this paper is to give an overview of moment-based, quadrature-based, and

process-based methods for assessing sensitivity which have appeared in disjoint form in the

literature and to compare these via examples. The paper derives the specific formulae re-

quired to compute Bayesian and empirical (plug-in) Bayesian estimates of sensitivity indices

for a broad class of regression plus stationary Gaussian process models.

Sensitivity indices, most especially total sensitivity indices, are one tool for “screening”, that

is for detecting influential inputs that have major impacts on an input-output system (see

Hyejung Moon and Dean (2011) and also Linkletter, Bingham, Hengartner, Higdon, and Ye

(2006) for contrasting approaches).

To introduce notation, assume that the computer simulator has d continuous input variables

denoted by the vector x = (x1, . . . , xd) and that the output of the simulator is denoted by

y(x) = y(x1, . . . , xd), which can be determined for x in the hyper-rectangle X =
∏d
j=1[lj , uj].

The local change in y(·) at x0 = (x01, . . . , x
0
d) as the jth input varies by a small amount

parallel to the xj axis can be determined from the partial derivatives of y(·) with respect to
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xj , i.e., from knowledge of

∂y(x)

∂xj

∣∣∣∣∣
x0

. (1.1)

In contrast, global sensitivity indices measure the change in y(·) as one (or more) inputs vary

over their entire range, when the remaining inputs are fixed. Global sensitivity indices can

suggest when there are interactions among sets of inputs (see Section 2).

For estimating local sensitivity indices (1.1), Morris (1991) proposed a one-at-time sampling

design. Assuming that the input space has been scaled to [0, 1]d, this method constructs a

design on the grid {0, 1/(p − 1), . . . , 1}d of [0, 1]d for a given positive integer p. For input

j ∈ {1, . . . d} and ∆ = q/(p− 1) for some positive integer q < p, Morris’s method selects as

a design a random sample of n inputs x ∈ {0, 1/(p− 1), . . . , 1}d for which both terms in the

numerator of

dj(x) ≡
y(x1, . . . , xj−1, xj +∆, xj+1, . . . , xd)− y(x)

∆
(1.2)

are defined. Using 2dn function evaluations, the design produces n independent dj(·) esti-

mates for each j ∈ {1, . . . , d}; the estimates for different j are dependent. If the resulting

set {dj(x)}x values has a large sample variance, this suggests that the influence of xj on

the output is highly dependent on the x at which dj(x) is evaluated; thus y(x) is likely to

be nonlinear in xj or involve interactions of xj with other inputs. If the sample mean and

sample variance of the {dj(x)}x values are both small, this suggests that xj has negligible

influence on y(·). If the sample mean of the {dj(x)}x values is roughly a non-zero constant

and the sample variance is small, this suggests that xj has an additive linear influence on

y(·).

This paper now focuses on global sensitivity indices (defined in Section 2), and compares a

number of methods that have been used to estimate these. Section 3 reviews moment-based

methods which use specific designs. A quadrature-based method of estimation that is not

tied to a specific experimental design is described in Section 4. Section 5 presents Bayesian

methods of estimating global sensitivity indices for a class of regression plus stationary Gaus-

sian process models. Together with the on-line Supplementary Material, Section 5 derives

specific formulae for these indices using Gaussian, Bohman, and cubic correlation functions.

In Section 6, the methods are compared for an example for which the true values of the

sensitivity indices can be determined. The Bayesian methods, in particular, work well in

estimating main effect and total effect sensitivity indices. Finally, Section 7 shows how to

restrict the parameter space for the compactly supported Bohman and cubic correlation

4



functions so that (at least) a given proportion of the training data correlation entries are

zero.

2 Global Sensitivity Indices

In this section, we give a careful description and definitions of global sensitivity indices,

and provide a proof of a key property of the functions on which the indices are built. Let

Q = {k1, . . . , ks} ⊂ {1, 2, . . . , d} denote a subset of the input variables and let xQ denote

the vector (xk1 , . . . , xks) where, for definiteness, it is assumed 1 ≤ k1 < k2 < · · · < ks ≤ d.

The vector of the remaining inputs will be denoted by x−Q also arranged in lexicographical

order of their input index. By rearranging the order of the entire set of input variables we

write x = (xQ,x−Q) in a slight abuse of notation.

One popular method of defining global sensitivity indices is in terms of the variability of the

(weighted) average output y(x) over x ∈ X =
∏d
j=1[lj, uj], (see Sobol´ (1990), Saltelli, Chan,

and Scott (2000)). To simplify notation, the development below takes [lj , uj] = [0, 1], for all

j = 1, . . . , d, so that X = [0, 1]d. The formulae can be extended to the more general hyper-

rectangle case. Also for simplicity of notation, it is assumed that the weight function can

be specified by a joint density function over X = [0, 1]d having independent and identically

distributed xj components each with probability density function g(x). For any subset E ⊆
{1, . . . , d} the notation g(xE) denotes

∏
ℓ∈E g(xℓ). It is a straightforward generalization to

allow the weight function to have independent but not identically distributed components.

2.1 Uncorrected and corrected mean effect functions

Let

y0 =
∫
y(x)g(x) dx = Eg [y(X)]

denote the overall (weighted) mean of y(x), expressing the fact that X ∼ g(·). More gener-

ally, for any non-empty Q = {k1, . . . , ks} ⊂ {1, 2, . . . , d}, define the uncorrected mean effect

(also known as the joint effect function) of the input vector xQ on y(·) to be

uQ(xQ) =
∫
y(xQ,x−Q)g(x−Q)dx−Q = Eg[y(X)|XQ = xQ]. (2.1)

5



Again, the notation makes clear that the function average can be viewed as an expectation

with respect to subcomponents ofX. For example, when Q = {j} for a given j ∈ {1, . . . , d},
the uncorrected mean effect when Xj is held fixed at xj is

uj(xj) =
∫
y(x1, . . . , xd)

∏

ℓ 6=j

g(xℓ)dxℓ = E [y(X)|Xj = xj ] ,

which is called the main effect function of input j associated with y(x). Plots of the main

effect functions uj(xj) versus xj , and plots of the joint effect functions uj1j2(xj1 , xj2) versus

pairs of inputs (xj1 , xj2) can be used to provide a visual understanding of the change in the

averaged y(x) with respect to each single input or pairs of inputs (see, for example, Jones,

Schonlau, and Welch (1998)).

In general, the joint effect function uQ(xQ) describes average changes in y(x) on the same

scale and in the same range as y(x). The global sensitivity indices that will be defined shortly

will be based on the variances of a centered and orthogonalized version of the uQ(XQ), where

the variance is with respect to the XQ input distribution.

Viewed with this goal in mind, the uQ(xQ) functions have an important defect that limits

their usefulness in directly defining sensitivity indices. When viewed as functions of the

random XQ inputs, the mean effect functions corresponding to different Q will, in general,

be correlated. Thus, Sobol´ (1990) and Sobol´ (1993) advocated the use of a functional

analysis of variance (ANVOA) decomposition of y(x) that modifies the uncorrected effect

functions and produces uncorrelated and mean zero versions of these functions (see also

Hoeffding (1948)). These modified functions are used to define the global sensitivity indices.

In particular, Sobol´ (1993) used the decomposition

y(x) = y0 +
d∑

j=1

yj(xj) +
∑

1≤j1<j2≤d

yj1,j2(xj1, xj2) + · · ·+ y1,2,...,d(x1, . . . , xd) (2.2)

whose components satisfy the “zero mean property”, meaning that for any (j1, . . . , js),

∫
yj1,...,js(xj1 , . . . , xjs)g(xjk) dxjk = 0 for any jk, k = 1, . . . , s , (2.3)

and whose components are pairwise orthogonal, meaning that for any (k1, . . . , ks) 6= (j1, . . . , jt),

Eg [yk1,...,ks(Xk1 , . . . , Xks)yj1,...,jt(Xj1 , . . . , Xjt)]

=
∫
yk1,...,ks(xk1 , . . . , xks)yj1,...,jt(xj1 , . . . , xjt)g(xQ) dxQ = 0. (2.4)
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where Q = {k1, . . . , ks} ∪ {j1, . . . , jt}. The component terms of (2.2) are called corrected

(mean) effect functions and are defined as follows. For Q = {j} with j ∈ {1, . . . , d},

yj(xj) ≡ uj(xj)− y0 = Eg [y (X) |Xj = xj ] − Eg [y(X)] , (2.5)

which is called the corrected main effect function of input xj . For Q ⊆ {1, . . . d} having two

or more elements, yQ(xQ) is defined recursively to be,

yQ(xQ) = uQ(xQ)−
∑

E⊂Q

yE(xE)− y0, (2.6)

where the sum is over the collection of all non-empty, proper subsets E of Q. For example,

when Q = {j1, j2} with 1 ≤ j1 < j2 ≤ d,

yj1j2(xj1 , xj2) =uj1j2(xj1 , xj2) − yj1(xj1) − yj2(xj2)− y0

=uj1j2(xj1 , xj2) − uj1(xj1) − uj2(xj2) + y0

which is called the corrected interaction effect function of inputs xj1 and xj2 .

Once (2.3) has been established, it is straightforward to check that (2.4) holds for any yQ(xQ)

term (2.6). However, the proof of (2.3) is more complicated and does not appear to be readily

available in the literature. A new proof is provided in Lemma 2.1.

Lemma 2.1 For Q = {j1, . . . , js} ⊆ {1, . . . , d},
∫

[0,1]

yQ(xQ)g(xjk)dxjk = 0 (2.7)

for any jk ∈ Q.

Proof: The proof proceeds by induction on the number of elements in Q. First, from (2.1),

(2.5) and the definition of y0, (2.7) holds for any main effect function yj(xj). Next, select a

subset Q ⊆ {1, . . . , d} containing two or more elements, and assume that (2.7) holds for all

proper subsets of E ⊂ Q. Focus on element ℓ ∈ Q, and let Q\ℓ denote the set difference of Q

and ℓ, which is non-empty by definition of Q. Partition the set of non-empty subsets E of Q

into the set U+ of subsets E that contain ℓ, and the set U− of subsets E that do not contain

ℓ; note that Q\ℓ ∈ U−. Then, by (2.6),
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∫
yQ(xQ) g(xℓ)dxℓ=

∫ 

uQ(xQ)−

∑

E⊂Q

yE(xE)− y0



 g(xℓ) dxℓ

=
∫ {∫

y(xQ,x−Q) g(x−Q)dx−Q

}
g(xℓ) dxℓ

−
∑

E∈U+

∫
yE(xE) g(xℓ) dxℓ −

∑

E∈U−

yE(xE)− y0 , (2.8)

using the fact that the third and fourth terms are constant with respect to integration over

xℓ (since ℓ 6∈ E for E ∈ U−). Now, the second term in (2.8) is zero since (2.7) holds for all

proper subsets of Q by assumption. Also, by (2.1), the first term is

∫
uQ(xQ) g(xℓ) dxℓ =

∫ ∫
y(xQ,x−Q) g(x−Q) g(xℓ) dxQ dxℓ = uQ\ℓ(xQ\ℓ) ,

so that (2.8) becomes

∫
yQ(xQ) g(xℓ)dxℓ= uQ\ℓ(xQ\ℓ)− 0−


 ∑

E∈U−;E 6=Q\ℓ

yE(xE) + yQ\ℓ(xQ\ℓ)


− y0 ,

which is zero by definition of uQ\ℓ(xQ\ℓ) in (2.6).

Notice that Lemma 2.1 implies that Eg [yQ(xQ)] = 0 for all Q ⊆ {1, . . . , d}. In the next

subsection, the corrected mean effect functions are used to define sensitivity indices.

2.2 Definitions of main effect and total effect sensitivity indices

We now define global sensitivity indices in terms of the variances of the corrected effect

functions and, in the following subsection, calculation formulae using uncorrected mean

effect functions will be given.

First, the total variance of y(x) is defined to be

v = V arg[y(X)] =
∫
y2(x)g(x)dx− y20. (2.9)

For any Q ⊆ {1, . . . d}, define

vQ = V arg[yQ(XQ)] =
∫
y2
Q
(xQ)g(xQ) dxQ (2.10)
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where we use the fact that Eg{yQ(XQ)} = 0. So, for example,

vj = V arg (yj(Xj)) =
∫
y2j (xj)g(xj)dxj ,

for any j ∈ {1 . . . d} and

vj1j2 = V arg (yj1j2(xj1, xj2)) =
∫
y2j1j2(xj1, xj2)g(xj1)g(xj2)dxj1dxj2,

for (j1, j2) satisfying 1 ≤ j1 < j2 ≤ d.

Using (2.2) and (2.4), the variance of y(x) can be partitioned as

v =
d∑

j=1

vj +
∑

1≤j1<j2≤d

vj1j2 + · · ·+ v1,2,...,d . (2.11)

The sensitivity of y(·) to inputs xj1 ,. . . , xjs is measured by the sensitivity index

Sj1,...,js ≡ vj1,...,js/v. (2.12)

In partiular, the quantities S1, . . . , Sd are called main effect sensitivity indices and Sj1j2 is a

two-factor sensitivity index. By (2.11),

d∑

j=1

Sj +
∑

1≤j1<j2≤d

Sj1j2 + · · ·+ S1,2,...,d = 1.

The total effect sensitivity index of input xj is defined to be the sum of all sensitivity indices

involving the input xj ,

Tj = Sj +
∑

k 6=j

Skj + · · ·+ S1,2,...,d. (2.13)

For example, when there are d = 3 inputs, then T1 = S1 + S12 + S13 + S123. Notice that by

construction, Sj ≤ Tj for all j ∈ {1, . . . , d}. If interactions involving xj account for a large

proportion of the variance v, then the difference between Tj and Sj will be large.

2.3 Calculation of main effect and total effect sensitivity indices

For calculation of main effect and total effect sensitivity indices, it is more efficient to calcu-

late {Sj}dj=1 and {Tj}dj=1 in terms of the variances of the uncorrected effect functions which
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are

vuQ = V arg[uQ(XQ)] = V arg [Eg[y(X)|XQ] ] (2.14)

for nonempty Q ⊆ {1, . . . d}. Since vu
Q
in (2.14) can be rewritten as

vu
Q
= V arg[y(X)]− Eg [V arg(y(X)| XQ)] = v −Eg [V arg(y(X)| XQ)] , (2.15)

vu
Q
can be interpreted as the expected reduction in uncertainty in y(X) due to observing xQ.

For the simple case Q = {j}, using (2.5),

vuj = V arg[yj(Xj) + y0] = vj , (2.16)

so that the main effect Sj can be calculated in terms of the variance of the uncorrected main

effect function; that is

Sj = vuj /v. (2.17)

The total effect Tj can be computed in terms of the variances of uncorrected mean functions

as follows. Observe from (2.6), (2.10) and (2.14) that

vu−j = V arg[u−j(X−j)] = V arg
[∑

yQ(XQ)
]
=
∑

vQ . (2.18)

where the sum is over nonempty sets Q contained in {1, . . . , d}\{j}. In words, vu−j is the sum

of all vQ components that do not involve the subscript j in the variance decomposition (2.11).

Thus, v − vu−j is the sum of all vQ components for which j ∈ Q, and so the total effect

sensitivity index Tj in (2.13) can be expressed as

Tj = (v − vu−j)/v . (2.19)

Results (2.17) and (2.19) imply that if only the main effect and total effect sensitivity indices

{Sj}dj=1 and {Tj}dj=1 are to be estimated, then one need only estimate the variances of 2d

uncorrected effect functions rather than the variances of 2d − 1 corrected effect functions

specified by the definitions (2.12) and (2.13).

Sections 4 and 5 describe two general methods of estimating the variance vu
Q
, each using the

Gaussian process underlying models. The first uses quadrature-based estimation, while the

other uses Bayesian or empirical Bayesian process-based estimation. Before describing these

methods and the new formulae needed for implementation of the latter, a technique will be

described in Section 3 for designing experiments to obtain moment-based estimators of the

numerator and denominator of Sj .
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3 Moment-based Estimation of Global Main Effect Sensitivity Indices

In addition to the Morris (1991) design of Section 1 for estimating local sensitivity indices,

experimental designs have been proposed to estimate main effect and total effect global

sensitivity indices, {Sj}dj=1 and {Tj}dj=1. The designs rely on moment-based estimation of v,

vuj , and v
u
−j , j = 1, . . . , d in (2.9), (2.16) and (2.18). Moment-based estimators use the simple

idea that ifW1, . . . , Wn are independent and identically distributed random variables from a

distribution having finite mean µ and finite variance σ2, then their sample mean and sample

variance are unbiased and consistent estimators of µ and σ2, respectively.

Morris, Moore, and McKay (2008) described several methods designing a computer experi-

ment to obtain moment-based estimators of the main effect sensitivity indices {Sj}dj=1. One

method they advocate is the permuted column sampling design, introduced by McKay (1995),

as follows. For j = 1, . . . , d, let uj be a vector of n values from the interval [0, 1]. We call

the n × d matrix M = [u1 · · ·ud] the “base design”. The values within the vector uj may

be identical to the columns of a space-filling Latin hypercube design using the mid-points

of the intervals ( (i − 1)/n, i/n ], or they may be different. Given an integer a, let πqj (uj)

denote the vector whose elements are a permutation of the elements of uj , j = 1, . . . , d,

q = 1, . . . , a. Define the matrix Aq to be

Aq = [πq1(u1) π
q
2(u2) · · · πqd(ud)] , q = 1, . . . , a .

Letting s2(Aq) denote the sample variance of the n outputs associated with inputs given by

the rows of Aq, then

v̂ =
1

a

a∑

q=1

s2(Aq) . (3.1)

is an estimate of v in (2.15).

Now fix an integer j ∈ {1, . . . , d} for the remainder of this section; to estimate vuj us-

ing the difference formula in (2.15) requires an estimate of Eg {V arg (y(X)|Xj)}. The jth
column of each Aq, q = 1, . . . a, contains the elements of uj in some permuted order. Let

uj = (x1j , . . . , xnj)
⊤, then for any fixed r ∈ {1, . . . , n}, the sample variance s2(xrj) of the

outputs corresponding to the rows in A1,. . . , Aa having value xrj as the jth element is

an estimate of V arg (y(X)|Xj = xrj). The average of s2(x1j), . . . , s
2(xnj) is an estimator of
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Eg {V arg (y(X)|Xj)}, so that vuj is estimated by

v̂uj = v̂ − 1

n

n∑

r=1

s2(xrj) . (3.2)

Morris et al. (2008) note that v̂uj is unbiased “if no two input values paired together in one

array also were paired in another array” and they give a method of selecting permutations to

achieve this. They illustrate their method for n = d = a, requiring an = n2 code evaluations,

although any n, a, d could be selected. Their method proceeds as follows. Select an orthogonal

array OA(na, d + 1, n, 2) based on the n symbols {1, 2, . . . , n}, na rows, d + 1 columns and

strength 2. Reorder the rows of the orthogonal array so that, in column 1, the first n rows

contain symbol 1, the next n rows contain the symbol 2, and so on. Then columns 2 to d+1

of the orthogonal array are

[P⊤
1 ,P

⊤
2 , . . . ,P

⊤
a ]

⊤ .

For q ∈ {1, . . . , a}, the columns of P q = [πq1 · · ·πqd] are used to provide the permutations

that are applied to the base design M to obtain the matrices Aq that give the input sites

for the sample variance calculations above. Morris et al. (2008) also provide estimates of the

variances of the permuted column Sj estimators.

In Section 6, we compare the estimates of the main effect sensitivity indices using permuted

column sampling, with base design M selected to be a maximin Latin Hypercube Design,

with those obtained via quadrature (Section 4) and Bayesian process based estimates (Sec-

tion 5).

4 Quadrature-based Estimators of Global Sensitivity Indices

In this section, we describe quadrature-based estimators which do not require particular

sampling designs but use predictors based on the Gaussian process model

Y (x) = f⊤(x)β + Z(x), (4.1)

where f⊤(x)β is a linear function of an unknown regression parameter vector β, and Z(x)

is a zero-mean Gaussian process having variance σ2. We illustrate the calculations of the

quadrature-based estimators for the special case where f⊤(x)β = β0 and Z(x) is stationary
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with separable correlation function

Cor(Z(xi), Z(xk)) =
d∏

j=1

R(xij − xkj | ψj) , (4.2)

where R(·| ψj) is known up to an unknown (vector of) parameter(s), ψj , associated with the

jth input.

One example of R(hj | ψj) is the one-dimensional Gaussian correlation function

RG(hj | ψj) = exp
[
−ψjh2j

]
(4.3)

which will be used later in the section to illustrate the quadrature-based estimation proce-

dure. Other important correlations of the form (4.2) for which quadrature-based estimators

can be explicitly derived are the Bohman and cubic correlation functions which will be

discussed in Section 5 and the Supplementary Material.

An empirical best linear unbiased predictor (EBLUP) of y(x∗) based on (4.1) with training

data {xi = (xi1, . . . , xid), y(xi)}ni=1 has the form

ŷ(x∗) = d0(x
∗) +

n∑

i=1

di
d∏

j=1

R(x∗j − xij | ψ̂j) (4.4)

where ψ̂j is a REML (or other) estimate of the unknown correlation parameters ψj , d0(x
∗) =

f⊤(x∗)β̂, with β̂ = (F⊤R−1F )−1F⊤R−1y(x) the weighted least squares estimator of β, and

di is the i
th element of the vector R−1(y(x) − F β̂) where F = [f (x1), . . . , f(xn)]

⊤ and R

is the matrix with (i, k)th element
∏d
j=1R(xij − xkj| ψ̂j). When f⊤(x)β = β0,

d0(x
∗) = d0 = β̂0

with β̂0 = (1⊤
nR

−1y(x))/(1⊤
nR

−11n) and 1n is the n× 1 column vector of ones.

The idea of quadrature-based estimation is to replace y(x) in the variance expressions v,

vuj , and vu−j of Section 2, j = 1, . . . , d, by a predictor ŷ(x) and to integrate the associated

expectations. A näıve form of this method estimates uQ(xQ) in (2.1) by

ûQ(xQ) =
∫
ŷ(xQ,x−Q)

∏

j 6∈Q

g(xj) dxj =
N∑

ℓ=1

ŷ(xQ,x
(ℓ)
−Q) wℓ

where (i) ŷ(xQ,x
(ℓ)
−Q) is an EBLUP of y(xQ,x

(ℓ)
−Q) as in (4.4); (ii) the sum is over the N user-

selected points at which the function ŷ(xQ,x
(ℓ)
−Q) is evaluated in the (d − |Q|)-dimensional
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space over which the integration is being performed; (iii) the superscript ℓ denotes the ℓth

such point, (xQ,x
(ℓ)
−Q), evaluated with weight wℓ; and (iv) the weights {wℓ} and points {x(ℓ)

−Q}
depend on the selected quadrature method.

When Z(x) has a separable correlation function of form (4.2), a more accurate method of esti-

mating these variances uses the fact that ŷ(x) can be reduced to a product of one-dimensional

integrals. In some cases these one-dimensional integrals can be integrated explicitly. To il-

lustrate, consider estimation of the total variance, v = Eg {y2 (X))} − (y0)
2, in (2.9) when

Y (x) has mean β0. Using (4.4), an estimate of the term y0 is

d0 +
n∑

i=1

di I
(1)(xi, ψ̂) ,

where

I(1)(xi, ψ̂) =
d∏

j=1

∫
R(x∗j − xij | ψ̂j) g(x∗j ) dx∗j (4.5)

and I(1) denotes a product of integrals, each over a single variable with integrand involving

one R(·| ·) term. The first term of v is estimated by

Êg
[
y2 (X))

]
=
∫ 
d0 +

n∑

i=1

di
d∏

j=1

R(x∗j − xij | ψ̂j)


2

g(x∗) dx∗

=
∫ 

d20 +
n∑

i=1

d2i

d∏

j=1

R2(x∗j − xij | ψ̂j)

+2 d0
n∑

i=1

di
d∏

j=1

R(x∗j − xij | ψ̂j)

+ 2
∑

1≤i<k≤n

didk
d∏

j=1

R(x∗j − xij | ψ̂j)R(x∗j − xkj | ψ̂j)

 g(x∗) dx∗ , (4.6)

and each term in (4.6) can be expressed as a product of one-dimensional integrals. For

example, the third term can be written as

2 d0
n∑

i=1

di I
(1)(xi, ψ̂) .

Similarly, the fourth term in (4.6) can be written as

2
∑

1≤i<k≤n

didk I
(2)(xi,xk,ψ)
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where

I(2)(xi,xk,ψ) =
d∏

j=1

∫
R(x∗j − xij | ψ̂j)R(x∗j − xkj | ψ̂j) gj(xj) dxj . (4.7)

and I(2) denotes a product of integrals, each over a single variable with integrand involving

two R(·| ·) terms. Finally, an estimate of v is given by

v̂=

(
d20 +

n∑

i=1

d2i I
(2)(xi,xi, ψ̂) + 2 d0

n∑

i=1

di I
(1)(xi, ψ̂)

+2
∑

1≤i<k≤n

didk I
(2)(xi,xk, ψ̂)


−

(
d0 +

n∑

i=1

di I
(1)(xi, ψ̂)

)2

. (4.8)

The Supplementary Material shows how the terms vuj and vu−j in (2.16) and (2.18) can be

calculated using analagous methods.

Often the one-dimensional integrals in (4.5) can be expressed more simply. For example, for

the Gaussian correlation (4.3) and uniform distribution g(x) over [0, 1]d, I(1)(xi, ψ̂) is

d∏

j=1

∫ 1

0
R
(
x∗j − xij | ψ̂j

)
dx∗j =

d∏

j=1

∫ 1

0
exp{−ψj(x∗j − xij)

2} dx∗j

=
d∏

j=1

√
π√
ψj

{
Φ
(√

2ψj(1− xij)
)
− Φ

(√
2ψj(0− xij)

)}

where Φ (·) denotes the cumulative distribution function of the standard normal distribution.

5 Process-based Estimation of Global Sensitivity Indices

This section presents Bayesian and plug-in Bayesian approaches for estimating sensitivity

indices in the case where the observed output at input site x ∈ X can be modeled as a draw,

y(x), from a (smooth) Gaussian stochastic process, Y (x), possibly corrupted by additive

noise, say numerical. The function y(x) is regarded as the true output. In this section the

process Y (x) need not be stationary but is assumed to be separable with covariance

Covp[Y (xi), Y (xk)] = σ2R(xi,xk | ψ) = σ2
d∏

j=1

R(xij , xkj| ψj) (5.1)
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where σ2 is the process variance and R(·, ·| ψj) is known up to an unknown (vector of)

parameter(s) ψj . Here, and below, Covp[·, ·] and Ep[·] denote covariance and expectation

with respect to the process Y (x) to distinguish them from expectations Eg[·] with respect

X. As in Section 4, this approach allows estimation of sensitivity indices from runs based

on an arbitrary design.

To simplify the expressions derived below, this section makes the following additional as-

sumptions. First, not only has the input space been scaled to be [0, 1]d, but the weight

function g(·) is uniform on [0, 1]. Second, we take the process Y (x) to have mean

f⊤(x)β = Ep [Y (x)] =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

x
kj
j . (5.2)

As Kaufman, Bingham, Habib, Heitmann, and Frieman (2010) demonstrate, a non-constant

mean is essential when using compactly supported correlations to emulate computer sim-

ulator codes efficiently for large designs; the polynomial mean (5.2) is general enough to

account for a wide variety of “large scale” trends. Third, while nothing in the calculations

below requires that the process be stationary, the specific correlation functions used in the

sample calculations all satisfy the stationary condition

R(xij , xkj| ψj) = R(xij − xkj| ψj).

Finally, to allow a greater breath of applications, it is assumed that the observed output,

zsim(x), from the simulator runs is the true simulator output y(x) plus noise, possibly nu-

merical. The model for zsim(x) is

Zsim(x) = Y (x) + ǫsim(x), (5.3)

where ǫsim(x) is a white noise process with mean zero and variance σǫ that is independent of

Y (x). The term ǫsim(x) can be thought of as a means of explicitly modeling non-deterministic

behaviour of the computer output or of enhancing numerical stability in the estimation of the

correlation parameters. For deterministic outputs, ǫsim(x) can be set to zero in the formulae

below.

Assuming that evaluations are made at inputs x1, . . . , xn, the n × 1 vector of observed

outputs is viewed as a realization of the stochastic process

Zsim = (Zsim(x1), . . . , Zsim(xn))
⊤
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which has mean vector Fβ with F = [f (x1), . . . , f (xn)]
⊤ and covariance matrix

ΣZ
sim = σ2R+ σ2

ǫ In = σ2 (R+ aIn)

with a = σ2
ǫ/σ

2, where the (i, k)th element of the n × n matrix R is R(xi,xk;ψ) and I is

the n× n identity matrix.

5.1 Process-based estimators of sensitivity indices

The sensitivity indices (2.13) and (2.17) are defined in terms of the true simulator output

y(x). Bayesian estimation of these quantities replaces y(·) by the process Y (·) in the relevant

definitions resulting, for example, in the random uncorrected effect function

V u
Q = V arg [Eg[Y (X)|XQ]]

for Q ⊆ {1, . . . d}. A Bayesian estimator of vuQ is the posterior mean of V u
Q given the observed

code runs zsim; that is,

v̂uQ = EP
[
V u
Q | Zsim = zsim

]
. (5.4)

where EP [ · | Zsim] denotes the conditional expectation with respect to the process Y (·)
given Zsim. For Gaussian process models, the joint distribution of the integrated process,

V u
Q , and Zsim is multivariate normal; this allows the posterior expected value (5.4) of the

integrated process given the training data to be calculated explicitly.

A formula for (5.4) is presented in the following theorem. The proof of this result is rather

long and technical and the details can be found in the Supplementary Material. The ex-

pression for (5.4) assumes that all Gaussian Process parameters are known. In the fully

Bayesian approach to estimation, priors are placed on the unknown parameters and (5.4) is

averaged over draws from the posterior distribution of parameters given Zsim. In the em-

pirical Bayesian approach, estimates of the unknown parameters are plugged into the (5.4)

formula. The notation in Theorem 1 is given in a style that facilitates function calls in a
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computer program. In particular, it uses the following notation:

S1k(x;ψ) =
∫ 1

0
wkR (w, x;ψ) dw, k = 0, 1, 2, . . . ,

S2(x1, x2;ψ) =
∫ 1

0
R(w, x1;ψ)R(w, x2;ψ) dw,

D(ψ) =
∫ 1

0

∫ 1

0
R(w, x;ψ) dx dw,

m1(β) =

mk1∑

k1=0

. . .

mkd∑

kd=0

βk1...kd

d∏

j=1

(kj + 1)−1 ,

m2(β) =
∑

k1,...kd

∑

k′
1
,...k′

d

βk1,...kdβk′1,...k′d

×


∏

j 6∈Q

(kj + 1)
(
k′j + 1

)


−1 

∏

ℓ∈Q

(kℓ + k′ℓ + 1)



−1

.

Theorem 1 Assume that the true simulator output, y(x) can be modeled by a stationary

Gaussian process Y (·) with mean and covariance function of the form (5.2) and (5.1), re-

spectively. Also assume that the observed output zsim at the training data sites, is modeled

by a process Zsim(x) satisfying (5.3). For a fixed Q ⊆ {1, . . . d},

v̂uQ = EP
{
V u
Q | Zsim = zsim

}

=



σ

2
Y

∏

j 6∈Q

D(ψj)− trace
[(
ΣZ
sim

)−1
C

]


+
{
m2(β)−m12(β) + 2

(
v⊤ −m1(β)q⊤

) (
ΣZ
sim

)−1 (
zsim − F⊤β

)

+
(
zsim − F⊤β

)⊤ (
ΣZ
sim

)−1 (
C − qq⊤

) (
ΣZ
sim

)−1 (
zsim − F⊤β

)}

−


σ

2
Y

d∏

j=1

D(ψj)− trace
[(
ΣZ
sim

)−1
qq⊤

]
 , (5.5)

where q is the n× 1 vector with ith element

qi = q(xi,ψ) = σ2
d∏

j=1

S10(xij ;ψj), 1 ≤ i ≤ n,

C is the n× n matrix with (i, k)th element

Cik = σ4
∏

j 6∈Q

S10(xij ;ψj) S10(xkj;ψj)
∏

j∈Q

S2(xij , xkj;ψj), 1 ≤ i, k ≤ n ,
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v is the n× 1 vector with ith element

v(xi,β,ψ,β) =


σ2

∏

j 6∈Q

S10 (xij ;ψj)




×
mk1∑

k1=0

. . .

mkd∑

kd=0



βk1...kd

∏

j 6∈Q

(kj + 1)−1
∏

ℓ∈Q

S1kℓ(xhℓ;ψℓ)



 , 1 ≤ i ≤ n,

Proof. The proof of Theorem 1 involves three steps: (i) the derivation of the distribution of

the process UQ(xQ) ≡ Eg[Y (X)|XQ = xQ]; (ii) the determination of the conditional distri-

bution of [UQ(xQ)| Zsim]; and (iii) obtaining an expression for EP [V arg (UQ(xQ)) | Zsim].

The details are given in the Supplementary Material.

The estimate v̂ of the total variance v is given by (5.5) for Q = {1, . . . , d}. The main effect

sensitivity index Sj in (2.17) for the individual input xj is estimated by

Ŝj = v̂uj /v̂ (5.6)

where v̂uj is obtained from (5.5) with Q = {j}. The total effect sensitivity index is estimated

by

T̂j = (v̂ − v̂u−j)/v̂, (5.7)

where v̂u−j is obtained from (5.5) with Q = {1, . . . , i− 1, i+ 1, . . . , d}.

Given the model parameters, all components of v̂uQ are specified above except the integrals

S1k, D, S2, which depend on the user-selected correlation function R(·, ·| ψ). Formulas for

these integrals are stated next for the Gaussian and Bohman correlation functions and, in

the Supplementary Material, for the cubic correlation function R(w, x| ψ) = RC(w − x| ψ)
for ψ > 0 where

RC(h| ψ) =





1− 6
(
h
ψ

)2
+ 6

(
|h|
ψ

)3
, |h| < ψ

2
;

2
(
1− |h|

ψ

)3
, ψ

2
≤ |h| < ψ;

0, ψ ≤ |h| .
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5.2 Formulae for the Gaussian correlation function

For the Gaussian correlation function, R(w, x| ψ) = RG(w − x| ψ) where

RG(h| ψ) = exp
[
−ψh2

]
,

where ψ > 0. A formula for S1k can be derived using results of Dhrymes (2005) for the

moments of a truncated normal random variable. Application of this result gives

S1k(x;ψ) =
∫ 1

0
wk exp[−ψ(w − x)2] dw

=

√
π

ψ

{
Φ
(√

2ψ(1− x)
) k∑

r=0

(
k

r

)
xk−r(2ψ)−r/2Ih1r

− Φ
(
−x

√
2ψ
) k∑

r=0

(
k

r

)
ηk−r(2ψ)−r/2Ih0r

}
(5.8)

where h0 = −x
√
2ψ and h1 = (1 − x)

√
2ψ, while Ihr is defined recursively by Ih0 = 1,

Ih1 = −φ(h)/Φ(h), and for r ∈ {2, 3, 4, . . .} by

Ihr =
1

Φ (h)

[
−hr−1φ(h) + (r − 1)Ihr−2

]
, (5.9)

where φ(·) denotes the probability density function (pdf) of the standard normal distribution.

In particular, S10(x;ψ) becomes

S10(x;ψ) =
∫ 1

0
exp

[
−ψ(w − x)2

]
dw

=

√
π

ψ

[
Φ
(√

2ψ(1.0− x)
)
− Φ

(
−x

√
2ψ
)]

.

Formulae for S2 and D are

S2(x1, x2;ψ) =
∫ 1

0
exp[−ψ(w − x1)

2] exp[−ψ(w − x2)
2] dw

= exp
[
−1

2
ψ(x1 − x2)

2
]
S10

(
x1 + x2

2
; 2ψ

)
,

D(ψ) =
∫ 1

0

∫ 1

0
exp

[
−ψ(w − x)2

]
dx dw

=
1

ψ

[√
2πφ

(√
2ψ
)
− 1

]
+

√
π

ψ

[
2Φ

(√
2ψ
)
− 1

]
.
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5.3 Formulae using the Bohman correlation function

For the Bohman correlation function, R(w, x| ψ) = RB(w − x| ψ) where

RB(h| ψ) =





(
1− |h|

ψ

)
cos

(
π|h|
ψ

)
+ 1

π
sin

(
π|h|
ψ

)
, |h| < ψ;

0, |h| ≥ ψ

with ψ > 0. The integrals S10, S1k, S2, and D are as follows. Letting l∗ = l∗(x) =

min (π, xπ/ψ) and u∗ = u∗(x) = min (π, (1.0− x)π/ψ) ,

S10(x;ψ)=
1

u− l

{
4ψ

π2
− 2ψ

π2
cos(l∗(x))− 2ψ

π2
cos(u∗(x))

+

{(
ψ

π
− ψ l∗(x)

π2

)
sin(l∗(x)) +

(
ψ

π
− ψ u∗(x)

π2

)
sin(u∗(x))

}
.

For the integral S1k(x;ψ), let l
∗ = max(0, x− ψ) and u∗ = min(1, x+ ψ), then

S1k(x;ψ) =
∫ 1

0
wkR (w, x, ;ψ) dw

=
∫ x

l∗
wk
{(

1− x− w

ψ

)
cos

(
π(x− w)

ψ

)
+

1

π
sin

(
π(x− w)

ψ

)}
dw

+
∫ u∗

x
wk

{(
1− w − x

ψ

)
cos

(
π(w − x)

ψ

)
+

1

π
sin

(
π(w − x)

ψ

)}
dw

= T (x,−1, l∗, η) +T (−x,+1, η, u∗) , say,

where
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T (d, s, a, b)=
∫ b

a
wk
{(

1− d+ sw

ψ

)
cos

(
π(d+ sw)

ψ

)
+

1

π
sin

(
π(d+ sw)

ψ

)}
dw

=

(
1− d

ψ

)
cos

(
dπ

ψ

)(
ψ

πs

)k+1

P1 (k, a′, b′)

−
(
1− d

ψ

)
sin

(
dπ

ψ

)(
ψ

πs

)k+1

P2 (k, a′, b′)

− s

ψ
cos

(
dπ

ψ

)(
ψ

πs

)k+2

P1 (k + 1, a′, b′)

+
s

ψ
sin

(
dπ

ψ

)(
ψ

πs

)k+2

P2 (k + 1, a′, b′)

+
1

π
sin

(
dπ

ψ

)(
ψ

πs

)k+1

P1 (k, a′, b′)

+
1

π
cos

(
dπ

ψ

)(
ψ

πs

)k+1

P2 (k, a′, b′) ,

after additional algebra, where a′ = saπ/ψ, a′, b′ = sbπ/ψ and P1 and P2 are defined

recursively as

P1 (k, a′, b′)

=





sin (b′)− sin (a′) , k = 0;

(b′)k sin (b′)− (a′)k sin (a′)− k P2 (k − 1, a′, b′) , k ≥ 1,

and

P2 (k, a′, b′)

=





cos (a′)− cos (b′) , k = 0;

(a′)k cos (a′)− (b′)k cos (b′) + k P1 (k − 1, a′, b′) , k ≥ 1.

The integral for D(ψ) is defined piecewise by

D(ψ)=





4ψ
π2 + 2ψ2

π2 − 4ψ
π2 (ψ − 1.0) , 0 < ψ < 1.0

4ψ
π2 + 2ψ2

π2

{
1 +

(
1.0−ψ
ψ

)
cos

(
π
ψ

)
− 3

π
sin

(
π
ψ

)}
, 1.0 ≤ ψ.

To calcuate the integral S2(x1, x2;ψ), the w regions of [0, 1] for which R(w, x1;ψ)R(w, x2;ψ) 6=
0 must be identified. These regions will depend on the relationship between |x1 − x2| and ψ.
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The following formulae assume, without loss of generality, that x1 < x2. There are different

expressions for S2 depending on whether 2ψ ≤ |x1−x2|, ψ ≤ |x1−x2| < 2ψ, or |x1−x2| < ψ.

In the Supplementary Material, these integrals are simplified and shown to be as follows.

Case 1: For (x1, x2) satisfying |x1 − x2| ≥ 2ψ, R(w, x1;ψ)R(w, x2;ψ) = 0 for all w ∈ [0, 1];

hence

S2(x1, x2;ψ) = 0 .

Case 2: For (x1, x2) satisfying ψ ≤ |x1 − x2| < 2ψ,

S2(x1, x2;ψ)=
∫ x1+ψ

x2−ψ

{(
1− w − x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1− (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw .

Case 3: For (x1, x2) satisfying |x1 − x2| < ψ, first let l∗ = max (0, x1 − ψ) and u∗ =

min (1, x2 + ψ), then

S2(x1, x2;ψ)=
∫ x1

l∗

{(
1− x1 − w

ψ

)
cos

(
π(x1 − w)

ψ

)
+

1

π
sin

(
π(x1 − w)

ψ

)}

×
{(

1− (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw

+
∫ x2

x1

{(
1− x− x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1− (x2 − w)

ψ

)
cos

(
π(x2 − w)

ψ

)
+

1

π
sin

(
π(x2 − w)

ψ

)}
dw

+
∫ u∗

x2

{(
1− w − x1

ψ

)
cos

(
π(w − x1)

ψ

)
+

1

π
sin

(
π(w − x1)

ψ

)}

×
{(

1− w − x2
ψ

)
cos

(
π(w − x2)

ψ

)
+

1

π
sin

(
π(w − x2)

ψ

)}
dw .
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Table 6.1

Parameters, true main effect and total effect sensitivity indices for the Sobol-Levitan function (6.1).

j 1 2 3 4 5 6 7 8

bj 3.2797 2.6467 2.0606 1.5258 1.0476 0.6340 0.2973 0.0638

Sj 0.2003 0.1370 0.0863 0.0487 0.0234 0.0087 0.0019 0.0001

Tj 0.5477 0.4342 0.3136 0.1985 0.1039 0.0406 0.0092 0.0004

6 An Example

To compare the results of applying the sensitivity analysis estimation methods described in

Sections 3-5, we use a scaled version of function introduced in Sobol and Levitan (1999):

y(x1, . . . , xd) = exp




d∑

j=1

bjxj


− Id , (6.1)

where Id =
∏d
j=1

ebj−1
bj

. The theoretical main effect and total effect sensitivity indices are

known for y(x) (and are the same for any scaled version of y(x)). In particular, we used

d = 8 inputs and a b vector that resulted in the {Sj}dj=1 and {Tj}dj=1 values shown in Table 6.1

for the Sobol/Levitan function scaled to have variance 100. This function has substantial

interactions because the total of the main effect sensitivity indices is only 50% of the total

y(x) variance. A total of 64 function runs were used to estimate the sensitivity indices for

each of the three estimation methods (permuted column sampling, quadrature-based, and

plug-in Bayesian).

The permuted column sampling method was implemented using the permutations specified

by the OA(64,9,8,2) design (from the website: http://www.research.att.com/˜njas/oadir) ap-

plied to the maximin Latin Hypercube base design,M , (http://www.spacefillingdesigns.nl/)

scaled to their midpoints. Both the quadrature-based and plug-in Bayesian estimates of

the main effect and total effect sensitivity indices were based on the 64 outputs of the

Sobol-Levitan function evaluated at the rows of the 64 × 8 maximin design obtained from

http://www.spacefillingdesigns.nl/ and scaled to include endpoints; the minimum interpoint

distance of this design is 0.9039. The quadrature-based estimates were computed using JMP

software (JMP 2011) and the plug-in Bayesian estimators were computed using a MATLAB

program written by the first author.
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Table 6.2

Estimates and errors of the main effect sensitivity indices of the Sobol-Levitan function (6.1) with

b listed in Table 6.1 based on n = 64 code runs using (1) Permuted column sampling (PermS); (2)

quadrature-based estimation (Quad), and (3) plug-in (empirical) Bayesian Estimation (EmpB)

Sj 0.2003 0.1370 0.0863 0.0487 0.0234 0.0087 0.0019 0.0001

ŜPermSj 0.1118 0.1002 0.0514 0.0662 0.0047 0.0340 0.0385 0.0044

|ŜPermSj − Sj| 0.0885 0.0368 0.0349 0.0175 0.0187 0.0253 0.0366 0.0043

Ŝ
Quad
j 0.2528 0.2045 0.1098 0.0518 0.0206 0.0153 0.0070 0.0026

|ŜQuadj − Sj| 0.0525 0.0675 0.0235 0.0031 0.0028 0.0066 0.0051 0.0025

Ŝ
EmpB
j 0.2477 0.2004 0.1076 0.0510 0.0202 0.0153 0.0070 0.0026

|ŜEmpBj − Sj| 0.0474 0.0634 0.0213 0.0023 0.0032 0.0066 0.0051 0.0025

The estimates for the three methods are listed in Table 6.2, together with the absolute error

of estimation. The quadrature and plug-in Bayesian estimators provide comparable estimates

of all main effect sensitivity indices with respect to the absolute error of estimation. For all

but S2, the quadrature and plug-in estimators have smaller absolute error than the permuted

column sampling estimator, and appear to be preferable methods.

Comparing these two methods further, we see in Table 6.3 that, for inputs with large total

effect, i.e., those with Tj > .10, the plug-in Bayesian estimator has slightly smaller absolute

error than the quadrature-based estimator, and also provides a slightly better estimator of

the differences between the total and main effect sensitvity indices which are used to gauge

the extent of the interaction.

We increased the number of runs to 81, using the orthogonal array OA(81, 10, 9, 2) from the

website above for the permuted column sampling. All methods provided better estimates, but

the relative performance remained the same. Consequently, it appears that, on the whole, the

Bayesian methodology preforms slightly better than the other two methods for estimation

of main effect and total effect sensitivity indices.
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Table 6.3

Estimates and errors of the total sensitivity indices of the Sobol-Levitan function (6.1) with b listed

in Table 6.1 based on n = 64 code runs using quadrature-based estimation (Quad) and Empirical

Bayesian Estimation (EmpB)

Tj 0.5477 0.4342 0.3136 0.1985 0.1039 0.0406 0.0092 0.0004

T̂
Quad
j 0.4744 0.4000 0.1971 0.1187 0.0379 0.03861 0.01199 0.0040

|T̂Quadj − Tj | 0.0733 0.0342 0.1165 0.0798 0.0660 0.0020 0.0028 0.0036

T̂
EmpB
j 0.4998 0.4262 0.2162 0.1329 0.0425 0.0474 0.0145 0.0049

|T̂EmpBj − Tj | 0.0479 0.0080 0.0974 0.0656 0.0614 0.0068 0.0053 0.0045

7 Summary and discussion

This paper reviews several experimental designs that have been proposed to allow the esti-

mation of local and global sensitivity indices. It provides an overview of quadrature-based,

empirical Bayesian, and permuted column moment-based estimators of global sensitivity in-

dices. It introduces the detailed formulas required to compute plug-in Bayesian estimators of

global sensitivity indices, which form the basis for fully Bayesian sensitivity index estimation

for a broad class of regression plus stationary Gaussian process models using the Gaussian,

cubic, or Bohman correlation functions.

It has been mentioned earlier that one motivation for using compactly supported correlation

functions is that they can yield zero correlation; having a significant fraction of zero entries

in the correlation matrix can make its inversion numerically more stable (see Barry and Pace

(1997) and, in MATLAB, Gilbert, Moler, and Schreiber (1991)) and allows the inversion of

larger training data sets. Kaufman et al. (2010) demonstrate that by use of a suitably rich

regression mean with such a sparse correlation matrix, the predictive ability of the stochastic

model is comparable to that prediction based on a model with Gaussian correlation function.

Kaufman et al. (2010) proposed using a compactly supported correlation function with pa-

rameters restricted to a portion of the parameter space that guarantees that at least a certain

proportion of the correlation matrix values are zero. They suggest maximizing the likelihood
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over the restricted parameter space

Ω(K) =



ψ ∈ R

d : ψj ≥ 0 ∀ j ∈ {1, . . . , d};
d∑

j=1

ψj ≤ K



 , (7.1)

where K > 0 is chosen so that at least a given proportion α of the n(n − 1)/2 off diagonal

elements of ΣZ
sim are zero.

One method of selecting K to force at least a proportion α of zeroes among the off-diagonal

elements of ΣZ
sim is as follows. Calculate d1i,k ≡ ∑d

j=1 |xij − xkj | for each of the nC2 pairs

(xi,xk) with 1 ≤ i < k ≤ n. Then, set K to be the ⌊nC2 × α⌋th smallest value among

the d1i,k’s where ⌊·⌋ denotes the integer part of nC2 × α. It follows that, for any ψ ∈ Ω, at

most α100% of the off-diagonal elements of ΣZ
sim are nonzero. To see that this is true for the

Bohman and cubic correlation functions, first note that R(xi,xk|ψj) = 0 for either as long

as |xij − xkj | ≥ ψj for some j ∈ {1, . . . d}. Now select any (xi,xk) with d
1
i,k ≥ K; there are

at least (1− α)× 100% of these pairs among the
(
n
2

)
pairings of rows. We show that

d∏

j=1

R(xij , xkj|ψj) = 0 (7.2)

for any ψ ∈ Ω(K) as follows. If the correlation in (7.2) is, instead, positive, then |xij−xkj | <
ψj for all j ∈ {1, . . . d}. Hence d1ik ≡ ∑d

j=1 |xij − xkj | <
∑d
j=1 ψj ≤ K where the last

inequality holds because ψ ∈ Ω. But this contradicts the assumption that d1i,k ≥ C and

hence |xij − xkj | ≥ ψj for some j and hence (7.2) holds.
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