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Abstract

It is now widely believed that biological diversity is good for the natural en-
vironment. One way that ecologists test this is to place random collections of
species in mini-environments and then measure some outcome. Statisticians
have been working with fresh-water ecologists to improve this in two ways.
The first is that the subsets of species are carefully chosen, not random. The
second is that a nested family of plausible models is fitted. The results of
three experiments suggest that biodiversity can have no effect at all, but that
there are other plausible underlying mechanisms.

Implications for the design of such experiments, the understanding of the
family of models, and the analysis of the data are discussed.

Keywords: Biodiversity, Design of experiments, Family of models, Hasse
diagram
2008 MSC: 62K99, 62J10, 62P12

1. Introduction

There are many experiments in ecology whose results seem to suggest
that biodiversity is generally a good thing. Often a large collection of dif-
ferent species is considered, and random subsets of these species are used
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as treatments and put into some artificial set-up that mimics nature. The
measured response is some eco-desirable outcome. Very often, the conclusion
is that the greater the number of different species the better the outcome.

For example, Bell et al. (2005) used random subsets from a collection of
72 bacterial species. These were grown on sterile leaf discs in a sterile fluid to
resemble bacterial assemblages found on decomposing beech leaves. The au-
thors found that bacteria were “more active” when species richness was high
(they showed higher respiration); as a consequence species-rich assemblages
will be able to decompose leaves faster than species-poor ones. Another ex-
ample comes from Cardinale (2011), who showed that biodiversity of stream
algae improves stream water quality because diverse algae assemblages can
take greater advantage of differences in their environment (so called niche
partitioning); that is, they can grow better when species richness is high
and take up more pollutants as a consequence. He used a laboratory set-up
consisting of cultured algae that were added to artificial “mini-streams”.

The experiment by Cardinale was very much in the tradition of those
plant ecologists who were the first to design “biodiversity and ecosystem
functioning” (B-EF) experiments in the 1990s. These experiments specif-
ically addressed the effects of biodiversity (species richness) on particular
“ecosystem processes”, such as nutrient uptake (see Loreau et al., 2002). Be-
cause of global change and the species loss it causes, B-EF experiments are
now a major research topic in Ecology. These experiments all vary in terms
of the species used (often they use either plant or animal species and do not
mix them), response variables measured (for example, how productive a plant
assemblage is or how good an animal assemblage is at using food resources)
and in terms of their statistical analysis and experimental design (for exam-
ple, short term studies where species do not reproduce or long term studies
where species grow and reproduce). Many studies have “failed” to show that
biodiversity is important for ecosystem processes (for example, McKie et al.,
2008; Perkins et al., 2010). In general, the statistical analysis does not seem
to address the mechanisms that could govern biodiversity effects or explain
why no biodiversity effects can be observed.

The experiments we describe here were specifically designed to address
how mixtures of animals “perform” with regard to how efficiently they con-
sume food and generate fine particular matter (that can be used by other
organisms as food) in a “short term” experiment. In addition, two of the
experiments described addressed not only the role of species richness, but
also that of size within species.



In Section 2 we describe three experiments in which the subsets of species
were carefully and deliberately chosen. Section 3 gives the models that we
fitted to the data. These included not only the ‘biodiversity’” model where
the number of different species is considered to be a quantitative factor, but
also models that would be more familiar to people running experiments on
mixtures of different ingredients—see Cornell (2002). We found that Hasse
diagrams helped the biologists to understand the relationships between the
different models.

Section 4 briefly summarizes our conclusions from the data analysis, and
suggests a new graphical method of summarizing the analysis-of-variance ta-
ble. Finally, Section 5 considers some questions about how such experiments
should be designed.

2. The experiments

The first two experiments are described by Reiss et al. (2011). Six types
of freshwater organisms called invertebrate detritivore shredders were used.
These types were three species, with two size classes within each species. For
simplicity, they are referred to here as A, B, ..., F. The experimental unit
was a jar. Twelve organisms were put into each jar. The treatments were
thus the combinations of types put into each jar.

Table 1 shows the treatments used in the first experiment. There were six
treatments called monocultures where all twelve organisms in the jar were of
the same type. There were 15 further treatments called dicultures: in these,
there were six organisms of one type and six of another. Finally, there were
20 treatments called tricultures in which three different types of organism
were used, four of each. Thus there were 41 treatments altogether. (There
was also a ‘control’ treatment with no organisms, but we ignore that here.)

The experiment was carried out in four blocks of 41 jars. Each block was
in a slightly different place in the laboratory, and it was expected that there
would be block-to-block differences because of differences in temperature,
ambient lighting etc. Carefully measured amounts of stream water and of
alder leaf litter were put into each jar. Then one treatment was added to each
jar, in such a way that each treatment occurred in exactly one jar in each
block. The jars were left for 28 days: then the amount of leaf litter eaten was
measured. A secondary measure was the quantity of fine particulate organic
matter (FPOM) in the jar after 28 days.



Richness

Number Treatment Name Example Level
6 A ... F monoculture 12 of type A 1
15 AB, ..., EF diculture 6 of A, 6 of B 2

20 ABC, ..., DEF  triculture 4 of A, 4 of B, 4 of C 3

Table 1: The 41 treatments in the first experiment

Evenness
Number Treatment Name Example Level
6 A ... F monoculture 12 of type A 1
15 AB, ..., EF even diculture 6 of A, 6 of B 2
30 AAB, ..., FEE uneven diculture 8 of A, 4 of B 3

Table 2: The 51 treatments in the second experiment

The first experiment was designed to find out not only if the responses
were affected by the number of types of organism present but also if it mat-
tered which combinations of types were present. The second experiment took
this a little further by replacing the tricultures by so-called uneven dicultures,
in which there were eight organisms of one type and four of the other. Thus
there were the 51 treatments shown in Table 2. This experiment was run in
three blocks of 51 jars. The same two responses were measured as in the first
experiment.

The third experiment is described by Reiss et al. (2010). It concerned a
slightly different ecological setting, and different organisms, but was other-
wise similar to the first experiment, in that the treatments were monocul-
tures, dicultures and tricultures. However, there were now seven types of
organism rather than six. There are 35 possible tricultures from seven organ-
isms. In order to cut down the number of treatments without favouring any
one type over another, only seven tricultures were used, those corresponding
to the lines and circle in Figure 1: see Table 3. This collection of lines and
a circle is known as the Fano plane: see van Lint and Wilson (2001). They
have the property that each pair of types occurs in exactly one triculture: in
other words, these seven tricultures form a Steiner triple system, or balanced
incomplete-block design with blocks of size 3. (These abstract blocks are not
to be confused with those in which the experiment was run.)
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Figure 1: The lines and circle show the seven tricultures used in the third experiment

Richness
Number  Treatment Name Example Level
7 A ..., G monoculture 12 of type A 1
21 AB, ..., FG diculture 6 of A, 6 of B 2

7 see Figure 1 triculture 4 of A, 4 of B, 4 of C' 3

Table 3: The 35 treatments in the third experiment

The experiment was conducted in three blocks of 35 jars. Two responses
were measured, leaf mass loss and FPOM, the same as in the first two ex-
periments.

3. Families of models

In each experiment it was assumed that the response Y,, in jar w had the
following form:

Yw = Tf(w) + ﬁg(w) + €u- (]')

Here f(w) denotes the treatment in jar w and g(w) denotes the block contain-
ing jar w. In addition, 7y is an unknown constant depending on treatment 6,
while the fr and the ¢, are uncorrelated normal random variables with zero
expectation; the random variables ¢,, all have the same unknown variance o2,
while the random variables Sr all have variance 0%, which may be different
from o2. Thus the expectation part of Equation (1) is just the parameter
Tf(w):

In the first and third experiments there was a factor called Richness whose
levels were the numbers of different types of organism present: see Tables 1
and 3. The second experiment had a similar factor called Evenness: see
Table 2.

In the analysis of data from biodiversity experiments, it is common to
fit Richness. Sometimes this is treated as a factor, with one parameter per



level: for example, see Jonsson and Malmqvist (2005), Bell at al. (2009) or
Perkins et al. (2010). Other authors, such as Bell et al. (2005), treat it as
a linear covariate with one parameter for the intercept and another for the
slope (for example when species richness is estimated during rather than at
the start of the experiment; see also Schmid et al., 2002).

We now describe the linear models that we considered for expectation in
the first experiment. Because they are linear models, we can identify each
one with the subspace of R!6* containing all possible vectors of fitted values.
The dimension of the subspace will be called the dimension of the model.

The model most familiar to ecologists has one parameter for each level of
Richness. We called this model Richness: it has dimension 3.

A model more obvious to statisticians has parameters, a4, ..., ap, one
for each type of organism. The expected response on monoculture A is
ay; that on diculture AB is (aa + ap)/2, while that on triculture ABC' is
(aa + ap + a¢)/3. Thus there are six linearly independent parameters, and
the model has dimension 6. We called this model Type.

There is another way of writing this model. Let x;, ..., x5 denote the
number of organisms of type A, ..., type F, and put a1 = a4/12, ...,
ag = ap/12. Then the expectation in model Type is just

a1T1 + Q9o + A3x3 + 44 + A5T5 + QgTg- (2)

Because every treatment contained the same number of organisms, there is
no need for an intercept in expression (2). This model simply says that each
organism of type ¢ eats a; amount of leaf litter in 28 days, irrespective of the
identity of other organisms present.

Bell et al. (2005) include an effect called ‘Composition” which is analogous
to our model Type. However, they do not consider any model which includes
Composition without Richness. Likewise, Model 2 of Kirwan et al. (2009)
includes expression (2) only in addition to the effect of overall abundance.

Bailey (2008) recommends that if linear models M; and M, are both
considered as possible explanations of the data then their intersection M;NMy
and their sum M; 4+ M5 should also be considered. Note that dim(M;+M,) =
dim(M;)+dim(My) —dim(M; N M,). The intersection of the models Richness
and Type is just the 1-dimensional model Constant in which 7y has the same
value for all treatments 6. Their sum is the model Richness + Type, whose
dimension is 8: the expectation is similar to that shown in (2), except that
changing from one level of Richness to another adds a single constant to all
the coefficients aq, ..., ag.



This suggests a further model, in which all the coefficients a4, ..., ag can
vary with the level of Richness. It has dimension 18. In some sense, this
allows for ‘interaction’” between Richness and Type, so we call this model
Richness « Type. However, even in this model the different types of organism
are additive in the sense that the amount of leaf litter eaten by an organism
of one type is not affected by which other types are present: all that matters
is how many other types are present.

Our final model has one parameter per treatment, so it has dimension 41.
It does not have any simple expression like (2) or any correspondingly simple
biological explanation. It contains all the other models discussed so far, and
is the only one which allows a type of organism to be affected by the identities
of the other organisms present. The model is called Assemblage ldentity by
Reiss et al. (2011): here we call it Treatment for brevity.

Bailey (2008) recommends showing the family of considered models in a
Hasse diagram. There is one dot for each model. It is useful to show the
dimension of each model as well as its name. The diagram also contains edges
linking some dots. The convention is that if model M; contains model M,
then the dot for M; is higher than the dot for M, and there is a chain of
generally downwards edges linking the dot for M; to the dot for Ms.

Figure 2 shows the Hasse diagram for the models considered in the first
experiment.

Six of the models for the second experiment are analogous to those for the
first experiment, with the factor Richness replaced by the factor Evenness.
However, there is an extra possibility for the uneven dicultures: there may
be one parameter ¢; for type ¢ when it is in the majority, and a different
parameter d; when it is in the minority. We called this extra model Domi-
nance. It has dimension 23, because 8¢; + 4d; = 8(¢; + k) + 4(d; — 2k) for
any constant k. The Hasse diagram for the models considered in the second
experiment is in Figure 3.

The third experiment used the same models as the first. Of course, the
dimensions are slightly different from those shown in Figure 2, because there
were seven types instead of six.

Although Hasse diagrams seem to be less familiar to statisticians than to
pure mathematicians, they are a very helpful way of showing the relationships
between the models. Using such a diagram helps the researcher to think
about models rather than parameters, and so to respect marginality (Nelder,
1977, 1994). It may be that biologists find them easier to understand than
equations. Kirwan et al. (2009, Figure 2) gave a version of a Hasse diagram
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(41) @ Treatment

(18) e Richness * Type

(8) m Richness 4+ Type

Richness (3) Type (6)

Constant (1)

Figure 2: Hasse diagram of expectation models considered in the first experiment: dimen-
sions are shown in parentheses

with the convention that the larger models are at the bottom; also, each edge
had an arrow pointing to the larger model. Although biological journals often
place much of the technical detail in web appendices, versions of Figures 2
and 3 both appeared in the paper by Reiss et al. (2011).

With one exception (see Section 4), no other models were considered by
Reiss et al. (2011). However, we have more recently observed that there are
some other plausible models. The data from these three experiments did not
need them, but they might be useful in some future experiment.

In the first experiment, the six types actually consisted of two different
sizes of each of three different species. This cannot be considered as factorial
combinations of factors Size and Species, because the sizes varied with the
species, but it does make sense to think of Species as a submodel of the
model Type. It has one parameter per species and hence has dimension 3.
This leads to the expanded collection of models in Figure 4.

In the third experiment, the seven types actually consisted of three species
of shredder, as before, together with four species of fungi. Ingenuity was
required to decide what quantity of fungi was equivalent to a single shredder!
In this case the three-parameter model Species in Figure 4 could be replaced



(51) @ Treatment

(23) & Dominance

(18) e Evenness x Type

(8) m Evenness + Type

Evenness (3) Type (6)

Constant (1)

Figure 3: Hasse diagram of expectation models considered in the second experiment:
dimensions are shown in parentheses

by a two-parameter model which distinguishes between the shredders and
the fungi.

The other plausible model comes from comparing the treatments with
the sorts of mixtures of ingredients used in industrial processes. In that
context, a diagram like the one in Figure 5 is often used to show the possible
proportions of three ingredients: see Atkinson et al. (2007, Chapter 16) or
Cornell (2002). The small dots in Figure 5 show all possible ways of forming a
collection of twelve organisms if only three types (A, B and C') are available.
The seven larger dots indicate the combinations used in the first experiment.
The similarity of Figure 5 to Figure 1 is a confusing coincidence.

Expression (2) is linear in the variables x1, ..., z4. It is natural to extend
this to include product terms z;x; for ¢ # j, thus giving the model where the



(41) @ Treatment

(18) e Richness * Type

(Richness * Species) + Type
Richness * Species Richness + Type
Richness + Species Type (6)

Richness (3) Species (3)

Constant (1)

Figure 4: Modification of Figure 2 to allow for the fact that the six types were grouped
into three species

C
([
xl_S\ Lo
33’3:2H /
A AB B

Figure 5: All possible ways of assembling twelve organisms from the three different types
A, B and C': the central dot is the triculture ABC
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expectation is

6 5 6
=1

i=1 j=i+1

(There is no need for quadratic terms, because x7 = 12x; — 3, x;x;.) The
coefficient b;; is sometimes called the interaction between types i and j; model
(3) contains all of these interactions in addition to the effects in model (2).
Here we call model (3) Competition for simplicity, but in fact types i and j
compete if b;; is negative whereas they facilitate each other if b;; is positive.

The model Richness N Competition has two parameters, a and b: the ex-
pectation is 12a, 12a + 36b and 12a + 48b for monocultures, dicultures and
tricultures respectively. The models (Richness N Competition) + Type and
(Richness + Type) N Competition are the same: the expectation is given by
formula (3) with b;; = b for all ¢ and j. Kirwan et al. (2009) call this
model ‘Evenness’, but it has no relation to our model Evenness. The model
(Richness x Type) N Competition has expectation given by (3) with b;; replaced
by b; + b;. Kirwan et al. (2009) call the terms (b; + b;)x;x; ‘additive type-
specific contributions to interaction’.

The new expanded collection of models in shown in Figure 6. This looks
complicated, but contains fewer models than are needed in a standard fac-
torial design with three treatment factors (Bailey, 2008, Figure 5.11).

It would be possible to go further, and build the collection of models
which includes both Species and Competition. Kirwan et al. (2009) go some
way towards this by including a version of model (3) in which the coefficients
b;; depend only on which species types ¢ and j belong to, but they do not
include the simpler model Species. (In their case, it is actually functional
group rather than species, as in our third experiment.)

4. Data analysis

Reiss et al. (2011) analysed four data sets: two responses from each of
the first and second experiments. In three cases out of the four, the mean
square for blocks was at least twice the error mean square; in the fourth case
it was of a similar size. Thus the effect of carrying out the experiment in
blocks, and allowing for this in the data analysis, was to reduce the error
mean square, thus reducing the variance of the estimators of parameters and
increasing the power of F tests.
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Treatment

(Richness * Type) + Competition

Richness x Type Richness + Competition

Richness + ((Richness * Type) N Competition) Competition (21)

Richness + Type (Richness x Type) N Competition

Richness (3) (Richness + Type) N Competition (7)

Richness N Competition(2) Type (6)

Constant (1)

Figure 6: Modification of Figure 2 to include the model in (3)

Since each treatment occurred exactly once in each block, all the expec-
tation models were orthogonal to blocks. It therefore made no difference
whether the block effects fr in Equation (1) were regarded as fixed or ran-
dom.

As Reiss et al. (2011) stated, “each row in the ANOVA table represents
not a model but the difference between a larger model and the next smaller
one.” Initially, one of the biological referees disputed this, but we were able to
provide confirmation from other biologists (Grafen and Hall, 2002). In fact,
Bell et al. (2005) give a similar statement about models in a single chain. In
explaining this statement, we found it helpful to refer to the Hasse diagrams.
Indeed, Kirwan et al. (2009) label the edges of their Hasse diagram by the
corresponding hypothesis tests.

We now suggest a way of using the Hasse diagram directly to show the
information in the ANOVA table. Suppose that there is an edge joining
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models M; and My, where M, is larger than M,. For ¢ = 1, 2, let SS; be the
sum of the squares of the fitted values for M;, and let d; = dim(M;). The
ANOVA table will contain one row like the following:

d.f. ss MS
di—ds  SS;1—SSs  (SS; —SS,)/(dy — db)

We propose drawing an ‘anova’ version of the Hasse diagram in which the
length of the edge between M; and M, is proportional to the mean square
(SS; — SS3)/(dy — dz). For data with a single error mean square, the size of
this (or of a simple multiple of it) should be shown beside the diagram, to
indicate the scale, that is, the denominator for F tests.

Figure 7 shows the ‘anova’ version of the Hasse diagram in Figure 2, for
the response amount of leaf litter eaten. Two results stand out from this
diagram, with no need for formal hypothesis testing. The first is that the
model Richness does not explain the data at all. The second is that the model
Type explains the data so well that there is no need for further investigation
of any of the larger models.

The results from the other three analyses reported by Reiss et al. (2011)
were qualitatively similar.

Figure 8 gives the ‘anova’ version of the Hasse diagram for the first re-
sponse in the third experiment. That for the second response is qualitatively
similar. Again, the factor Richness appears to play no role, and the model
Type explains a large part of the data. However, the line between the models
Richness x« Type and Treatment is now long enough to warrant further investi-
gation. It was discovered that one of the shredder types was interacting with
some of the other types (positively with some, negatively with others).

In these experiments, the expectation models were geometrically orthgo-
nal in the sense of Tjur (1984). One consequence is that certain edges in the
‘anova’ version of the Hasse diagram have the same length: for example, in
Figure 7, the edge between Richness and Richness+ Type has the same length
as the edge between Constant and Type. Under non-orthogonality, the dia-
gram would still give useful information: the length of the former shows the
mean square for fitting Type in addition to Richness, while that of the latter
shows the mean square for fitting Type on its own (assuming that Constant
is always fitted).

One further model was fitted to all six responses. The biomass of each
individual organism was measured at the start of each experiment. The
response variable was regressed on the sum of the biomasses in each jar.

13



Treatment

Richness x Type
%y

Richness + Type & Type

Scale:

3 X residual mean square

Richness % Constant

Figure 7: Anova version of the Hasse diagram in Figure 2 for the leaf decomposition

response
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Treatment

Richness x Type

Richness + Type Type

Scale:

3 X residual mean square

Richness Constant

Figure 8: Anova version of the Hasse diagram for the leaf decomposition response in the
third experiment

Because jars with the same treatment did not necessarily have the same total
biomass, this two-dimensional model was not contained in, nor geometrically
orthogonal to, any of the other models we have discussed. Nevertheless, it is
not too far from a submodel of Type. It did not give a completely adequate
explanation of the data, but did very well for such a small model.

5. How should such experiments be designed?

These experiments were all designed with some idea of fairness and bal-
ance, but no statistical theory was involved. So, how should such experiments
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be designed?

To answer this question, we need to know what the purpose the exper-
iment is. Here are some possible reasons for conducting an experiment like
the first one.

(i) To find out whether the response changes with different levels of Rich-
ness.

(ii) To estimate the differences between the different levels of Richness.
(iii) To discriminate between the models Richness and Type.

(iv) To discriminate between the model Type and the more general model
Richness *x Type.

(v) To estimate the parameters (response per individual for each type) for
the model Type.

Aims (i) and (ii) are different. Even for aim (i), there is a difference
between merely checking that the model is adequate (Atkinson et al., 2007,
Sections 20.1-20.5) and giving ourselves a chance to find out if something else
causes the response to change. The first experiment was explicitly designed
to find out whether the presence of any one type affected the performance
of any other types. For aim (ii), we want an experiment which can provide
unbiased estimators of these differences, with as small variance as possible.
Such designs are called A-optimal (Atkinson et al., 2007, Section 10.1). The
sum of the variances of the estimators of differences is minimized when the
replications of the levels are as equal as possible, so we should replicate them
more equally than 6 : 15 : 20 if this is our aim.

Aims (iii) and (iv) are quite similar: we have two explicit possible models
and want to discriminate between them. The best designs for this situation
are called T-optimal, and are discussed by Atkinson et al., (2007, Sections
20.6-20.11). However, there is a subtle difference between case (iv), when
one design is a special case of the other, and the more general situation in
case (iii). In fact, it is rare to be considering only two explanatory models in
an experiment: none of the Hasse diagrams in this paper has so few.

Aim (v) assumes that we know that the model Type is all that is needed
to explain the data and that we simply need an A-optimal design for the
parameters in expression (2). An A-optimal design would include all mono-
cultures equally often and exclude all polycultures. Such a design would give
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no possibility of discovering whether the factor Richness has any effect or
whether types interact with each other.

What seems to be needed for real experimentation is a theory about what
is best for the process of first choosing an adequate model from a family of
several models and secondly estimating the parameters of the chosen model.
So far, there does not seem to be a general theory for this process.

Even without such a general theory, there is the pertinent question about
which subsets of types we should choose as treatments. To pose this generally,
suppose that there are t types in all. For any given level k of Richness, each
treatment consists of equal numbers of each type in some subset I' of &
types. Suppose that we can use n such treatments. How should we choose
the subsets to include?

It seems that ecologists traditionally choose subsets at random. In our
third experiment, we chose the Fano plane, which would have been the A-
optimal design for an experiment with seven treatments in seven blocks of
size three. Is the design which is best for an incomplete-block experiment
necessarily best as a design for polycultures?

Unfortunately, the answer is ‘No’. Consider incomplete-block designs for
t treatments in n blocks of size k. In the usual model for an incomplete-block
design, the expected response on any experimental unit with treatment 7 in
block T is

a; + Br. (4)

For polycultures, our model Type states that the expected response on any
experimental unit whose treatment is an equal mixture of the types in sub-

set I'is 1
z Z Q. (5)
iel
It can be shown that if there is a balanced incomplete-block design for ¢ treat-
ments in n blocks of size k then it is A-optimal for both situations. Otherwise,
a design which is best for one situation may be worst for the other.

For example, let t = n = 6 and k£ = 2. Figure 9 shows two incomplete-
block designs for six treatments in six blocks of size two: each edge denotes a
block consisting of the letters at its two ends. If either of these designs is used
as a block design in the usual way then there are twelve experimental units
and their expected responses are given by (4). The design in Figure 9(b) is A-
optimal for the 15 differences ay —asp, ..., ap—ap, while that in Figure 9(a)
is disconnected because the difference a4 — ap cannot be estimated. On the
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Figure 9: Two collections of six subsets of size two from A, ..., F: each edge denotes the
pair consisting of the letters at its ends

other hand, suppose that one of these designs is used for an experiment
with six dicultures, one per experimental unit, with no monocultures and
no other polycultures. Then the expected response is given by (5), and the
design in Figure 9(a) is A-optimal for the parameters a4, ..., ap. However,
the design in Figure 9(b) is disconnected, because the difference ay — ap
cannot be estimated.
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