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Abstract

In the dose–finding setting, we discuss and compare adaptive de-
signs, including those which allocate each new patient (or a cohort of
patients) to the dose currently viewed as the best one, for example,
the seemingly most efficacious. We call this type of allocation “best
intention” designs and found that, similar to other areas of life, the
best intention may pave the road to rather disastrous situations. The-
oretical results originating in research on optimal control strategies
suggest that the best intention approach needs modifications to in-
sure convergence to the “best” dose. Monte Carlo simulations provide
corroborating evidence that caution is needed. Indeed, even for very
simple models, best intention designs may converge to a wrong dose
with non–zero probability and in some cases almost for sure.

keywords: response-adaptive designs, sequential treatment allocation,
clinical trials, optimal design

1 Introduction

In early dose–finding clinical trials, balancing between gathering information
and treating the patients enrolled in these studies is an ever lasting conflict,
and it generates a massive literature which gravitate to two still contradictory
approaches. One approach targets the most effective gathering of information
and is essentially based on the ideas of optimal design theory. The second
approach follows a natural intention to allocate patients to doses that are
the best according to the current knowledge with a hope that some valu-
able information can be still collected. The genesis of most proposed designs
of this type can be found in optimal control theory. Unfortunately, some
warnings well known in optimal design and in optimal control theory are
not taken seriously in drug development practice. We call the corresponding
designs “optimal designs” and “best intention (BI)” designs, respectively. In
what follows, we discuss potential pitfalls for both approaches and propose
some remedies based on the idea of quantifying potential harm. One pioneer-
ing paper in which both approaches were considered together was published
by Wetherill [1]. He was probably the first to build locally D-optimal and
c-optimal designs for the binary logistic model.
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Typical dose-response curves 
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Figure 1: Typical Dose–Response Curves

The allocation of subjects to the dose currently believed to be best, or
to doses close to the best one, have become very popular in clinical dose–
finding studies, for example, when the intention is to identify the maximum
tolerated dose (MTD), the minimum efficacious dose, or the most efficacious
dose. Examples are found, for instance, in the already mentioned paper
by Wetherill [1], Lai and Robbins [2], Q’Quigley, Pepe and Fisher [3], Li,
Durham and Flournoy [4], and Thall and Cook [5]. Best intention designs
are promoted as being ethnically attractive and caring about the sampled
subjects, but doubts about convergence and informativeness of best intention
designs were raised long ago, and cases were found in which such designs led
to allocations converging to the wrong point; cf. Lai and Robbins [6], Bozin
and Zarr [7], Pronzato [8], Chang and Ying [9], Oron, Azriel and Hoff [10],
and Azriel [11].

In Section 2, we define two types of ”best” doses in terms of utility func-
tions. Common examples of such best doses are depicted in Figure 1. We
describe Best Intention (BI) and Penalized Adaptive D–Optimal (PAD) de-
signs in Section 3. Although there are a number of alternative approaches
to dose–finding in the literature (see [12] and references within for a recent
review), for simplicity, we restrict comparisons of BI designs to PAD, which
are much more general in their goals.

In Sections 3.1 and 3.2, we focus on two types of dose–finding problems,
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staying in the framework of two very simple models, namely, the one dimen-
sional continuous linear and quadratic response functions, respectively. For
these models, one can easily understand the drawbacks of naive BI designs
and see remedies. To show that the issues we raise translate directly to
nonlinear models, we create a probit model in Section 3.3 by dichotomizing
continuous responses in those linear models. In Section 3, we assume that
doses are selected from a continuous sample space.

In Section 4, we discuss the effects of restricting the search for a best dose
to a finite number of doses; and we give concluding remarks in Section 5.

2 Utility and Penalty Functions

Consider responses Y that are continuous, dichotomous or ordinal, assuming
that their expectation,

E[Y|x] = η(x,θ),

are known functions of x and θ; x may be a dose or a combination of doses
selected from a set X and θ is a m−dimensional vector of unknown param-
eters.

In studies such as those with both efficacy and toxicity, y and η will be
vectors (e.g., Gooley, et al. [13], Li, Durham, and Flournoy [4], Fan and
Chaloner [14], Rabie and Flournoy [15], Thall and Cook [5], and Dragalin
and Fedorov [16]). For instance, correlated binary measures of efficacy and
toxicity yield four possible outcomes, and a vector of expected responses can
be defined as

ηT(x,θ) = (p10(x,θ), p11(x,θ), p01(x,θ), p00(x,θ)) ,

where p10(x,θ) is the probability of efficacy and no toxicity; p11(x,θ) is the
probability of efficacy with toxicity, etc.

A practitioner typically is concerned, not with η(x,θ) itself, but with
a utility function ζ(x,θ) that describes the potential benefits associated
with treatment at a particular dose. Reasonable utility functions in the
study of efficacy and toxicity include ζ(x,θ) = p10(x,θ) and ζ(x,θ) =
p10(x,θ) + p11(x,θ). Another example can be build in the following way: let
p1·(x,θ) and p·1(x,θ) denote the marginal probabilities of efficacy and toxi-
city, respectively, and let p∗1· and p∗·1 denote ”desirable” values of these prob-
abilities; utility functions can be defined as ζ(x,θ) = −π(x,θ)TWπ(x,θ)
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where πT(x,θ) = [p1·(x,θ)− p∗1·, p·1(x,θ)− p∗·1] measures the discrepancy
between probabilities at x and the best dose. If W is the identity ma-
trix, toxicity and efficacy are given equal weight and the utility function is
ζ(x,θ) = (p1·(x,θ)− p∗1·)

2 + (p·1(x,θ)− p∗·1)2. See also Dragalin, Fedorov
and Wu [17], Gooley et al. [13] and Thall and Cook [5], and . This type of
utility functions is similar to what in engineering and economics is called the
desirability function [18].

The two most common problems in dose finding studies are, respectively,
the search for the dose in which the utility function equals a prespecified
value ζ∗ and the dose that maximizes the utility function. Denoting the
best dose being sought by x∗(θ), we can define these two problems as

Type I :
x∗(θ) = arg min

x∈X
| ζ(x,θ)− ζ∗ | ; (1)

Type II :
x∗(θ) = arg max

x∈X
ζ(x,θ). (2)

One can argue that Type I problem can be viewed as a special case of Type
II with utility function ζ ′ = − | ζ − ζ∗ | but we prefer to consider them
separately to emphasize the very different properties of BI designs for each
of them. Note that in general X can be either continuous or discrete. Ev-
erywhere, except in Section 4, X is assumed to be continuous and and if it
is not stated differently X = [−1,+1]. When the toxicity rate is increas-
ing, designs aiming to identify a dose having a prescribed toxicity rate will
be said to be of Type I. This dose is often called the maximum tolerated
dose (MTD); see the example in Figure 1. If the probability of efficacy in-
creases with dose, identifying the least dose that is effective 100p% of the
time, the EDp, is mathematically the same problem as identifying the MTD.
However, search procedures may differ. For example, in searching for the
MTD, trials typically start with low doses and escalate avoiding overdosing,
whereas, in searching for the EDp, trials typically start with a high dose
and it is assumed that is not as harmful as over dosing. Early examples of
Type I dose–finding designs are given by Derman [19], Dixon and Mood [20],
Durham and Flournoy [21], O’Quigley et al. [3], Robbins and Monro [22],
von Békésy [23], Wetherill [24] and Wu [25]; others can be found in [12] and
the references therein.
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In the toxicity and efficacy curves depicted in Figure 1, the probability
of efficacy with no toxicity increases as doses become more efficacious and
then decrease when doses become more toxic. In this context, a typical
goal is to identify the dose having maximum probability of efficacy without
toxicity, and this is a Type II problem. Examples of Type II designs are
found in Dragalin and Fedorov [16], Dragalin, Fedorov and Wu [26], Durham,
Flournoy and Li [27], Fedorov and Mueller [28], Fedorov and Wu [29], Gooley,
et al. [13], Hardwick and Stout [30], Kiefer and Wolfowitz [31], Kpamegan
and Flournoy [32], Li, Durham and Flournoy [4], Pronzato [33] and Thall
and Cook [5].

To estimate x∗(θ) with the least possible uncertainty (e.g., variance or
standard deviation) and with the least harm to patients in the study are
objectives that often ”pull” designs in different directions. The phrases
“treatment versus experimentation”, “treatment versus learning”, etc. can
be found in numerous publications on dose–finding studies. To quantify the
problem we have to introduce a measure of losses, or harm, or cost, or po-
tential penalty for a wrong prediction of x∗, etc.. The situation is similar to
what is traditionally used in decision theory and associated with risk, loss or
regret function functions, cf. Le Cam [34] and Pratt, Raiffa and Schlaife [35].
In dose–finding setting, Lai and Robbins [2] were probably the first to use
a penalty function to measure the quality of the proposed design. Dragalin,
Fedorov, Wu [26] and Pronzato [33] regularly use penalized optimal designs
in dose–finding experiments.

In drug development, there are a few players that roughly can be de-
scribed as the targeted population, sampled patients, a specific patient, a
sponsor (e.g. pharmaceutical company) and various regulating agencies. For
instance, for the n-th in-trial patient, Lai and Robbins use the quadratic
penalty φ(xn) = (xn− x∗)2, where xn is the dose he(she) is allocated. As for
the targeted population the potential loss (harm, penalty) is determined by
uncertainty of the recommended (predicted) best dose x∗, i.e. E[(x̂∗N − x∗)2];
for the sampled patients the total average penalty N−1

∑N
n=1 φ(xn), or its

expected value, might be a sound measure of harm. Fedorov and Wu added
the cost of an observation and used φ(xn) = (xn − x∗)2 + c for a patient
and its obvious extensions for the sampled and targeted populations. In this
paper, we use the same penalty function in comparing designs. More penalty
functions can be found in already cited [26], [29] and [33].
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3 Best Intention and Adaptive D–Optimal De-

signs

Sections 3.1 and 3.2 discuss the use of specific BI and penalized PAD designs
with continuous response variables for linear and quadratic response models
and with best doses of Type I and Type II, respectively. In Section 3.3, we
consider probit models that are the dichotomized versions of two previous
cases. All findings for continuous responses hold for the dichotomized ones,
except that one has to perform significantly more observations to obtain
comparable results, cf. Fedorov and Liu [36], [37].

3.1 Type I problem: x∗(θ) = arg minx∈X |ζ(x,θ)− ζ∗|.
To examine the simplest Type I dose–finding problem, consider

yi = η(x,θ) + ε, ζ(x,θ) = η(x,θ) = θ1 + θ2x, (3)

E[ε] = 0 Var[y|x] = σ2, x ∈X = [−1, 1]. (4)

Let x̃(θ) = (ζ∗ − θ1) /θ2. The best dose is defined as

x∗(θ) = arg min
x∈X
|ζ(x,θ)− ζ∗| =

{
x̃(θ), |x̃(θ)| ≤ 1
±1, ±x̃(θ) > 1

. (5)

While model (3) looks too simple to be useful in dose–finding studies, where
logistic, probit and other nonlinear models dominate, it provides a local ap-
proximation for any dose–finding problem with a ”smooth” utility function.
Therefore, the asymptotic properties of other BI and PAD designs that are
valid for this model will be very much the same as for any other smooth
(twice differentiable) response model.

In 1951 Robbins and Monro [22] proposed to allocate n-th subject at

xn+1 = xn + αn(yn − ζ∗), (6)

where {αn}∞n=1 is any deterministic sequence such that
∑∞

n=1 αn = ∞ and∑∞
n=1 α

2
n ≤ ∞. This procedure has the best convergence rate if αn = θ2/n;

see Sacks [38]. One can also verify (cf. Wetherill [1], Anbar [39]) that (6)
with αn = θ2/n is equivalent to

xn+1 = x̄n − θ−1
2 (ȳn − ζ∗) , (7)
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so that while (6) looks like a short memory procedure, the opposite is true!
On an intuitive level, one can say that xn carries cumulating prior information
on the experiment. Unfortunately, knowledge of the true value of the slope
θ2 is essential for equating (6) with (7).

In practice it seems natural to replace θ2 by its least square or maximum
likelihood estimator θ̂2n:

xn+1 = x̄n − θ̂−1
2n (ȳn − ζ∗) . (8)

Although motivated by the Newton–Raphson Method (see Ypma [40] and Lai
[41]), Robbins and Munro proposed using a sequence of constants in place of
θ̂2n/n in (6) because they already knew that, in spite of the seeming simplicity
of (8), such plug in prediction estimates caused problems. Lai and Robbins
[6] noted that, with a non zero probability, xn sticks to a boundary point from
which it does not move away even if n→∞. A few corrective measures were
proposed to make {xn} converge to x∗, and to be asymptotically normally
distributed. Sequences of predicted best doses converge to the wrong doses
not only for the simple linear response model, but also for more general
models (see, for instance, Wu [25] and [9]) when

xn+1 = arg min
x∈X

∣∣∣ζ(x, θ̂n)− ζ∗
∣∣∣ . (9)

For (8) and (9), Wu [25] called this specific BI design the Adaptive Robins–
Monro procedure (ARM). The corrective measures are rather simple: one has
to bound absolute value of the estimated slope or select a sign (but correct
one) to insure convergence and asymptotical normality [6],[39]. Wu [25] also
noted that asymptotically (6), (7) and (8) coincide. More details will be
discussed in the examples that follow. We use the term “naive” ARM when
either (8) or (9) is used directly, i.e. without any adjustment. Otherwise we
use “tuned” ARM.

To illustrate the potential lack of consistency in the allocation sequence
{xn}, we resort to Monte–Carlo simulations with independently normally
distributed observations; and θ1 = 0.0, θ2 = 1.0, σ2 = 1.0, ζ∗ = 0.0; i.e.,
x∗ = 0.0; in addition, doses were restricted to lie in [−1, 1]. Figure 2(a) shows
exemplary sequences of {x1, . . . , x400} from (8) with an initial cohort of two
subjects, one each at ±1. Most BI designers use the last xn to estimate
x∗, and we do so here, so {x1, . . . , x400} is also the sequence of predicted
best doses. In this and all other examples, 10,000 Monte–Carol simulations
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(a) Type I ARM predicted best dose
sequences under the continuous linear
model.

(b) Type II BI predicted best dose se-
quences under the continuous quadratic
model.

(c) Type I BI predicted best dose se-
quences under the probit model with
F (θ1 + θ1x).

(d) Type II BI predicted best dose se-
quences under the probit model with
F (θ1 + θ2x+ θ3x

2) .

Figure 2: Sample dose allocations sequences {x1, . . . , x400} with best doses
x∗ = 0
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were performed. Note that some sequences show early wide variation that
simmers down after about 25 trials; convergence then occurs approximately
at rate n−1/2. Note the lines at ±1 indicate that some sequences ”stick” to
boundaries of the design space, and there is no evidence that these sequences
will ever converge to the best dose x∗ = 0.0. Table 1 shows that 1.9 and
1.8 percent of predicted best dose sequences stuck to the boundaries for
n = 100 and 400, that is, increasing the sample size four fold did not reduce
the likelihood of this problem when using ARM with the continuous linear
model.

In contrast, the PAD design allocates the next subject to the dose

xn+1 = arg max
x∈X

Var
[
η(x, θ̂n)

]
, (10)

where the variance of the predicted response is the largest, i.e. our knowledge
about response function is the worst. Observation at this point maximizes
the decrements of the determinant of the variance–covariance matrix of θ̂n;
see Fedorov [42]. For a simple linear regression, the sequence {xn} consists
alternating +1 and −1. With penalty functions (see appendix), the selection

of xn involves both Var
[
η(x, θ̂n)

]
and the penalty function φ(x, θ̂n) and

xn+1 = arg max
x∈X

{
Var

[
η(x, θ̂n)

]
− mφ(x, θ̂n)∑n

i=1 φ(xi, θ̂n)

}
, (11)

where in general m is the number of unknown parameters in η(x,θ) and
in the considered case m = 2. For PAD designs, typically least squares or
maximum likelihood methods are used to estimate the best dose.

From Table 1, one can see that no PAD predicted best dose sequences
stuck to the boundaries in 10,000 simulations for n = 100 and 400, as com-
pared with about 2 percent using ARM. More is said about comparing esti-
mators later.

Figures 3(a) and 3(b) show panels of histograms of predicted best doses for
ARM and PAD, respectively, that is, histograms of x100 and x400 are shown
from ARM and histograms of least squares estimates, x̂∗100 and x̂∗400, are shown
from the PAD design. Histograms from each procedure were simulated with
start-up sample sizes of 2 and 4, and these are shown in the first and second
rows, respectively. As expected for each procedure, comparing columns of
histograms for n = 100 and 400, one sees the histograms are much more
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Table 1: Percent of Predicted Best Dose Sequences Stuck on the Boundaries.

Total Sample n = 100 Total Sample n = 400
MODEL Start-up

Sample
Size

ARM/BI PAD
with
c = 0.10

ARM/BI PAD
with
c = 0.10

Continuous 2 1.9 0.0 1.8 0.0
linear 8 0.0 0.0 0.0 0.0
Continuous 3 11.3 0.0 10.9 0.0
quadratic 12 1.8 0.0 1.5 0.0
Probit 4 0.7 0.4 0.9 0.0
F (θ1 +θ2x) 16 0.0 0.0 0.0 0.0
Probit 6 6.5 0.1 5.8 0.0
F (θ1 + θ2x
+θ2x

2)
24 0.9 0.0 0.6 0.0

dispersed for n = 100 than for n = 400. Standard deviations for each set of
data give the same message.

However, the frequency of observations on the boundaries decreases from
1.9 percent for ARM with a start-up sample size of 2 to 0.0 with a start–up
sample size of 8 (Table 1) and comparing the rows of histograms in Fig-
ures 3(a) and 3(b), significant improvement can be seen in having a larger
fixed start–up cohort. With start–up cohorts of size 2, the standard devia-
tion of ARM predicted best doses reduces from 0.17 for n = 100 to 0.14 for
n = 400 but it halves from 0.10 reducing to 0.05 with start–up cohorts of size
of 8. This observation leads to the obvious recommendation that the size and
allocation of the start–up cohorts for ARM should be selected carefully and
should be at least large enough to avoid estimators that stick to boundaries.
In procedure (8), xn+1 = −θ̂1n/θ̂2n, which for start–up designs is the ratio of
two normally distributed random variables, which may have a distribution
of quite exotic shape; for instance, it may be multi–modal; cf. Hinkley [43].

In contrast with ARM, PAD predicted best doses sequences did not stick
to the boundaries (Table 1) and their standard deviation (Figures 3(a) and
3(b)) halves as expected from 0.10 reducing to 0.05 when n increases from
100 to n = 400 regardless of start–up cohorts size. Note that with the
larger initial cohort size, histograms of ARM predicted best doses are visually
similar to those from PAD designs, and both of them are asymptotically
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(a) Predicted best doses from the naive
ARM design. Columns show frequencies
of x100 and x400, respectively.

(b) Predicted best doses from PAD de-
signs with cost c = 0.10. Columns
show frequencies of least squares esti-
mates x̂∗100 and x̂∗400, respectively.

Figure 3: Predicted best doses under the continuous linear model (3) with
θ1 = 0.0 and θ2 = 1.0; x∗ = 0.0. Histograms in the top and bottom rows had
start–up cohorts sizes of 2 and 8, respectively, equally allocated to ±1.

identical to the distribution of xn from the tuned ARM (the slope θ2 is
bounded and estimates θ̂2n are correspondingly restricted. More about tuning
of ARM may be found in Lai’s survey papers [41] and with Bartroff [44]).
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Again, we emphasize that the initial design and its sample size are critical
to ARM performance, but have no noticeable effect on PAD designs.

Table 2 compares risks based on φ(x,θ) = (x− x∗)2 from the tuned ARM
and the locally D−optimal design for the targeted population, sampled pa-
tients, a specific patient and a sponsor. Note that with these more idealized
procedures that the tuned ARM is equally good (in that it gains the same in-
formation about x∗) as the D−optimal design, but superior in having smaller
risk. The tuned ARM has reduced risk for two types of customers, the sam-
ple in-study patients and an individual patient, mainly due to the selection
of a very specific loss function. As soon as one adds a per-patient cost c to
obtain φ(x,θ) = (x− x∗)2 + c, the slow logarithmic growth of the ARM risk
to a patient sample is replaced with linear growth, putting its convergence
rate on par with locally D−optimal designs.

Table 2: Risks for Different Customers

Locally
Customers Risk Tuned ARM D−optimal

Targeted Population E (x∗N − x∗)
2 ∼ (σ/θ2)2N−1 (σ/θ2)2N−1

Patient Sample E
[∑N

i=1 (x∗i − x∗)
2
]
∼ (σ/θ2)2 ln N N

nth Patient E (x∗n − x∗)
2 ∼ (σ/θ2)2 n−1 1

Sponsor N Q+ qN Q+ qN

∼ denotes ”asymptotically”, or more loosely, for large N ; Q is the cost of a trial initiation;
q is the cost of a patient enrollment.

Total penalties,
∑n

i=1 φ(xi,θ) = (xi − x∗)2 +nc, with per-subject cost c =
0.10, are shown in Table tab:totalpenalty for ARM and PAD designs with n =
400. With the continuous linear model, total penalties using ARM are seen
to be skewed and to depend heavily on the start–up cohort size (increasing
start–up size from 2 to 8, the mean drops from 13.1 to 4.2, which is the
mean total penalty using the PAD design for both cohorts). In comparison,
the PAD penalties have relatively little skew and are independent of start–up
cohort size. ARM and PAD procedures have similar penalties with the larger
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start–up sample.

Table 3: Total Penalty
∑n

i=1 (xi − x∗)2 + nc for c = 0.10 and n = 400.

ARM/BI PAD
MODEL Start-up Size Mean Median Mean Median
Continuous 2 13.1 4.8 4.2 3.0
linear 8 4.2 3.1 4.2 3.0
Continuous 3 71.1 18.3 7.2 4.7
quadratic 12 29.1 7.2 4.9 2.9
Binary 4 17.3 9.9 9.1 6.6
F (θ1 +θ2x) 16 8.1 5.7 5.9 4.3
Binary 6 57.0 21.1 9.8 4.5
F (θ1 + θ2x
+θ2x

2)
24 24.2 6.1 4.2 2.2

Interestingly, for simple linear regression with penalty (x− x∗)2 +c, there
are infinitely many designs ξ∗ with the same penalized information matrix,
M (ξ∗, θ) /Φ (ξ∗, θ); see the Appendix for definitions of the normalized in-
formation matrix, the penalized adaptive optimal design and the relation
between Type II dose-finding and regularized optimization. In particular, all
designs that are symmetrical with respect to the x∗ and satisfy the simple
condition on its second moment,∫ x∗+1

x∗−1

(x− x∗)2 ξ(dx) = c, (12)

are locally D–optimal designs. So there is considerable flexibility in selecting
doses. For instance, at the beginning of the study, one can allocate subjects
at the boundaries of an interval that has high probability of covering the
unknown x∗ in order to insure the ability of the linear model to locally
describe the true response function. After some knowledge about the location
of x∗ is obtained, symmetric allocations may be made closer to x∗. The
constraint (12) insures that the rate of convergence of θ̂2n to the true slope
θ2 is of order n−1/2 for PAD procedures. One penalized D–optimal procedure
distributes subjects among three doses such that

x1 = x∗ −
√

c

2wn
x2 = x∗ x3 = x∗ +

√
c

2wn
, (13)
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where wn is the proportion of subjects in the nth cohort that are allocated to
doses x1 and x3, and 1−2wn subjects are allocated to dose x2. Alternatively,
if subjects are treated sequentially, randomize a subject to doses x1, x2 and
x3 with probability wn, 1 − 2wn and wn, respectively. Probably the reader
has noted that unlike D−optimal designs that can be build for the linear
regression model a priori, penalized D−optimal designs depend on x∗ and
that is why we need to use adaptive designs.

While knowledge of x∗ and penalties/risks are important components of
clinical trial design, the purpose of most trials also is to learn (at least)
about the local behavior of the dose–response function around x∗. Figure 4
plots θ̂1n by θ̂2n from the naive ARM and PAD designs after n = 100 and
400 observations. Estimates from PAD designs are tightly packed, showing
small variation, relative to estimates from ARM deigns. With the naive
ARM, variation is significantly greater, not ellipsoid in shape, and distinct
clusters of estimates corresponding to sequences stuck on the boundaries are
especially evident for designs with small start–up cohorts. We have observed
(data not shown) that a tuned ARM usually eliminates predicted best dose
sequences from the boundaries, but does not change the general shape of the
central ”cloud” of parameter estimates, that is, the distribution of parameter
estimates from ARM is much more variable and very much less ellipsoid in
shape than from PAD designs.

Figure 4 also shows that even though xn from an ARM with a sufficient
initial cohort size will estimate x∗ well, the corresponding estimators for
θ̂1n and θ̂2n behave rather poorly relative to PAD designs. The following
observations may help to explain this fact. For polynomial regression of
order m centered at x∗ = 0.0, the values of the elements of the information
matrix,

Mαβ(n) =
n∑

n′=1

xα+β−2
n′ , α, β = 0, . . . ,m,

determine the behavior of θ̂n, see Lai [45] and with Wei [46]. As was reported
in Lai [45] for the tuned ARM, the allocations xn converge to x∗ at rate n−1/2.
In this case, the element M22(n) determines the asymptotic variance of the
slope θ̂2n which still grows to infinity but very slowly:

M22(n) =
n∑

n′=1

x2
n′ ∼

n∑
n′=1

1

n′
∼ C + ln n→∞,
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(a) θ̂2n by θ̂1n from naive ARM. Columns
show estimates at n = 100 and 400, re-
spectively.

(b) θ̂2n by θ̂1n from PAD designs with
cost c = 0.10. Columns show estimates
at n = 100 and 400, respectively.

Figure 4: Plots of θ̂2n by θ̂1n under the continuous linear model (3) with
θ1 = 0.0 and θ2 = 1.0; x∗ = 0.0. The top and bottom rows had initial
cohorts of size of 2 and 8, respectively, equally allocated to ±1.

where C = 0.577 . . . is Euler’s constant, while M00 ∼ n and that insures
the faster (1/

√
n) convergence rate of θ̂2n. For PAD designs, M22(n) ∼ n

provides much faster growth than ARM designs with M22(n) ∼
√
ln n. This

fact was noted by Anderson and Taylor [47].
To conclude this section, we summarize the discussed results:

• For Type I problem the naive ARM, which can be viewed as the best
intention design approach, may fail.

• Simple tuning, like bounding the slope and its estimates, or adding
extra variability to xn, makes the ARM a good method for estimat-
ing x∗ and allocating subjects near x∗. Details on various improve-
ments/tunings of ARM are given by Lai [41] and [45].

• ARM leads to lower (comparatively to D−optimal designs) quadratic
risks. However, the penalized adaptive D−optimal designs is a strong
alternative.

• ARM gives very poor estimation of the local (in the vicinity of x∗)
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behavior of the dose–response curve. Penalized adaptive D−optimal
designs do much better job.

• One can verify that the adaptive penalized c–optimal designs, i.e. de-
signs that minimize φ(x,θ)Var [x̂∗], where x̂∗ = −θ̂1/θ̂2 and φ(x,θ) =
(x−x∗)2 + c, coincide with naive ARM, and therefore, what is true for
ARM is relevant here as well.

3.2 Type II problem: x∗(θ) = arg maxx∈X [ζ(x,θ)].

As in the previous section, we examine the simplest model for Type II dose–
finding experiments:

y = η(x,θ) + ε, ζ(x,θ) = η(x,θ) = θ1 + θ2x+ θ3x
2,

E[ε] = 0, Var[y|x] = σ2, x ∈X = [−1, 1]. (14)

The dose that maximizes the quadratic function is considered to be best, i.e.,
x∗(θ) = −θ2n/2θ3n. While (14) is simple, it provides a good approximation
to every ”smooth” function in the vicinity of x∗.

For (14), the naive BI procedure is

xn+1(θ) = arg max
x∈X

[ζ(x,θ)] =

x̃n if |x̃n| ≤ 1,

±1 if x̃n > 1 or < −1, respectively,
(15)

where x̃n = −θ̂2n/2θ̂3n.
Independent observations were simulated from the normal distribution

ε ∼ N(θ, σ2) with θ1 = 1.0, θ2 = 0.0, θ3 = −1.0 and σ2 = 1.0, so again the
best dose is x∗(θ) = 0.0. Each simulated sequence begins with a fixed initial
cohort of either 3 or 12 patients equally allocated to −1, 0 and 1. Simulations
of PAD designs include the quadratic penalty with cost c = 0.10. Details
about this PAD design and some alternatives are in the appendix.

Table 1 shows that 11.3 percent of BI predicted best dose sequences were
stuck to the boundaries when n = 100, and this percentage only reduced to
10.9 when n increases to 400. Thus the boundary problem for BI sequences
is significantly worse for nonlinear models. In contrast, again, 0.0% of the
PAD predicted best dose sequences were stuck on the boundaries.

Most alarming for BI designs, however, is that all predicted best dose
sequences are seen in Figure 2(b) converge, but to values that are different
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from x∗! This phenomenon was noted long ago and a short survey with a
number of major references can be found in [48]. Of course after disappoint-
ing Monte-Carlo simulations, no theoretical proof is needed for this negative
result. However, more subtle theoretical results, like the existence of the
attractors different from x∗ can be found, for instance, in [7].

Histograms of predicted best doses are presented, i.e, x100 and x400 from
the naive BI design in Figure 5(a), and x∗100 and x∗400 from the PAD design
in In Figure 5(b). The top and bottom rows of histograms result from fixed
start–up cohorts of size n = 3 and n = 12, respectively. But unlike the
ARM, BI histograms for x100 and x400 are (almost) identical! There is no
improvement after 300 observation were added. Adding 300 observations, the
standard deviation for the ARM best dose predictions reduces from 0.42 to
0.41 for start–up size 3 and from 0.27 to 0.26 for start–up size 12. Similarly to
the ARM under linear models, increasing the start–up sample sizes visually
”improves” the histograms, but still no sequences converge to the true target
dose! Only due to the start–up design, and without gaining substantial
information from the BI procedure, are the sequences getting closer to the
origin.

The lack of improvement with increased sample sizes for BI designs un-
der the quadratic model is also seen in the plots of parameter estimates in
Figure 6(a); and as for ARM with the linear model, Figure 6(a) shows that
parameter estimates for the BI design with the quadratic model are clus-
tered. For corresponding PAD designs, marked improvement is seen with
increased sample size and clusters are not evident among the parameter es-
timates (Figure 6(b)).

To illustrate why BI designs lead to very poor estimates of x∗(θ), let us
look at the behavior of the least squares (or maximum likelihood) estimates
θ̂n. Let assume that this estimate is at least as good as a (non-adaptive)
estimate generated by some fixed regular design. For the latter, the rate of
convergence is O(n−1/2). Similar to the ARM for the linear model,

M22(n) =
n∑

n′=1

xn′ ∼ C + ln n→∞, (16)

and it gives a hope for consistency of θ̂2n. But (see, for example [49], Ch.1.2),

M33(n) ∼
n∑

n′=1

x4
n′ ∼

n∑
n′=1

1/n′
2 −→ π2/6 (17)
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(a) Predicted best dose frequencies from
BI designs. Columns show histograms of
x100 and x400, respectively.

(b) Predicted best dose frequencies
from PAD designs with cost c =
0.10. Columns show histograms of least
squares estimates x̂∗100 and x̂∗400.

Figure 5: Predicted best dose predictions under the continuous quadratic
model (14 ) with θ1 = 1.0, θ2 = 0.0 and θ3 = −1.0; x∗ = 0.0. Histograms in
the top and bottom rows had start–up cohort sizes of 3 and 12, respectively,
equally allocated to 0 and ±1

and the convergence of the least squares estimator of θ̂3n and subsequently
of x̂∗n(θ) = −θ̂2n/2θ̂3n to the true value x∗(θ) cannot be guaranteed, cf. Lai
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(a) θ̂2n by θ̂1n from BI designs. Columns
show estimates at n = 100 and n = 400,
respectively.

(b) θ̂2n by θ̂1n from PAD designs with
cost c = 0.10. Columns show estimates
at n = 100 and n = 400, respectively.

Figure 6: Plots of θ̂2n by θ̂1n under the continuous quadratic model (14) with
θ1 = 1.0, θ2 = 0.0 and θ3 = −1.0; x∗ = 0.0. Plots in the top and bottom
rows had start–up cohort sizes of 3 and 12, respectively, equally allocated to
0 and −1, 0, 1.

and Wei [46]. This provides an explanation (but not a proof) of the observed
behavior of {x̂∗n}.

The existence of attractors for {x̂∗n} was established by Bozin and Zarrop
[7] for the Kalman–Bucy type of estimators, which are simpler to analyze
than are the least squares estimators. Our Monte Carlo simulations verify
the existence of attractors for BI estimates based on least squares method,
and this is enough to assert that, in general, BI sequences {x̂∗n(θ)} do not
converge to the best dose. Actually, the existence of those attractors may
exacerbate problems with applications if an unaware practitioner, observing
a “convergence” to the wrong dose, will make a prediction with unfounded
confidence.

The introduction of forced perturbations in dose allocation is a popular
remedy for BI procedures, cf. Bozin and Zarrop [7] and Pronzato [48]. For
instance, for allocations

xn+1 = x̂∗n + znn
−1/4,
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where z can be any random variable symmetrically distributed around zero,
M33(n) ∼ C+ lnn and consistency of θ̂3n, and hence convergence of {x̂∗n(θ)},
is secured; see Lai [41]. At the same time the sequence {xn} stays close to
x∗ keeping risk at relatively low level. However, we recommend the use of
penalized adaptive designs to permit the experimenter to quantify needs and
ethical/cost constraints.

In conclusion we would like to emphasize that for Type II problem:

• The naive BI designs do not work. Their convergence to wrong doses
may lead to the false optimism of a practitioner that can result in false
prediction of the best dose.

• The empirical tuning of the BI designs leads to the estimators that
are inferior to what can be found for the penalized adaptive optimal
designs.

• The penalized adaptive design machinery provides routine tools for
quantifying trial objectives (through criteria of optimality) and allows
for ethical and/or cost constraints through selection of risk/penalty
functions.

• We add a rather counterintuitive remark: in many cases fully adap-
tive designs (updating after each observation) perform worse than two
or three stage designs. See Dragalin, Fedorov and Wu [17], Fedorov,
Wu and Zhang [50] and Hardwick and Stout [51] for comments and
explanations of this phenomenon.

3.3 Binary Responses

The use of binary responses is a popular choice in clinical dose–response
studies, even when continuous variables must be dichotomized to create them.
To make the forthcoming exposition comparable with the what has been
discussed so far, we introduce dichotomized versions of models (3) and (14).
So Y is defined by one of these models and

Z =

{
1 if Y ≥ c,

0 if Y < c.
(18)

For Type I and Type II problems, respectively, let the response functions be

η(x,θ) = P (Z = 1|x) = F (θ1 + θ2x), (19)
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and
η(x,θ) = P (Z = 1|x) = F (θ1 + θ2x+ θ3x

2), (20)

where F is the cumulative distribution function of Y .
In our simulations, we assumed that F is the cumulative normal distri-

bution with θ1 = 0 and θ2 = 1 and thus (19) and (20) are probit models. All
parameters θ coincide with the corresponding parameters from the previous
section. ARM was defined by the sequence

xn+1 = arg min
x∈X

∣∣∣F (θ̂1n + θ̂2nx
)
− 0.5

∣∣∣ . (21)

The solution of (21) is xn+1 = −θ̂1n/θ̂2n or one of the boundary points for
continuous X . For θ̂1n and θ̂2n, we used regularized maximum likelihood
estimators. Regularized maximum likelihood estimators were used to be
able to use all runs including simulations producing a likelihood function
with no unique minimum; see, for example, [29]. The regularization consisted
of subtracting γ

∑m
α=1(θα − θα0)2 from the loglikelihood, where m = 2 or 3

parameters when using models (19) and (20), respectively. In our simulations,
we set θα0 equal to the true value of θα which, of course, cannot be done in
practice; the constant γ was set to to 0.0001 to mitigate the influence of
regularization. The role of regularization was negligible when n was above
20− 30. We used the same penalty function as with continuous responses.

ARM (21) targets estimation of ED50 (x∗ = 0), which is the easiest
quantile to estimate. The cut off level c in (18) corresponds to the median
response, where the loss of information due to dichotomization is the least;
see [52]. For the probit model, the loss of information for any other quantile
is greater than 1− 2/π.

Simulations summarized in Figures 7 and 8 for Type I best doses are
analogous to those in sections (3.1) and (3.2). Sample sequences of BI pre-
dicted best doses (Figure 2(c)) show the persistence of sequences sticking to
the boundaries. In Figure 7 one sees that even with the initial start–up co-
hort sizes doubled from what was used with the linear model, the problem of
BI sequences sticking to the boundaries persists. Observe that the variabil-
ity of BI predicted best doses is increased compared with all corresponding
continuous scenarios. Increased variability in the BI parameter estimates is
apparent in Figure 8. Increased variability is an unfortunate consequence of
dichotomization; see Fedorov, Mannino and Zhang [52].
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(a) Predicted best doses from BI designs.
Columns show histograms of x100 and
x400, respectively,

(b) Predicted best doses from PAD de-
signs with cost c = 0.10. Columns
show histograms of least squares esti-
mates x̂∗100 and x̂∗400, respectively.

Figure 7: Predicted best doses under the probit model with mean response
function F (θ1 + θ2x) (18) with θ1 = 0.0 and θ2 = 1.0; x∗ = 0.0. Histograms
in the top and bottom rows had initial start–up cohorts of size 4 and 16,
respectively, allocated equally to ±1.

The BI procedure for seeking Type II best doses with mean function given
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(a) θ̂2n by θ̂1n from BI designs. Columns
show plots for at n = 100 and 400, re-
spectively.

(b) θ̂2n by θ̂1n from PAD designs with
cost c = 0.10 Columns show plots for at
n = 100 and 400, respectively.

Figure 8: Plots of θ̂2n by θ̂1n under the probit model with mean response
function F (θ1 + θ2x) (19, 18) with θ1 = 0.0 and θ2 = 1.0; x∗ = 0.0. Rows
have start–up cohort sizes of 3 and 12, respectively.

by (20) is

xn+1(θ) = arg max
x∈X

F (θ1+θ2x+θ3x
2) =

x̃n if |x̃n| ≤ 1,

±1 if x̃n > 1 or < −1, respectively,

(22)
where x̃n = −θ̂2n/2θ̂3n. So results can be compared with those in section
(3.2), F is the cumulative normal distribution; c = 0.10, θ1 = 1.0, θ2 = 0.0
and θ3 = −1.0. Sample BI predicted best dose sequences are shown in Fig-
ure 2(d). As under the continuous quadratic model, the persistent problem
of BI sequences converging to the wrong values is evident. Simulations for
Type II best doses analogous to those described in Section 3.2 are summa-
rized in Figures 9 and 10. In the histograms of BI predicted best dose
sequences in Figure 9(a), one sees a sizable proportion of sequences at x∗

for n = 100 with minimal improvement when n increases to 400; the stan-
dard deviation with start–up sample sizes of 6 decreases from 0.38 for {x100}
to 0.36 for {x400}. In contrast, considerable reduction in variability is seen
for PAD predicted best dose sequences in Figure 9(b) with the standard de-
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(a) Predicted best doses of x100 and x400,
respectively, from BI designs.

(b) Predicted best doses from PAD de-
signs with cost c = 0.10. Columns
show histograms of least squares esti-
mates x̂∗100 and x̂∗400

Figure 9: Predicted best doses under the probit model with mean response
function F (θ1 + θ2x + θ3x

2) (18, 20) with θ1 = 1.0, θ2 = 0.0 and θ3 = −1.0;
x∗ = 0.0. Histograms in the top and bottom rows had start–up cohorts of
size 4 and 16, respectively, equally allocated to −1, 0, 1.

viation halving from 0.12 to 0.06 as n increases from 100 to 400. Similar
comparisons hold for start–up sample sizes of 24. The changes in standard
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(a) θ̂2n by θ̂1n from BI designs. Columns
show plots for n = 100 and 400, respec-
tively.

(b) θ̂2n by θ̂1n from PAD designs with
cost c = 0.10. Columns show plots for
n = 100 and 400, respectively.

Figure 10: Parameter estimates θ̂2n by θ̂1n under the probit model with mean
response function F (θ1 + θ2x + θ3x

2) (18, 20) with θ1 = 1.0, θ2 = 0.0 and
θ3 = −1.0; x∗ = 0.0. Rows have initial start–up cohort sizes of 3 and 12.

deviations of predicted best doses under the continuous quadratic model and
the dichotomized quadratic model are similar for various scenarios for both
BI and ARM designs. However, the shapes of the histograms of predicted
best doses for BI designs are very different under the continuous quadratic
model and the dichotomized quadratic model, while they are similar for PAD
designs.

The distribution of parameter estimates from BI designs shown in Fig-
ure 10(a) has many clusters caused from dichotomizing responses, particu-
larly for n = 100. For all scenarios, distributions from BI designs are rather
exotic compared with distributions from PAD designs, which are shown in
Figure 10(b).

We emphasize that the simulations look worse with dichotomized re-
sponse than for continuous responses, mainly, for two reasons due to the
dichotomization: (1) loss of information and (2) discreetness of parameter
estimators. The discreetness of parameter estimators is mainly noticeable
for small sample sizes; All patterns of ”bad” behavior of naive ARM in the
linear case and the extremely ”bad” behavior for BI designs in the quadratic
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case persist with dichotomization. Unfortunately, nothing is better for more
practical models than it is for the simplest ones.

4 Discrete design region X

In clinical dose–finding studies, allocation rules that were adapted from nu-
meric optimization, optimal control or optimal design usually must be mod-
ified to operate on a lattice of doses. For instance, in the one dimensional
case, X = {x1, . . . , xK}. With a discrete design region X , it is useful to
distinguish the design region from the prediction space X̃ , because typically
finding a best dose will require interpolation between the doses in X . For
example, allocations may be sampled from the given doses of currently man-
ufactured pills. Alternatively, one may only be able to study a few ”doses”
of some drug, yet seeks the best dose over a continuous range that includes
these doses. Usually X̃ will include X .

4.1 Type I Dose–finding

Almost immediately after the pioneering papers on the Robbins–Munro pro-
cedure appeared, it was noted that some modifications are needed to make it
work for discrete X . The introduction of additional randomization, intrap-
olation/extrapolation from X to X̃ , and changing doses not farther than
one step away from the current allocation were found useful in transporting
major Robbins–Monro ideas to discrete sample spaces. Various amendments
and improvements were extensively discussed in the dose–finding community,
and many references can be found in [12].

With regard to naive Type I BI designs, Azriel, Mandel and Rinott [53]
recently proved that there exists no such design that converges to x∗ for all
increasing response functions. Our simulations confirm the need of at least
some corrective measures with BI procedures. Indeed, all patterns seen for
continuous X are observed for the straightforward generalization of ARM
(compare with (9)):

xn+1 = arg min
x∈X
|ζ(x, θ̂n)− ζ∗|. (23)

We make a few recommendations to improve the discrete version of ARM:
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• Note that in the case of the sparse grid, instead of using the final
allocation xN as a recommended dose, one can use

x̃N = arg min
x∈X̃
|ζ(x, θ̂N)− ζ∗|. (24)

In practice, when the validity of ζ(x,θ) is in doubt for the whole set
X̃ , local approximations with any simple function (e.g., linear, sigmoid
shaped or any of functions used in the numerous CRM papers) will
work; compare with Dupa and Herkenrath [54]. For studies with small
samples sizes, Stylianou and Flournoy [55] recommend using isotonic
regression with linear interpolation from X to X̃

• Introduce extra randomization, for instance, as in Derman [19], Durham
and Flournoy [21],[56] or Dupa and Herkenrath [54]. It is crucial to
avoid long “runs” at same dose that can falsely be viewed as conver-
gence. This is especially important for binary responses. This also can
be achieved by treating subjects in cohorts (Gezmu and Flournoy [57])
or by sampling at a dose until some k successive toxicities are observed
(Oron and Hoff [58]). These procedures can also be used to start–up
parametric procedures.

• New allocations should be to one of the neighboring points of the cur-
rent xn. This stabilizes the sequence in that only the sign of θ̂n is impor-
tant. This restriction also is usually desired by clinical researchers, but
our recommendation follows directly from analysis of the procedures.

• We recommend using PAD to get information about local behavior
of dose-response function near x∗. While using PAD, one may restrict
allocations to doses neighboring the current one. We do not recommend
c–optimal adaptive design, even though it coincides with ARM for the
linear model and also with typically recommended local models like
the CRM, because it does not provide good information about local
behavior of dose-response function near x∗.

4.2 Type II Dose–finding

As for Type I dose finding, all patterns observed for continuous X hold for
Type II objectives. Defining dose–finding problems in terms of the two sets
X and X̃ is even more beneficial here than for Type I objectives. It allows
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a better understanding of the structure of ζ(x,θ) near the optimal dose. All
concluding recommendations from Section 4.1 hold, but more pronounced
emphasis on extra randomization is required.

5 Conclusions

This paper is an attempt to attract the attention of statisticians, who design
and analyze dose–finding trials, to potential flaws in some gaining popularity
adaptive designs, which we dubbed here as ”best intention” designs. We
considered two types of them: the search of dose with a response equal or
close to some predetermine value (Type I problem, the search of MTD is
the most frequent case) and the determination of the dose with maximal
value of a utility function (Type II problem, maximizing the probability
of cure). In both cases, best intention designs allocate the next subject
(cohort) to the dose that is the best one accordingly to the current knowledge.
Our extensive Monte Carlo simulations, together with some unfortunately
partially neglected theoretical results developed in the framework of optimal
control theory, show that the reckless application of ethically very sound
and attractive idea may lead to very dismal results, especially for Type II
problem. While various remedies are readily available for Type I dose-finding
and they lead to the procedures that are very close to statistically optimal,
the situation with Type II dose-finding is much worse.

We found that the systematic use of the machinery of the optimal de-
sign theory and in particular penalized adaptive (multistage) designs leads
to designs that for Type I are either equivalent to the popular BI designs
(like ARM or its younger sibling CRM) or superior to them. For Type II
all simulation confirm superiority of adaptive penalized (either D− or c–)
optimal designs.

6 Appendix: Some Notations from Optimal

Design

Likelihood estimators. The exposition is done for the maximum likelihood
estimators. For the least squares method, almost all formulae look identical
with the the moment matrix (aka information matrix) replacing the Fisher
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information matrix. We use notations mainly following Fedorov and Hackl
[59].

Let
Y ∼ p (Y|x,θ)

be our working model. The sequence ξN = {xi}N1 is called a design (of an ex-
periment). When there is a need to emphasize that at K points xi there are ni
replicated observations, we write ξN = {xi, wi}K1 , wi = ni/N, N =

∑K
i=1 ni

. It will be clear from the context which is used. In optimal design theory,
the major results are derived for ”continuous” designs, i.e. designs where
weight wi could be any value in [0, 1]. In this case, we use ξ = {xi, wi}K1 ,∑K

i=1 = 1. More generally ξ can be any probability measure defined on X .
We associate with every design a (normalized) penalty function Φ(ξ):

Φ(ξ) =
K∑
i=1

wiφ(xi,θ) = N−1

K∑
i=1

niφ(xi,θ).

If design ξ does not depend on the observed values of the response Y , then
under rather mild conditions, the maximum likelihood estimator

θ̂N = arg max
θ∈Ω

K∏
i=1

ni∏
j=1

p(yij|xi,θ)

is asymptotically normally distributed, i.e.
√
N(θ̂N − θ) ∼ N (0, D(ξ,θ)) , (25)

where
D(ξ,θ) = M−1(ξ,θ)

and

NM(ξ,θ) =
K∑
i=1

niµ(xi,θ) = N

K∑
i=1

wiµ(xi,θ).

The matrix

µ(x,θ) = E{`(Y|x,θ)`T (Y|x, θ)}, `(Y|x,θ) =
∂

∂θ
log p(Y|x,θ)

describes the information that can be gained if an observation is performed at
x. For the asymptotical validity of (25) in adaptive design setting, stronger
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assumptions are needed; compare with [41]. But necessary assumptions hold
for cases addressed in this article.

A penalized optimal design. A penalized optimal design can be defined as

ξ∗ = arg min
ξ∈Ξ(X )

Ψ(NM(ξ, θ)), s.t. N(ξ)Φ(ξ) ≤ C,

where Ξ(X ) is a set of all possible designs on X . For continuous designs
this problem is equivalent to

ξ∗ = arg min
ξ∈Ξ(X )

Ψ

(
M(ξ, θ)

Φ(ξ)

)
. (26)

In this article φ(x,θ) = (x− x∗)2 + c. The examples of optimality criteria Ψ
can be found in Fedorov and Hackl [59], Atkinson, Donev and Tobias [60],
and many other works on optimal design. For the sake of simplicity, we stay
with a popular D–criterion in which case a necessary and sufficient condition
for optimality is

tr
[
µ(x,θ)M−1(ξ∗,θ)

]
≤ mϕ(x)/Φ(ξ∗).

For the ”normal” linear regression η(x,θ) = fT (x)θ, the latter becomes

σ−2Var
[
η(x, θ̂)

]
≤ mφ(x)/NΦ(ξ∗).

An adaptive penalized optimal design. Adaptive design, which is needed only
for optimal designs when (26) or the utility function involves θ, is generated
by

xn+1 = arg max
x∈X

{
tr
[
µ(x,θ)M−1(ξn, θ̂n)

]
−mφ(x)/Φ(ξn, θ̂n)

}
. (27)

The latter can be viewed as a ”forward” first order numerical procedure of
building locally optimal designs with the true θ replaced by the current MLE
estimator θ̂n, compare with [26],[50].

Relation with regularized optimization. Note that for the Type II dose–finding
and for quadratic regression, (26) considered in all simulations is equivalent
to the design problem with φ(x,θ) = ζ∗ − ζ(x,θ) + c′. It is different from
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what Pronzato [8] proposed to address the same problem. In the framework
of convex optimal design theory, the closest adaptive design can be derived
using the following modified D–criterion:

Ψ(ξ) =

∫
X

ζ(x,θ)ξ(dx) + γ |M(ξ,θ)|1/m . (28)

Note that maxξ
∫

X
ζ(x,θ)ξ(dx) = maxξ ζ(x,θ). One can verify that (28)

generates the following adaptive design:

xn+1 = arg max
x∈X

[
ζ(x, θ̂n) + α(ξn)

(
n−1Var(η(x, θ̂n))−m

)]
,

where α(ξn) = γm−1|M(ξn, θ̂n)|1/m.
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[23] von Békésy G. A new audiometer. Archives of Otolaryngology 1947;
35:411–422.

[24] Wetherill GB, Glazebrook KD. Sequential Methods in Statistics. Chap-
man & Hall Ltd, 1986.

[25] Wu CFJ. Efficient sequential designs with binary data. Journal of the
American Statistical Association 1985; 80:974–984.

[26] Dragalin V, Fedorov V, Wu Y. Adaptive designs for selecting drug com-
binations based on efficacy-toxicity response. Journal of Statistical Plan-
ning and Inference 2008; 2:352–373.

[27] Durham SD, Flournoy N, Li W. A sequential design for maximizing the
probability of a favourable response. Canad. J. Statist. 1998; 26(3):479–
495.

[28] Fedorov V, Mueller W. Comparison of two approaches in the optimal
design of an observation network. Statistics 1989; 20(3):339–351.

[29] Fedorov V, Wu Y. Dose finding designs for continuous responses and
binary utility. Journal of Biopharmaceutical Statistics 2007; 17:1085–
1096.

[30] Hardwick J, Stout QF. Optimum Design 2000, chap. Optimizing a uni-
modal response function for binary variables. Kluwer, eds. A. Atkinson
and B. Bogacka and A. Zhigljavsky, 2001; 195–208.

34



[31] Kiefer J, Wolfowitz J. Stochastic estimation of the maximum of a regres-
sion function. The Annals of Mathematical Statistics 1952; 23(3):462–
466.

[32] Kpamegan E, Flournoy N. Optimum Design 2000, chap. An optimizing
up-and-down design, pp. 211–224. Kluwer Academic Publishers: Dor-
drecht. eds. A. Atkinson, B. Bogacka, A. Zhigljavsky, 2001.

[33] Pronzato L. Penalized optimal designs for dose-finding. Journal of Sta-
tistical Planning and Inference 2010; 140(1):283–296.

[34] Le Cam LM. Asymptotic methods in statistical decision theory. Springer–
Verlag, 1986.

[35] Pratt JW, Raffa H, Schlaife R. Introduction to statistical decision theory.
The MIT Press, 1995.

[36] Fedorov VV, Liu T. Encyclopedia of Clinical Trials (D’Agostino R, Ed-
itor in Chief), chap. Enrichment Design. Wiley, 2008.

[37] Fedorov V, Liu T. Randomized discontinuation trials: Design and effi-
ciency. GSK BDS Technical Report 2005; 2005.

[38] Sacks J. Asymptotic distribution of stochastic approximation proce-
dures. The Annals of Mathematical Statistics 1958; 29:373–405.

[39] Anbar D. A stochastic Newton–Raphson method. Journal of Statistical
Planning and Inference 1978; 2:153–163.

[40] Ypma TJ. Historical development of the Newton-Raphson method.
SIAM Review 1995; 37:531–551.

[41] Lai TL. Sequential analysis: Some classical problems and new challenges
(Pkg: P303-408). Statistica Sinica 2001; 11(2):303–351.

[42] Fedorov V. Theory of Optimal Experiments. Academic Press: New York,
1972.

[43] Hinkley DV. On the ratio of two correlated normal random variables.
Biometrika 1969; 56(3):635–639.

35



[44] Bartroff J, Lai TL. Approximate dynamic programming and its appli-
cation to the design of phase i cancer trials. Statistical Science 2010;
25(2):245–257.

[45] Lai TL. Stochastic approximation. The Annals of Statistics 2003;
31(2):391–406.

[46] Lai TL, Wei CZ. Least squares estimates in stochastic regression models
with applications to identification and control of dynamical systems. The
Annals of Statistics 1982; 10:154–166.

[47] Anderson TW, Taylor JB. Some experimental results on the statistical
properties of least squares estimates in control problems. Econometrica
1976; 44(6):1289–1302.

[48] Pronzato L. Optimal experimental design and some related control prob-
lems. Automatica 2008; 44:303–325.

[49] Andrews GE, Askey R, Roy R. Special functions. Encyclopedia of Math-
ematics and Its Applications, The University Press, Cambridge, 1999.

[50] Fedorov V, Wu Y, Zhang R. Dose-finding experiments with discrete and
continous responses. Statistics in Medicine 2011; in press.

[51] Hardwick J, Stout QF. Optimal few-stage designs. Journal of Statistical
Planning and Inference 2002; 104(1):121–145.

[52] Fedorov V, Mannino F, Zhang R. Consequences of dichotomization.
Pharmaceutical Statistics 2009; 8:50–61.

[53] Azriel D, Mandel M, Rinott Y. The treatment versus experimenta-
tion dilemma in dose finding studies. J. Statist. Plann. Inference 2011;
141(8):2759–2768.

[54] Dupa V, Herkenrath U. Stochastic approximation on a discrete set and
the multi–armed bandit problem. Communications in Statistics. Part
C: Sequential Analysis 2007; 1(1):1–25.

[55] Stylianou M, Flournoy N. Dose finding using the biased coin up-and-
down design and isotonic regression. Biometrics 2002; 58(1):171–177.

36



[56] Durham SD, Flournoy N. Up-and-down designs I: Stationary treatment
distributions. Adaptive Designs, Flournoy N, Rosenberger WF (eds.),
Institute of Mathematical Statistics, 1995; 139–157.

[57] Gezmu M, Flournoy N. Group up-and-down designs for dose-finding.
Statistical Planning Inference 2006; 136(6):1749–1764.

[58] Oron AP, Hoff PD. The k-in-a-row up-and-down design, revisited. Statis-
tics in Medicine 2009; 28:1805–1820.

[59] Fedorov VV, Hackl P. Model-oriented Design of Experiments. Springer-
Verlag Inc, 1997.

[60] Atkinson AC, Donev AN, Tobias R. Optimum Experimental Designs
with SAS. Oxford Statistical Science Series, 34, Oxford University Press,
2007.

37


