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Abstract

This work proposes a sequential procedure which is useful to select the best
model among several nested non-linear models and to estimate efficiently the
parameters of the chosen model. At the first step of this procedure, a general-
ized DKL-optimum design is computed, which is optimal for the double goal
of model selection and parameter estimation. Subsequently, at each following
step, an adaptive generalized DKL-optimum design is computed on the base
of the data accrued and tests previously performed. The proposed sequential
scheme selects the best non-linear model with probability converging to one;
moreover it estimates efficiently its parameters, since the adaptive sequen-
tial DKL-optimum designs converge to the D-optimum design for the “true”
model.

AMS 2000 subject classifications: Primary 62K05, 60B10; secondary 62L05,
60B05.

Keywords: D-optimality, KL-optimality, DKL-optimality, log-likelihood ratio
test, stochastic convergence, sequential design of experiments, semi-continuity, argmin
processes, convexity.

1 Introduction

The classical theory of optimum design is based on the assumption that the statisti-
cal model for the data is completely specified except for some unknown parameters.
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Therefore, the goal of an optimum design is to provide the best estimates of the pa-
rameters of the assumed model. However, more frequently, in real-life applications
several rival models are available. Thus, the goal of an optimum design should be
dual: to select the “true” model and to estimate efficiently the parameters of the
identified model. Several authors have combined these two objectives in one com-
pound criterion by averaging two design criteria, one for parameter estimation and
another one for model discrimination. In the context of two nested regression mod-
els which differ by only one parameter, [7] has considered the compound criterion
given by the weighted geometric mean of D1- and D-efficiencies. This criterion has
been generalized to the case of two nested regression models which differ by more
than one parameter by [28] and [31], who have replaced the D1-criterion with the
Ds-one (with s > 1) and by [1], who has considered the T-criterion as a measure
of discrimination. The Ds-criterion can be used to discriminate between any two
nested models. Differently, the T-criterion can be applied to separate models but
they must be homoscedastic with Gaussian errors. Another proposal, by [21], is the
the KL-criterion, which can be applied in a very general context: the rival models
may be nested or not, homoscedastic or heteroscedastic and with any distribution
for the errors. In order to consider both the aims of model selection and parameter
estimation, [27] has proposed the DKL-optimality criterion which is a weighted ge-
ometric mean of KL- and D-efficiencies. In the present paper, the DKL-criterion is
suitably generalized to handle the case when more than two rival statistical models
are available, with the goal to select the correct model and to estimate efficiently its
parameters. This new criterion is called generalized DKL-criterion.

Only compound criteria are considered in this paper. However, let us note that
there exist several ways to incorporate different goals in one design criterion. Some
examples are given in [8] and [9], among others.

When the rival models are non-linear, the designs which maximize the above
mentioned multi-objective criteria are only locally optimum, because the optimality
criterion functions depend on the unknown parameters of the models. There are
essentially three ways to solve this problem:

1. to follow a Bayesian approach. See, for instance, [19] and [5];

2. to use a max-min criterion. Some examples are [11] and [12];

3. to apply a sequential adaptive procedure. See, for instance, [6] and [16].

In this paper it is assumed that the experiments can be performed sequentially and
hence the last strategy is considered. In more detail, at the first step of the pro-
posed sequential procedure a generalized DKL-optimum design is computed. Sub-
sequently, at each step, an adaptive optimum design is computed maximizing a
generalized DKL-criterion function where the unknown parameters are replaced by
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suitable estimates obtained at the previous step; in addition, some statistical tests
are performed to select a model. This adaptive generalized DKL-optimum design,
which is “updated” step by step, is called sequential generalized DKL-optimum de-
sign. The proposed sequential scheme simultaneously achieves asymptotically both
the goals of correct model selection and efficient estimation of the parameters of the
“true” model; in fact, it selects the correct non-linear model with probability that
tends to one and the adaptive generalized DKL-optimum designs converge to the
D-optimum design for the true non-linear model.

In [4], it has been proposed a different sequential scheme, which is applicable
only in the set up of nested linear models. [10] have compared, through a simulation
study, Biswas and Chaudhuri’s sequential design with some non-sequential optimum
designs, showing the superiority of non-sequential methods. Actually, in the context
of linear models the use of a sequential procedure is not fully justified since optimality
criteria do not depend on unknown parameters. [4], as well as [22], use the sequential
approach essentially to update the information about the form of the unknown
linear model. In this paper, instead, non-linear models are considered and hence a
sequential procedure, based on different criteria, is considered as a useful device to
avoid model parameter dependence.

Very recently, [30] has proposed a robust optimality criterion for model dis-
crimination and parameter estimation and has provided both sequential and non-
sequential versions of this new optimality criterion.

The outline of the paper is the following. In Section 2, the basic notation is
setted and KL- and D-optimality criteria are recalled. In Section 3, a generalized
DKL-criterion is proposed to discriminate among several nested statistical models
and to estimate model parameters. Section 4 is devoted to describe an adaptive
sequential procedure, where, at each step, a generalized DKL-optimum design is
computed on the base of past data and performed tests. In Section 5, together with
some important auxiliary results, two fundamental properties of the procedure are
proved: as the number of steps goes to infinity,

- the sequential procedure selects the best statistical model with probability
that tends to one;

- the sequential generalized DKL-optimum design converges to the D-optimum
design for the true statistical model.

Finally, in Section 6, some ideas about future developements are discussed.

2 Notation setting and description of the models

On a rich enough probability space (Ω,F , P ), let us define the following random
elements. Let an experimental condition X in X be generated by the experimenter
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from a design ξ. More specifically, X is a random variable (or a random vector)
having probability distribution equal to ξ, which has support on the experimental
domain X , a compact subset of R (or Rq, q ≥ 1). Let a random variable Y be the
response corresponding to the experimental condition X, and consider that there
are k rival families of distribution functions Fj(y|X;βj), with j = 1, . . . , k, for Y
conditioned to X, each one depending on a vector of unknown parameters βj in Θj

which is an open subset of IRdj .
Models Fj(y|X;βj) satisfy standard hypotheses of regularity for every j =

1, . . . , k, as follows. Assume that there exist a G : R × Rq → [0, 1] such that
G(·|x) is a distribution function for every x, G(y|·) is measurable for every y,
and there is a version of the conditional Radon-Nikodym density relative to G:
fj(y|x;βj) = Fj(dy|x;βj)/G(dy|x) which is measurable in (y, x) for every βj in
Θj, and it is C2(Θj) in βj for every (y, x). Assume also that the support of
Fj(y|x;βj) is independent of βj and that the models are identifiable, that is: if
fj(y|x;βj) = fj(y|x;β′j) a.s. G(dy|x), then βj = β′j.

Moreover assume that, for any j = 2, . . . , k,

1. βTj = (βTj−1, τ
T
j ), where τ j is the vector of the last dj − dj−1 components of

βj;

2. assigning a specific value τ 0
j to τ j, then fj[y|x; (βTj−1, τ

0T
j )T ] = fj−1(y|x;βj−1),

i.e. fj(y|x;βj) and fj−1(y|x;βj−1) are nested models.

In order to choose a specific model among the k rival models, given m indepen-
dent observations (Y1;X1), . . . , (Ym;Xm), some statistical tests can be carried out
in a stepwise manner until a specific statistical model is selected. The tests are
performed for the following hypotheses{

H0,j : fj−1(y|x;βj−1) is the true model
H1,j : fj(y|x;βj) is the true model

(2.1)

for j = k, k − 1, . . . , 2. Thus, it is important to choose the design ξ in order to get
observations which enable us to discriminate between fj(y|x;βj) and fj−1(y|x;βj−1)
in the best way.

In order to discriminate between a pair of subsequent nested models fj(y|x;βj)
and fj−1(y|x;βj−1), the design ξ may be selected by maximizing the KL–optimality
criterion, which is defined as

Ij−1,j(ξ;βj) = inf
βj−1∈Θj−1

∫
X

∫
Y

log
fj(y|x;βj)w(x)

fj−1(y|x;βj−1)w(x)
Fj(dy|x;βj) ξ(dx)

= inf
βj−1∈Θj−1

∫
X

∫
Y

log
fj(y|x;βj)

fj−1(y|x;βj−1)
Fj(dy|x;βj) ξ(dx), (2.2)
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where Y ⊆ R is the support of Y and w(x) = ξ(dx)/ν(dx). If the largest model
is assumed to be completely known, then criterion (2.2) is the minumum Kullback-
Leibler divergence between the joint statistical models fj(y|x;βj)w(x) and fj−1(y|x;βj−1)w(x).
The KL-criterion (2.2) is a concave function of ξ (as proved by [26]) and a design
ξ∗j−1,j which maximizes Ij−1,j(ξ) for a given βj is called KL–optimum.

Let

I(x,βj,βj−1) =

∫
Y

log
fj(y|x;βj)

fj−1(y|x;βj−1)
Fj(dy|x;βj) (2.3)

be the conditional Kullback-Leibler divergence between the statistical models fj(y|x;βj)
and fj−1(y|x;βj−1). Once fixed a value of βj, a design for which the following set

Ωj−1(ξ,βj) =

{
β̃j−1 : β̃j−1(ξ) = arg min

βj−1∈Θj−1

∫
X
I(x,βj,βj−1) ξ(dx)

}
(2.4)

is a singleton, is called a KL–regular design, otherwise it is called KL–singular design.
Assuming that ξ∗j−1,j is regular, [21] prove that ξ∗j−1,j is a KL-optimum design if and
only if ψj−1,j(x, ξ

∗
j−1,j,βj) ≤ 0 for any x ∈ X , where

ψj−1,j(x, ξ,βj)= I(x,βj, β̃j−1)−
∫
X
I(x,βj, β̃j−1) ξ(dx) (2.5)

is the directional derivative of the criterion function (2.2) at ξ in the direction of
δξx = ξx− ξ and ξx is the design which concentrates the whole mass at point x. The

quantity β̃j−1 in equation (2.5) is the assumed unique element of set (2.4).
The KL-efficiency of a design ξ relative to the optimum design ξ∗j−1,j is

Effj−1,j(ξ,βj) =
Ij−1,j(ξ,βj)

Ij−1,j(ξ∗j−1,j,βj)
.

This efficiency is a pure number in (0, 1) which measures the goodness of a design ξ
for discriminating purposes.

As previously established, to select a model among k rival models some statistical
tests are carried out sequentially starting from H0k against H1k in reverse order until
a null hypothesis is rejected. Suppose that H0j is rejected for some j ∈ {k, ..., 2},
then fj(y|x;βj) is considered as the true model. Otherwise, if no null hypothesis is
rejected, then f1(y|x;β1) is considered as the true model. Therefore, in any case,
the parameter βj of the true model has to be estimated. Hence, another important
design goal is to choose the experimental conditions in order to estimate efficiently
the model parameters. Among all the design criteria which are useful for parameter
estimation, the D-optimality criterion is indeed the most popular. See for instance,
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[13], [23] and [2]. In the general context of non-linear models (see [25]), the D-
optimality criterion is defined by the following function

ΦDj [M j(ξ,βj)] =

{
log |M j(ξ,βj)| if M j(ξ,βj) is non-singular

−∞ if M j(ξ,βj) is singular
(2.6)

where, except for the constant m of proportionality, M j(ξ,βj) is the Fisher in-
formation matrix corresponding to the joint distribution fj(y|x;βj)w(x). Thus,
M j(ξ,βj) = EX [J j(x,βj)] =

∫
x∈X J j(x,βj) ξ(dx) where J j(X,βj) is the dj × dj

matrix whose (r, s)-th element is EY |X [−∂2 log fj(y|x;βj)/∂βjr∂βjs], and the ex-
pected value is taken with respect to fj(y|x;βj), j = 1, . . . , k.

A design ξ∗Dj is a D-optimum design for the parameter estimation of model
fj(y|x;βj) if and only if ψDj(x, ξ

∗
Dj
,βj) ≤ 0, x ∈ X , where

ψDj(x, ξ,βj) = tr[M−1
j (ξ,βj)J j(x,βj)]− dj, j = 1, . . . , k (2.7)

is the directional derivative of the D-criterion function (2.6) at ξ in the direction of
δξx . The D-efficiency of a design ξ is defined by the following ratio,

EffDj(ξ,βj) =
|M j(ξ,βj)|1/dj

|M j(ξ∗Dj ,βj)|1/dj
, j = 1, . . . , k.

3 Generalized DKL-criterion for several nested

models

In [27] the DKL-optimality criterion to discriminate between two statistical models
and to estimate efficiently their parameters has been proposed. This criterion is
here generalized to the case of k nested models by the following weighted geometric
mean of efficiencies,

ΦDKL(ξ,β,γ) =
k∏
j=2

(
Ij−1,j(ξ,βj)

Ij−1,j(ξ∗j−1,j,βj)

)γD k∏
j=1

(
|M j(ξ,βj)|
|M j(ξ∗Dj ,βj)|

) γj
dj

, (3.1)

where β = (βT1 , . . . ,β
T
k )T , while γ = (γ1, . . . , γk, γD) is a vector of fixed constants

with 0 ≤ γj ≤ 1 for any j = 1, . . . , k, and 0 ≤ γD ≤ 1 , fulfilling the linear constraint

(k− 1)γD +
∑k

j=1 γj = 1. Note that the coefficient γD reflects the importance of the
discrimination goal while the coefficients γj, j = 1, . . . , k, balance the importance of
the parameter estimation in the k rival models.

Except for some terms which are constant with respect to ξ, the logarithm of
(3.1), provided that each matrix M j(ξ,βj) is not singular, is

log ΦDKL(ξ,β,γ) ≈ γD

k∑
j=2

log Ij−1,j(ξ,βj) +
k∑
j=1

γj
dj

log |M j(ξ,βj)|;

6



hence, maximizing ΦDKL(ξ,β,γ) is equivalent to maximize the following criterion
function:

ΨDKL(ξ,β,γ)=


γD

k∑
j=2

log Ij−1,j(ξ,βj)+
k∑
j=1

γj
dj

log |M j(ξ,βj)| if |M j(ξ,βj)| 6=0,

for any j = 1, ..., k

−∞ otherwise.
(3.2)

A generalized DKL-optimum design, ξ∗DKL, maximizes ΦDKL(ξ,β,γ) or equiva-
lently ΨDKL(ξ,β,γ).

In the next Theorem 3.1, the following stronger definition of regular design will
be adopted.

Definition 3.1. A design ξ is regular for a given β if and only if all the sets
Ωj−1(ξ;βj), defined in (2.4), are singletons and all the Fisher information matrices
M j(ξ;βj) are non singular, for any j = 1, . . . , k.

Design criterion (3.2) is a concave function in the first argument since it is a
convex combination of concave functions, thus the following important equivalence
theorem may be stated.

Theorem 3.1. A regular design ξ∗DKL is generalized DKL-optimum if and only if it
fulfils the following inequality

ψDKL(x, ξ∗DKL,β) ≤ 0, x ∈ X ,

where

ψDKL(x, ξ,β) = γD

k∑
j=2

ψj−1,j(x, ξ,βj)

Ij−1,j(ξ,βj)
+

k∑
j=1

γj
dj
ψDj(x, ξ,βj)

is the directional derivative of criterion function (3.2) at ξ in the direction of δξx.

The criterion of optimality (3.2) depends on the unknown parameter vector β
and on the choice of the weights γ; thus, a generalized DKL-optimum design is only
locally optimal when non-linear models are considered. In order to overcome this
problem an adaptive sequential design is proposed in the next section.

4 A sequential generalized DKL-optimum design

Suppose that a number of experiments can be carried out sequentially with the
goal of discriminating between the k models described in Section 2 and estimating
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efficiently the parameters of the true model. A generalized DKL-optimum design
proposed in Section 3 may be computed to perform the experiments, but, since the
models are non-linear, the optimality would be only locally reached. To overcome
the problem of the dependance on the unknown parameter, let us perform the ex-
periments in n sequential steps as follows, and denote the stage of the sequential
procedure by r = 0, 1, . . . , n.

At the first stage, i.e. for r = 0, a generalized DKL-optimum design is com-
puted, that is a designs maximizing criterion (3.2) based a nominal value for β
and on an arbitrary choice of values for γj (j = 1, . . . , k). Let ξ∗DKL = ξ∗0 be such
generalized DKL-optimum design. Then m independent experimental conditions
are generated from ξ∗0 , and denote by X0 = (X0,1, . . . , X0,m)T the random vector
of these experimental conditions. Also, a vector of m independent observations
Y0 = (Y0,1, . . . , Y0,m)T is obtained from these experimental conditions, and a statis-
tic T0j is used for testing

H0,j : τ j = τ 0
j against H1,j : τ j 6= τ 0

j (4.1)

in a stepwise manner, i.e. for j = k, k − 1, . . . , 2, until a specific null hypothesis is
rejected. Let us stress that hypotheses (4.1) are equivalent to those in (2.1) as the
models are nested. Consider the -2 log-likelihood ratio statistic

T j0,m = −2 log
Lj−1

0 (β̂0,j−1)

Lj0(β̂0,j)

based on the likelihood

Ll(Y0,X0;βl) = Ll(Y0|X0;βl) · Ll(X0) ∝
m∏
s=1

fl(y0,s|x0,s;βl), (4.2)

so that, for l = j − 1, j, Ll0(β̂0,l) is the likelihood evaluated at its maximum β̂0,l.

A null hypothesis H0,j is rejected with level α0,j if T j0,m > c0,j, c0,j being the cut-off
point corresponding to the significance level α0,j.

For r = 1, 2, . . . , n (i.e. at the next stages), let us define the following random
weights: for each j = 1, . . . , k let γr−1,j to be the square of the proportion of times
that model fj(y|x;βj) has been selected up to the (r − 1)-th step, provided that
such proportion is lower than 1. Otherwise, if the proportion of times that a specific
model f̄(y|x;β ̄) has been selected is equal to 1, then γr−1,̄ = 1−1/2r and γr−1,j = 0
for j 6= ̄. Finally, let

γr−1,D =
1−

∑k
j=1 γr−1,j

k − 1
.
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Denoting β̂r−1 = (β̂
T

r−1,1, . . . , β̂
T

r−1,k)
T , an adaptive sequential DKL-optimum design

ξ∗r is found by maximizing the following random criterion function,

ΨDKL

[
ξ, β̂r−1(ω),γr−1(ω)

]
= γrD(ω)

k∑
j=2

log Ij−1,j

[
ξ, β̂r−1,j(ω)

]
+

k∑
j=1

γr−1,j(ω)

dj
log
∣∣∣M j

[
ξ, β̂r−1,j(ω)

]∣∣∣ , (4.3)

if M j

[
ξ, β̂r−1,j(ω)

]
is not singular for any j = 1, . . . , k, otherwise

ΨDKL

[
ξ, β̂r−1(ω),γr−1(ω)

]
= −∞.

In (4.3), if r = 1 β̂r−1,j is the maximum likelihood estimator for βj based on (4.2),
with l = j; from the adaptive sequential DKL-optimum design ξ∗1 , a vector X1 =
(X1,1, . . . , X1,m)T of m experimental conditions are generated, that is a vector of
conditionally independent and identically distributed random variables with respect
to the past σ(Y0,X0), having conditional distribution equal to ξ∗1 . Given X1, a
vector of m conditionally independent responses Y1 = (Y1,1, . . . , Y1,m)T is observed.

If r ≥ 2, β̂r−1,j is the maximum likelihood estimator for βj based on the conditional
likelihood of (Yr−1,Xr−1) given all the past observations:

Lj(Yr−1,Xr−1|Yr−2,Xr−2, . . . ,Y0,X0;βj); (4.4)

from ξ∗r , a vector of m experimental conditions Xr = (Xr,1, . . . , Xr,m)T , which
are conditionally independent and identically distributed with respect to the past
σ(Yr−1,Xr−1, . . . ,Y0,X0), is generated. Given Xr, a vector of m conditionally inde-
pendent responses Yr = (Yr,1, . . . , Yr,m)T is observed. Note that the response vector
Yr depends on the past observations only through Xr, therefore the conditional
distribution of Yr given σ(Xr,Yr−1,Xr−1, . . . ,Y0,X0) is equal to the conditional
distribution of Yr given σ(Xr). Hence (4.4) satisfies

Lj(Yr−1,Xr−1|Yr−2,Xr−2, . . . ,Y0,X0;βj)

= Lj(Yr−1|Xr−1,Yr−2,Xr−2, . . . ,Y0,X0;βj) · Lj(Xr−1|Yr−2,Xr−2, . . . ,Y0,X0)

∝ Lj(Yr−1|Xr,Yr−2,Xr−2, . . . ,Y0,X0;βj)

= Lj(Yr−1|Xr−1;βj) =
m∏
s=1

fj(yr−1,s|xr−1,s;βj), j = 1, . . . , k, (4.5)

In the notation of (4.3) it is stressed that the second and third arguments of
ΨDKL(·, ·, ·) are now functions of ω ∈ Ω, and hence the optimal designs ξ∗r , for
any r ≥ 1, are random distributions.
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Then, hypotheses (4.1) are tested through the statistic

T jr,m = T jr−1,m + T jr,m, (4.6)

for j = k, k − 1, . . . , 2 until a specific null hypothesis is rejected, where

T jr,m = −2 log
Lj−1
r (β̂r,j−1)

Ljr(β̂r,j)
, (4.7)

is the log-likelihood ratio statistic based on the following conditional likelihood

Ll(Yr,Xr|Yr−1,Xr−1, . . . ,Y0,X0;βj) ∝
m∏
s=1

fj(yr,s|xr,s;βj), j = 1, . . . , k,

and Llr(β̂r,l) is the corresponding conditional likelihood evaluated at its maximum

point β̂r,l, l = j−1, j. A null hypothesis H0,j is rejected with level αr,j if T jr,m > cr,j,
where cr,j is the cut-off point corresponding to the level αr,j.

Let us remark the following. Test statistic T jr,m is based on all the observations
obtained up to the r-th step, which are dependent. Despite of this, the computa-
tional effort to determine T jr,m should be quite low. From equation (4.6), to compute

T jr,m is enough to update the test statistic T jr−1,m, computed at the previous step,
by adding the log-likelihood ratio statistic T jr,m. In addition, T jr,m is based on m
independent observations (given the vector of experimental conditions Xr) and for
some models it is already implemented in many statistical software packages. For
instance, for the most commonly used generalized linear models, the log-likelihood
ratio statistics T ji,m, i = 1, . . . , r (and therefore also T jr,m) can be easily computed
using common statistical packages.

Note also that for easy of notation it has been considered the same number m
of observations at each step; this could be straightforward generalized to the case of
mr observations at each step r = 0, . . . , n, assuming that the hypotheses considered
in the the rest of the paper hold for m = min{mo, . . . ,mn}. Note that, after n steps,
N =

∑n
r=0mr dependent observations (Xr,s, Yr,s), s = 1, . . . ,mr and r = 0, . . . , n,

are collected in the experiment.

5 Selection of the correct model and convergence

to the corresponding D-optimal design

The main results of this section are Theorem 5.1 and Theorem 5.2 which guaran-
tee two fundamental properties of the sequential procedure. Some methods used
in [4] are extended to the different scheme proposed in this paper. Theorem 5.1
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assures that the true model is asymptotically selected; Theorem 5.2 states that the
sequence of generalized DKL-optimum designs converges in probability to the D-
optimal design for the true model. In addition, some important auxiliary results are
provided. The first one is Proposition 5.1 which gives the asymptotic distribution,
under the null hypothesis, of the test statistics defined in (4.6), as the number m of
observations increases to infinity.

From now on, let the true model for Y conditioned to X be fj∗(y|x;βj∗), j
∗ ∈

{1, . . . , k}, and let β̄j∗ denote the true value of the parameter; this means that,

whenever j∗ ≥ 2, the last components of β̄j∗ verifies τ̄ j∗ 6= τ 0
j∗ . Some further

assumptions on the models will be required.

Assumptions 5.1. For any design ξ such that Mj∗(ξ,βj∗) is not singular, it holds

5.1.1. Second partial derivatives of fj∗(y|x;βj∗) may be passed under the integral
sign in

∫
Y fj∗(y|x;βj∗) G(dy|x).

5.1.2. |∂2fj∗(y|x;βj∗)/∂βj∗r∂βj∗s| ≤ k(y, x) for all βj∗ in some neighborhood of

β̄j∗, with ∫
X

∫
Y
k(y, x) Fj∗(dy|x; β̄j∗) ξ(dx) <∞.

5.1.3. ∫
X

∫
Y

log
fj∗(y|x; β̄j∗)

fj∗−1(y|x;βj∗−1)
Fj∗(dy|x; β̄j∗) ξ(dx)

has a unique minimum in β̃j∗−1.

5.1.4. | log fj∗−1(y|x;βj∗−1)| ≤ m(y, x) for all βj∗−1 in some neighborhood of β̃j∗−1,
with ∫

X

∫
Y
m(y, x) Fj∗(dy|x; β̄j∗) ξ(dx) <∞.

Note that the design ξ∗0 satisfies that Mj(ξ,βj) is not singular for any j = 1, ..., k,
since it maximizes (3.2); for the same reason, this property is satisfied by each ξ∗r ,
r ≥ 1, conditionally to the past.

Proposition 5.1. Under the null hypothesis H0,j, the test statistic T jr,m converges
in distribution, as m→∞, to a chi-squared distributed random variable T jr having
(r + 1)(dj − dj−1) degrees of freedom, for any r = 0, . . . , n.

Proof. From Assumptions 5.1.1 and 5.1.2, T j0,m converges to a chi-squared distribu-
tion with (dj − dj−1) degrees of freedom (see [15, Theorem 22]).

For any i = 1, . . . , r, the i-th term T ji,m of T jr,m defined in equation (4.7) is
a function of (Yi,Xi), and the response vector Yi depends on the corresponding

11



exact design Xi and on all the past response vectors Yi−1, . . . ,Y0 and exact designs
Xi−1, . . . ,X0 only through Xi; therefore

P (T ji,m ≤ ti|Xi,Yi−1,Xi−1, . . . ,Y0,X0) = P (T ji,m ≤ ti|Xi). (5.1)

Moreover, responses Yi,1, . . . , Yi,m are independent and identically distributed condi-
tionally to the exact design Xi, and hence, again from Assumptions 5.1.1 and 5.1.2,
for m→∞

P (T ji,m ≤ ti|Xi)→ P (T ji ≤ ti), (5.2)

where T ji is a chi-squared distributed random variable with (dj − dj−1) degrees
of freedom. Equations (5.1) and (5.2) imply that, for m growing to infinity, T ji,m
is asymptotically independent on σ(Xi,Yi−1,Xi−1, . . . ,Y0,X0) and it is asymp-
totically distributed as a chi-squared random variable with (dj − dj−1) degrees of
freedom. It follows that T jr,m is a sum of asymptotically independent, chi-squared
distributed random variables, and hence

T jr,m
d→ T jr

as m→∞, where T jr =
∑r

i=1 T
j
i has a chi-squared distribution with (r+1)(dj−dj−1)

degrees of freedom.

From now on, let us denote by cjr the quantile of order (1− αjr) of a chi-squared
distribution with (r+1)(dj−dj−1) degrees of freedom. Then, at each stage r, the null
hypothesis H0,j is rejected if T jr,m > cjr, with an αjr asymptotic level of significance.
Moreover, for r = 0, . . . , n, and for j = k, k− 1, . . . , 2, let Zj

r be the indicator of the
event “the j-th model is selected at stage r”, that is

Zj
r =

{
1, if T hr,m ≤ chr for h = k, . . . , j + 1 and T jr,m > cjr
0, otherwise,

and for j = 1 let Z1
r be the indicator of the event “the smaller model is selected at

stage r”, that is

Z1
r =

{
1, if T hr,m ≤ chr for h = k, . . . , 2
0, otherwise.

Lemma 5.1. As m→∞,

(a) β̂0,j∗ and β̂0,j∗−1 converge almost surely to β̄j∗, and β̃j∗−1, respectively;
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(b) in some neighborhoods of β̄j∗, and β̃j∗−1, respectively,

sup
βj∗

∣∣∣∣∣ 1

m

m∑
s=1

log fj∗(Y0,s|X0,s;βj∗)− E(log fj∗(Y0,s|X0,s;βj∗))

∣∣∣∣∣→ 0, a.s.,

sup
βj∗−1

∣∣∣∣∣ 1

m

m∑
s=1

log fj∗−1(Y0,s|X0,s; βj∗−1)− E(log fj∗−1(Y0,s|X0,s; βj∗−1))

∣∣∣∣∣→ 0, a.s.

Proof. (a) Assumptions 5.1.1 and 5.1.2 guarantees the the strong consistency of
the maximum likelihood estimator of the parameter of the true model (see, for
instance, [15, Theorem 18]). The convergence of the maximum likelihood estimator
of the misspecified model is guaranteed by Assumptions 5.1.3 and 5.1.4, from [29,
Theorem 2.2].
(b) To obtain the uniform law, apply [15, Theorem 16 (a)].

The next auxiliary lemma provides the “non-null” behavior of the test statistic.

Lemma 5.2. There exists a constant k0 > 0 such that, almost surely,

lim
m→∞

T j
∗

0,m

m
= k0.

Proof. For i = 0, the observations (Xi,s, Yi,s), s = 1, 2, . . . ,m, are independent and
identically distributed, therefore

T j
∗

0,m

m
=

1

m

m∑
s=1

−2 log
fj∗−1(Y0,s|X0,s; β̂0,j∗−1)

fj∗(Y0,s|X0,s; β̂0,j∗)
.

From the strong consistence of estimators and the uniform laws of large numbers,
guaranteed by Lemma 5.1, T j

∗

0,m/m converges to

k0 = E

[
−2 log

fj∗−1(Y |X; β̃j∗−1)

fj∗(Y |X; β̄j∗)

]
,

which is greater then zero from Jensen inequality.

Theorem 5.1. Let αjn be a sequence of significance levels such that αjn → 0 as
n → ∞ for any j = 2, . . . , k. Let also m = m(n) be a non decreasing sequence of
integers such that m→∞ as n→∞, and cjn/m→ 0 as n→∞.
Then, as the number of stages n converges to infinity, the sequential procedure selects
the true model with probability converging to one. That is,

P (Zj∗

n = 1)→ 1, as n→∞.
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Proof. If j∗ ∈ {k, . . . , 2} then

P (Zj∗

n = 1) = P (T kn,m ≤ ckn, · · · , T j
∗+1

n,m ≤ cj
∗+1
n , T j∗n,m > cj

∗

n )

= 1− P ({T kn,m > ckn} ∪ · · · {T j
∗+1

n,m > cj
∗+1
n } ∪ {T j∗n,m ≤ cj

∗

n })

≥ 1−

[
k∑

j=j∗+1

P (T jn,m > cjn) + P (T j∗n,m ≤ cj
∗

n )

]
. (5.3)

Under the true model fj∗(y|x;βj∗), it holds P (T jn,m > cjn) = αjn for any j > j∗ since
the models are nested. Thus inequality (5.3) becomes

P (Zj∗

n = 1) ≥ P (T j∗n,m > cj
∗

n )−
k∑

j=j∗+1

αjn. (5.4)

The right-hand term of inequality (5.4) converges to 1 as n→∞ by the hypotheses
on the αjn’s and since

lim
n→∞

P (T j∗n,m > cj
∗

n ) = lim
n→∞

P

(
T j∗n,m
m

>
cj

∗
n

m

)
= 1. (5.5)

Convergence result (5.5) follows taking into account that T j∗n,m > T j
∗

0,m and that

lim
n→∞

P

(
T j

∗

0,m

m
>
cj

∗
n

m

)
= 1, (5.6)

as a consequence of Lemma 5.2, since cj
∗
n /m→ 0 as n→∞,

In addition, if j∗ = 1 then

P (Z1
n = 1) = P (T kn,m ≤ ckn, · · · , T 2

n,m ≤ c2
n)

= 1− P ({T kn,m > ckn} ∪ · · · {T 2
n,m > c2

n})

≥ 1−

[
k∑
j=2

P (T jn,m > cjn)

]
= 1−

k∑
j=2

αjn. (5.7)

The right-hand term of inequality (5.7) converges to 1 as n→∞ by the hypotheses
on the αjn’s.

In order to prove the next Theorem 5.2, arguments of asymptotic theory for
argmin of convex random functions are used. References and some general results
for real-valued random functions can be found in [20]. Since stochastic criterion
function (4.3) takes values in the extended real axe R̄ = [−∞,+∞), here the results
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treated in [17] and in [24] are extended to the metric space (S, dw), where S is the set
of probability distributions ξ with support X ⊂ Rq (without loss of generality, let
q = 1) and dw is a metric which metrizes the weak convergence on X . For instance,
take the Kantorovich-Wasserstein metric (see [18]):

dw(ξ1, ξ2) = inf{E(|X1 −X2|) : X1 ∼ ξ1, X2 ∼ ξ2}.

Since X is compact, the metric space (S, dw), which is an infinite-dimensional space,
is complete and compact (from Prokhorov).

At first, a relevant auxiliary result about continuity and semi-continuity with
respect to ξ ∈ S, of D- and KL-criteria, respectively, is provided by Proposition
5.2. Let us recall that, given a topological space S, a function h : S → R̄ is upper
semi–continuous (or lower semi–continuous, respectively) at x0 if and only if for
every ε > 0 there exists a neighborhood U of x0 such that h(x) ≤ h(x0) + ε for all
x ∈ U (or h(x) ≥ h(x0)− ε, respectively), equivalently,

lim sup
x→x0

h(x) ≤ h(x0) (or lim infx→x0 h(x) ≥ h(x0), respectively);

the function h is called upper semi–continuous (lower semi–continuous) if it is upper
semi–continuous (lower semi–continuous) at every point of its domain. Let us assume
that, for any j = 2, . . . , k, models fj(y|x;βj) and fj−1(y|x;βj−1) satisfy the following
condition on their conditional Kullback-Leibler divergence.

Assumption 5.2. The Kullback-Leibler conditional divergence I(x,βj,βj−1) de-
fined in Equation (2.3) is continuous with respect to x.

Proposition 5.2. Under Assumption 5.2,

(a) the D-criterion function from (S, dw) to [−∞,+∞):

ξ 7→ ΦDj [M j(ξ,βj)]

is continuous;

(b) the KL-criterion function from (S, dw) to [0,+∞):

ξ 7→ Ij−1,j(ξ;βj)

is upper semi-continuous.

Proof. (a) Let us recall that M j(ξ,βj) =
∫
x∈X J j(x,βj) d ξ(x), where J j(x,βj) is

a dj × dj matrix whose components are bounded continuous functions from X to
R. It follows that the map ξ 7→ M j(ξ,βj) is continuous because dw metrizes the
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weak convergence. Since also M j(ξ,βj) 7→ ΦDj [M j(ξ,βj)] is continuous as showed
in [23, Proposition IV.2], this proves the thesis.
(b) Let z(ξ,βj,βj−1) =

∫
x∈X I(x,βj,βj−1) d ξ(x), where I(x,βj,βj−1) is defined in

equation (2.3). The map ξ 7→ z(ξ,βj,βj−1) from (S, dw) to R is continuous because
I(x,βj,βj−1) is a continuous function from X to R from Assumption 5.2 and dw
metrizes the weak convergence. As a consequence of the continuity of z(ξ,βj,βj−1)
with respect to ξ, the KL-criterion function Ij−1,j(ξ;βj) = infβj−1∈Θj−1

z(ξ,βj,βj−1)
(see Definition 2.2) is upper semi-continuous.

Another auxiliary result is provided in the following lemma.

Lemma 5.3. Let R be the set of designs ξ such that every matrix M j(ξ,βj), j =
1, . . . , k, in (3.2) is not singular for any value of βj. Then R is dense in S.

Proof. Given a design ξ and a specific value for βk, it is well known that ifM k(ξ,βk)
is positive definite then all the principal minors are positive. Since the models are
nested, ifM k(ξ,βk) is positive definite for any value of βk ∈ Θk, then |M j(ξ,βj)| >
0 for every j = 1, . . . , k and βj ∈ Θj; thus ξ ∈ R. Therefore if ξs is a design in
S \R then M k(ξs,βk) needs to be a non-negative definite matrix at least for some
values of βk. Let us show that there exists a sequence ξn of elements in R such that
limn→∞ dw(ξn, ξs) = 0.

To this aim, let ξr be a design in R and let αn be a sequence of real constants in
(0, 1) such that αn → 0 as n→∞. The sequence of designs ξn = (1− αn)ξs + αnξr
belongs to R, because M k(ξn,βk) = (1−αn)M k(ξs,βk) +αnM k(ξr,βk) is positive
definite. Moreover ξn converges to ξs weakly as n → ∞, and hence the thesis is
proved.

Assumption 5.3. The following equality

ψDj∗

(
x, ξ∗Dj∗ , β̄j∗

)
= 0

has esactly dj∗ solutions, where ψDj∗ (x, ξ∗Dj∗ , β̄j∗) is the directional derivative (2.7)

evaluated at the D-optimum design for the true distribution fj∗(y|x; β̄j∗).

Remark 5.1. Assumption 5.3 implies the uniqueness of the D-optimum design for
model fj∗(y|x;βj∗) from the Equivalence Theorem for the D-optimality criterion.
For more details see [14], Theorem 2.4.1.

Theorem 5.2. If the Hypotheses of Theorem 5.1 mantain and
∑

n α
j
n < ∞, then

the sequence of designs ξ∗n converges in probability to ξ∗Dj∗ , that is,

P
(
dw

[
ξ∗n(ω), ξ∗Dj∗

]
< ε
)
→ 1,

for any ε > 0, as n grows to infinity.
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Proof. First, let us prove that, whenever
∑

n α
j
n <∞,

P (Zj∗

n = 1, ev.) = 1. (5.8)

Let j∗ ∈ {k, . . . , 2}. From Lemma 5.2 and from the hypothesis that cj
∗
n /m → 0, it

follows that

P

(
T j

∗

0,m

m
>
cj

∗
n

m
, ev.

)
= 1, and, a fortiori,P

(
T j∗n,m
m

>
cj

∗
n

m
, ev.

)
= 1,

since T j∗n,m > T j
∗

0,m. In other words, for any ε > 0 there exists N1 = N1(ε) such that

P

(
T j∗n,m
m

>
cj

∗
n

m
, for all n ≥ N1

)
≥ 1− ε. (5.9)

Since
∑

n α
j
n <∞, there exists also N2 = N2(ε) such that∑

n≥N2

k∑
j=j∗+1

αjn < (k − j∗ + 1) ε. (5.10)

Let now N = max(N1, N2); with analogous calculations of (5.3),

P
(
Zj∗

n = 1, for all n ≥ N
)

= P

(⋂
n≥N

{
T kn,m ≤ ckn, · · · , T j

∗+1
n,m ≤ cj

∗+1
n , T j∗n,m > cj

∗

n

})

= 1− P

(⋃
n≥N

{
{T kn,m > ckn} ∪ · · · {T j

∗+1
n,m > cj

∗+1
n } ∪ {T j∗n,m ≤ cj

∗

n }
})

≥ 1−

[∑
n≥N

k∑
j=j∗+1

P
(
T jn,m > cjn

)
+ P

(⋃
n≥N

{
T j∗n,m ≤ cj

∗

n

})]

= P

(⋂
n≥N

{
T j∗n,m > cj

∗

n

})
−
∑
n≥N

k∑
j=j∗+1

αjn. (5.11)

From (5.9) and (5.10), the last term of the (5.11) is greater then 1− (k − j∗ + 2) ε,
and this proves result (5.8) for j∗ ∈ {k, . . . , 2}.

If j∗ = 1, then

P
(
Z1
n = 1, for all n ≥ N

)
= P

(⋂
n≥N

{
T kn,m ≤ ckn, · · · , T 2

n,m ≤ c2
n

})

= 1− P

(⋃
n≥N

{
{T kn,m > ckn} ∪ · · · {T 2

n,m > c2
n}
})

≥ 1−
∑
n≥N

k∑
j=2

P
(
T jn,m > cjn

)
= 1−

∑
n≥N

k∑
j=2

αjn > 1− (k − j∗ + 1) ε
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and this proves result (5.8) for j∗ = 1.
Equation (5.8) implies that limn→∞ Z

j∗
n = 1, almost surely, and then, from Ce-

saro’s lemma, limn→∞
∑n

i=1 Z
j∗

i /n = 1, almost surely. Hence

lim
n→∞

γnj∗ = lim
n→∞

(∑n
i=1 Z

j∗

i

n

)2

= 1, (5.12)

almost surely. Moreover, since Zj∗
n = 1−

∑
j 6=j∗ Z

j
n, it also follows obviously that

lim
n→∞

γnj = 0, a.s., for any j 6= j∗, and lim
n→∞

γnD = 0, a.s. (5.13)

From (4.5), the maximum likelihood estimator β̂n,j∗ for the true parameter of the
true model is obtained from a proper likelihood function which doesn’t depend on
the past; if n→∞ also m→∞, then we have, as in Lemma 5.1(a),

β̂n,j∗ → β̄j∗ , (5.14)

a.s. Since ΦDj∗ [M j∗(ξ, βj∗ )] is continuous with respect to the second argument,
the continuous mapping theorem together with the (5.12) and (5.13) assure that,
for any ξ such that every matrix M j(ξ,βj), j = 1, . . . , k, in (3.2) is not singular
and for n→∞,

ΨDKL(ξ, β̂n,γn)→ 1

dj∗
log |M j∗(ξ, β̄j∗)|, (5.15)

in probability. The limit in (5.15) is proportional to the D-optimality criterion
function for the true model fj∗(y|x;βj∗). Let

gn(ξ)(ω) = −ΨDKL

[
ξ, β̂n(ω),γn(ω)

]
and

g(ξ) = − 1

dj∗
log |M j∗(ξ, β̄j∗)|,

hence the sequence of random functions gn(ξ)(ω) converges in probability, and then
also in distribution, to the function g(ξ) for any ξ ∈ R, which is a dense subset of
S by Lemma 5.3. Let us recall that gn(ξ)(ω), for any n ≥ 0, and the limit g(ξ) are
convex functions with respect to ξ, as showed in Section 3. Moreover gn(·)(ω) is lower
semi-continuous because, from Proposition 5.2, it is a linear combination of lower
semi-continuous functions on (−∞,+∞], while g(·) is continuous. As a consequence
of compactness and convexity of the space S and of the continuity of the D-criterion,
gn(ξ)(ω) and g(ξ) are finite on some open set. Finally, from Assumption 5.3, the
infimum of g(ξ) is achieved at a unique point ξ∗Dj∗ . From Lemma 3.1 and Theorem

3.2 in [17] it follows that ξ∗n(ω) converges in distribution to ξ∗Dj∗ . Since this limit is

not random, this is equivalent to convergence in probability [see 3], and this proves
the thesis.
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6 Conclusion and further developments

The DKL-criterion of optimality, proposed by [27], is useful to choose experimental
conditions which are “good” to discriminate between two rival models as well to
estimate efficiently the parameters of the selected model. This paper deals again
with the dual problem of model selection and parameter estimation, but more than
two rival models are considered. Hence, to handle the case of several nested non-
linear models, a modification of the DKL-criterion is herein given. This new criterion
is called generalized DKL-criterion. An interesting theoretical result proved in this
paper is the continuity and the upper semi-continuity, with respect to the design ξ,
of the D- and the KL-criterion functions, respectively. As a consequence, also the
generalized DKL-criterion is upper semi-continuous.

The generalized DKL-criterion depends on the values of the model parameters
because of the non-linearity of the models. To overcome the problem that the true
values of the parameters are unknown, a sequential procedure is then proposed. At
each step of this sequential scheme, a generalized DKL-optimum design is computed
using the maximum likelihood estimates obtained at the previous step (this is called
sequential generalized DKL-optimum design). Then m experimental conditions are
generated from such sequential adaptive DKL-optimum design and the correspond-
ing responses are observed. Finally some statistical tests are performed in a stepwise
manner until a specific model is selected. The sequential procedure here proposed
selects the true model with probability that tends to one; moreover, the sequential
generalized DKL-optimum design converges in probability to the D-optimum design
for the true model, as the number of stages increases to infinity.

Let us observe that, since the rival models considered in this paper are nested and
the Ds-criterion is useful to discriminate between nested models, a weighted geomet-
ric mean of D- and Ds-efficiencies could be another possible criterion of optimality
instead of the generalized DKL-criterion. Let us call generalized DDs-criterion this
possible combination of efficiencies. In this way, the criterion proposed by [28] would
be extended to the case of k models. In addition, a sequential adaptive DDs-optimum
design could be performed in a similar way than the sequential procedure proposed
in this paper. The comparison between the performances of these two sequential
adaptive designs will be a matter of future investigation.

Let us finally remark that, differently from the Ds-criterion, the KL-criterion can
be used furthermore to discriminate between separate models. Thus, a generalization
of the herein proposed sequential procedure to the case of several non-nested models
will be studied in future, as well.
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