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Abstract

Since the dawn of response surface methodology, it has been recommended that

designs include replicate points, so that pure error estimates of variance can be

obtained and used to provide unbiased estimated standard errors of the e�ects of

factors. In designs with more than one stratum, such as split-plot and split-split-

plot designs, it is less obvious how pure error estimates of the variance components

should be obtained and none are given by the popular residual maximum likelihood

(REML) method of estimation. We propose a novel method of pure error REML

estimation of the variance components, using the full treatment model to obtain the

linear combinations of the responses whose likelihood is maximized in the REML

estimation approach. This is easily implemented using standard software and im-

proved estimated standard errors of the �xed e�ects estimates can be obtained by

applying the Kenward-Roger correction based on the pure error REML estimates.

We illustrate the new method using several data sets and compare the performance

of pure error REML with the standard REML method. The results are comparable

when the assumed model is exactly correct, but the new method is considerably

more robust in the case of model misspeci�cation.

Keywords: Full treatment model; Kenward-Roger correction; linear mixed model; repli-
cates; response surface; split-split-plot design.
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1 Introduction

It is increasingly recognized that many industrial and laboratory-based experiments are,

or should be, run using split-plot and other multi-stratum structures, especially when

some factors have levels which are harder to set than other factors. In the simplest case,

we de�ne some easy-to-set factors whose levels can be reset for each experimental unit

(often called a subplot or run), and some hard-to-set factors whose levels can only be

reset for groups of experimental units (often called whole plots or blocks). A design is

then chosen so that the hard-to-set factors' level combinations are randomized to whole

plots, while the easy-to-set factors' level combinations are randomized to runs within

whole plots. The same principle is easily extended to several levels of experimental units

or strata in so-called multi-stratum designs. Provided they are continuous, the response

data from such experiments are appropriately analyzed using linear mixed models, which

include random e�ects for each stratum in the design, such as whole plots and subplots,

and �xed e�ects of the treatments on the response, often through a polynomial response

surface model. The most common estimation procedure uses residual maximum likelihood

(REML), which maximizes the likelihood of a projection of the responses onto a subspace

orthogonal to the assumed response surface model, to estimate the variance components,

and empirical generalized least squares (GLS), with the REML variance component es-

timates plugged in, to estimate the �xed parameters. This REML/GLS procedure is

available in several statistical computing packages, gives the same results as analysis of

variance in orthogonal multi-stratum designs and has good asymptotic properties. This

analysis was recommended by Letsinger et al. (1996), the �rst paper to systematically

consider industrial split-plot experiments.

However, it can often be observed in split-plot experiments that the whole-plot or block

variance component is estimated to be zero, even when the true variance component being

zero is not believable in practice. Goos et al. (2006) showed that this is quite likely to

happen even though the true value of the variance component is far from zero. Gilmour
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and Goos (2009) discussed this problem and suggested a Bayesian analysis, which uses

prior information on the variance components, as a reasonable alternative. This seems

to work quite well, but requires specialist software and very careful speci�cation of prior

information, which must be substantial to make up for the lack of information on the

whole-plot or block variance component in the data.

Rather than a Bayesian analysis, which requires specifying a prior distribution, it might

be desirable to perform a robust analysis, based on as few assumptions as possible. In

particular, an analysis which allows for possible lack of �t in the assumed response surface

model is desirable. Vining et al. (2005) and Vining and Kowalski (2008) recommended

a simple analysis based on pure error estimation of each variance component obtained

from replicate points, which possesses this robustness property. Vining and Kowalski

(2008) recommended that all inference be done using these pure error estimates. How-

ever, the method they recommend is only applicable to particular types of designs and

only uses replicate points within whole plots and completely replicated whole plots to

obtain pure error estimates. Gilmour and Trinca (2000) showed, in the context of blocked

response surface designs, that this is a stronger de�nition of pure error than is used in

completely randomized designs, which requires only the use of the full treatment model.

Since split-plot designs are also incomplete block designs, with some main e�ects com-

pletely confounded with blocks, the arguments of Gilmour and Trinca (2000) apply to

split-plot designs and more general multi-stratum designs as well. Hence, the methods

presented in this paper are also applicable to blocked response surface designs, split-plot

designs and multi-stratum designs.

The purpose of this paper is to explore in generality the use of pure error estimates of

variance components. We do this by using REML with the full treatment model (instead

of the polynomial response surface model), which maximizes the likelihood of a projection

of the responses onto a subspace orthogonal to the full treatment model, to obtain pure

error estimates of the variance components, which do not depend on the assumed quadratic
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polynomial (or any other) response surface model form. This allows many designs which

do not have explicit replication within whole plots, or repeated whole plots, to be analyzed

using pure error estimates. Moreover, even when such replication is available, pure error

REML makes more use of the information in the data than the procedure of Vining and

Kowalski (2008). We use the variance component estimates from maximizing this pure

error REML in empirical GLS to obtain a robust analysis which can be recommended in

analyzing data from any multi-stratum design.

The models discussed and the notation used in this paper are clari�ed in Section 2. A

modi�ed REML/GLS method is introduced in Section 3 and applied to some data sets

in Section 4. The properties of the new method are studied in Section 5, both when the

assumed polynomial response surface model is correct and when it is not. We �nish with

a discussion of some practical points in Section 6.

2 Models and Notation

In any experimental design, blocking factors arise as restrictions to the randomization, so

that some sets of treatments must appear in runs which are in the same block. Unless every

block consists of the same set of treatments, some information for comparing treatments

is confounded with block e�ects, although under the assumed model all parameters are

estimated orthogonally to block e�ects in some special designs. If there are nested block

factors, e.g. runs within blocks within superblocks, information can be confounded with

both the block e�ects and the superblock e�ects. By assuming that the block e�ects

are random, the information available in the block totals can be recovered and combined

with the usual within-block information. Each level of blocking, e.g. blocks, superblocks,

etc., leads to a stratum in the analysis. Split-plot designs are block designs with at

least one main e�ect completely confounded with blocks (usually called whole-plots) and

split-split-plot designs are nested block designs with at least one main e�ect confounded
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with superblocks (usually called whole-plots) and at least one main e�ect completely

confounded with blocks within superblocks (usually called subplots). More generally,

multi-stratum designs are those which have treatments de�ned by combinations of the

levels of several treatment factors with these factors applied in di�erent strata. Therefore,

some treatment factors have main e�ects confounded with the e�ects of some blocking

factors.

The model derived from the randomization, following Hinkelmann and Kempthorne (1994),

is

Y = Xtτ +
s∑
j=1

Zjδj + ε, (1)

where Y is a random variable of which the response vector y is assumed to be a realization,

Xt is the n×t full treatment design matrix, having (i, r)th element equal to 1 if treatment

(or design support point) r appears in run i and 0 otherwise, n is the number of runs,

t is the number of treatments, τ is the corresponding vector of treatment means, s is

the number of nested blocking factors, implying s + 1 strata, δj is a vector of random

block e�ects corresponding to the jth stratum, Zj is the design matrix for these random

e�ects and ε is the vector of random experimental unit errors. We further assume that

δj ∼ N
(
0, σ2

j Inj

)
, mj is the number of units in stratum j, ε ∼ N (0, σ2I) and δj, j =

1, . . . , s, and ε are mutually independent. We refer to model (1) as the full treatment

model. The key feature of the full treatment model is that every factor level combination

will be viewed as one level, called a treatment, of a single categorical factor.

In a typical response surface experiment, we want to further interpret the treatment

e�ects, for example by assuming that

Xtτ = Xβ, (2)

where X is the n×p design matrix for a second order polynomial response surface model,

p = 1+2q+q(q−1)/2 is the number of parameters in the response surface model, q is the

number of treatment factors and β is the vector of parameters of this model. Obviously,
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adopting the polynomial model is a much stronger assumption than assuming model (1),

which allows any pattern of treatment e�ects. Therefore, we would like our analysis to

depend on the assumed polynomial model as little as possible. This is consistent with

the presentation of Box and Draper (2007), who emphasize that the popular polynomial

models are purely empirical graduating functions. Throughout this paper we use the

second order polynomial model, but the ideas apply equally to any other linear response

surface model.

3 Estimation

In response surface studies, the main interest is usually in estimating the �xed e�ects β

in the polynomial model (2). If the ratios of variance components were known, this would

be done optimally using generalized least squares (GLS) to get

β̂ = (X′Σ−1X)−1X′Σ−1Y,

where

Σ = σ2

(
s∑
j=1

γjZjZ
′
j + I

)
(3)

and γj = σ2
j/σ

2. The variance-covariance matrix of the GLS estimator is

V(β̂) = Ψ = (X′Σ−1X)−1.

In practice, of course, the ratios of the variance components are not known, but have to

be estimated. The particular method used to estimate the variance components then has

an impact on the estimates obtained for the �xed e�ects.

3.1 Estimating Variance Components

Following the ideas of Letsinger et al. (1996), it has become accepted that the vari-

ance components in multi-stratum response surface designs should be estimated using
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REML and the �xed e�ects estimated by empirical GLS. We refer to this approach as the

REML/GLS approach. The main idea behind the pure error REML approach introduced

here is to avoid the excessive reliance on the polynomial response surface model in (2) made

by the usual REML/GLS analysis, because it may be incorrectly speci�ed. We do this

by estimating the variance components by REML from the full treatment model (1) and

using the resulting variance component estimates in subsequent analyses by GLS based

on the polynomial model (2). One advantage of this approach is that it allows the pure

error estimation of variance components, based on model (1), as recommended by Vining

and Kowalski (2008). We plug the REML variance component estimates from model (1)

into the GLS estimator of model (2) and to the corresponding estimated standard errors.

The argument to do so is analogous to that in completely randomized designs as to

whether estimated standard errors should be based on the pure error estimate of the error

variance or on the estimate for the error variance obtained from the polynomial regression

model. As recommended by Box et al. (2005), it is clearly advisable to use the pure error

estimates when they are available. The common practice of checking for lack of �t and

using the variance component estimates from the regression or response surface model if

no lack of �t is found can be thought of as an approximation to this. In that approach,

the variance component estimates from the polynomial regression model are only used if

they are similar to the pure error estimates, so that one might as well use the pure error

estimates. The reason not to is to increase the degrees of freedom for estimating error

and so obtain apparently more precise estimates and more powerful tests. This increase

in precision is spurious due to the model selection involved.

In any case, in a completely randomized response surface experiment, few would recom-

mend ignoring the separation of pure error from lack of �t (Box and Draper, 2007; Myers

et al., 2009). However, this is precisely what is commonly done in multi-stratum response

surface designs when the empirical GLS estimates are obtained using the variance compo-

nent estimates from �tting the polynomial regression model. This is even worse than in
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a completely randomized design, since, in multi-stratum designs, not only the estimated

standard errors depend on the variance component estimates, but also the estimates of

the �xed e�ects.

The REML method we recommend for estimating variance components from model (1)

involves maximizing the likelihood of the residuals, after removing the full treatment

model's �xed e�ects. Speci�cally, the likelihood of K′Y is maximized, where K′Xt = 0

and rank(K) = n− t, where t is the number of treatments - see, for example, McCulloch

et al. (2008). Unlike maximum likelihood estimators, REML estimators of the variance

components are unbiased. Moreover, they are identical to the analysis of variance esti-

mators in the case of orthogonal multi-stratum designs.

Following Letsinger et al. (1996), REML is currently usually used with the polynomial

regression model (2) to obtain estimators of the variance components, i.e. with Xt replaced

by X and K having rank n − p instead of n − t. In that case, the REML estimates are

based on more degrees of freedom, but they depend on the assumed polynomial regression

model, which is not necessarily a good approximation of the correct treatment model.

3.2 Estimating Fixed E�ects

Estimating the treatment factors' e�ects is usually done using the empirical GLS estimator

β̂ = (X′Σ̂
−1

X)−1X′Σ̂
−1

Y, (4)

where

Σ̂ = σ̂2

(
s∑
j=1

γ̂jZjZ
′
j + I

)
,

γ̂j = σ̂2
j/σ̂

2 and σ̂2
j and σ̂

2 are obtained from REML applied to the polynomial response

surface model instead of the full treatment model. The variance matrix of these estimators

is usually estimated by

V̂(β̂) = Ψ̂ = (X′Σ̂
−1

X)−1. (5)
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The focus of this paper is on the plug-in estimators of the variance components which are

used in the empirical GLS estimator (4). The most crucial property these must have is

that the estimated variance components are as close to the true variance components as

possible. There is no theoretical reason why the plug-in estimators should be obtained

from the polynomial response surface model (2), even though this is the model whose �xed

e�ects we are estimating. We suggest that the unbiased estimators of the variance com-

ponents obtained from the full treatment model (1) should be used instead. We will refer

to this as the pure error REML/GLS, or PE-REML/GLS, method; the standard REML

method, based on the polynomial response surface treatment model, will be referred to

as RS-REML.

The problem with using the usual estimators of the variance components in (4) is that

they are used both to obtain the �xed e�ects estimates and to assess the quality of these

estimates using (5). Consider, for example, a situation in which the polynomial model is

inadequate because some higher order terms are missing. Then, the estimated variance

components from this model are likely to be overestimated, perhaps considerably so. This

leads to overestimated standard errors of the �xed e�ect estimates, which, in turn, might

lead to few e�ects seeming to be signi�cantly di�erent from zero. We might then make

the decision to reduce the order of the model, rather than to increase it. If, on the other

hand, the variance components are estimated from the full model, they will be unbiased

irrespective of whether the assumed polynomial model is correct or not. The resulting

analysis should then correctly show the inadequacy of the assumed polynomial response

surface model (Goos and Gilmour, 2017). Of course, since the unbiased estimators are

based on less information than the biased estimators, things are not quite so simple.

However, this line of reasoning does at least indicate that, in the case of major model

inadequacies, the unbiased estimators should be better.
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3.3 Estimating Standard Errors of Fixed E�ects

The estimated variances and standard errors of the �xed e�ects' estimates obtained us-

ing (5) are known to be negatively biased even if the �xed e�ects model is correct. A

correction, which usually gives less biased estimated variances and standard errors, was

suggested by Kenward and Roger (1997) for standard REML estimation. By a direct

application of results given by McCulloch et al. (2008) (p. 165-169), the Kenward-Roger

correction is trivially adapted to the PE-REML method, i.e. it can be applied regardless

of which estimator of variance components is used for estimating the �xed e�ects.

Simple orthogonal block structures are those made up of crossed and nested blocking

factors, in which, for each blocking factor individually, each block contains equal numbers

of units (Nelder (1965); see also Gilmour and Trinca (2006)), irrespective of the treatment

structure or model. In simple orthogonal block structures, with model (2) for the �xed

e�ects, the approximate variance matrix for �xed e�ects estimates, with the Kenward-

Roger correction, is

̂̂V(β̂) = Ψ̂A = Ψ̂ + 2Λ̂,

where Ψ̂ is from equation (5), Λ̂ is obtained by plugging the appropriate REML estimates

σ̂ of the variance components into

Λ = Ψ

{
s+1∑
i=1

s+1∑
j=1

uij (Qij −PiΨPj)

}
Ψ,

uij is the (i, j)th element of the covariance matrix U = V(σ̂), σ̂ is either the RS-REML

or PE-REML estimator of σ, σ = [σ2
1 · · · σ2

s+1]
′, σ2

s+1 = σ2,

Pi = X′g
∂Σ−1

∂σi

Xg,

Qij = X′g
∂Σ−1

∂σi

Σ
∂Σ−1

∂σj

Xg,

Xg is the design matrix corresponding to some �xed e�ects model (either Xt or X in our

case) and Σ is de�ned in (3). The correction a�ects only those standard errors which are

in�uenced by the plug-in estimators of σ2
1, . . . , σ

2
s and not those which depend only on σ2.
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This is still a theoretical approximation, since it depends on the terms σi which have to

be estimated. In the particular case of a split-plot design with k subplots within each

whole plot, σ′ = [σ2
1 σ

2],

Σ = σ2I + σ2
1ZZ′

and so

Σ−1 =
1

σ2

(
I− σ2

1

σ2 + kσ2
1

ZZ′
)
, (6)

using a standard result on matrix inverses, e.g. Searle (1982), p.261. By direct di�erenti-

ation, we obtain
∂Σ−1

∂σ2
1

= − 1

(σ2 + kσ2
1)

2ZZ′

and
∂Σ−1

∂σ2
=

1

σ4

{
σ2
1 (2σ

2 + kσ2
1)

(σ2 + kσ2
1)

2 ZZ′ − I

}
.

For the PE-REML estimators, we use the asymptotic sampling variance of REML es-

timators of variance components, given by McCulloch et al. (2008) for example. As a

result,

u22 = V
(
σ̂2
)
= 2tr(Z′CZZ′CZ)/c,

u11 = V
(
σ̂2
1

)
= 2tr(CC)/c

and

u12 = u21 = Cov
(
σ̂2, σ̂2

1

)
= −2tr(Z′CCZ)/c,

where

c = tr(CC)tr(Z′CZZ′CZ)− {tr(Z′CCZ)}2

and

C = Σ−1 −Σ−1Xt

(
X′tΣ

−1Xt

)−1
X′tΣ

−1.

The corresponding results for the RS-REML method replace Xt by X and are used in

software packages including SAS (Littell et al., 1996).
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One �nal point to note is that, if the estimated variance component for the blocks, σ̂2
1, is

zero (or negative if this is allowed), then the Kenward-Roger approximations fail. In this

case, we simply let Λ̂ = 0, in which case the adjusted estimate is equal to the unadjusted

estimate. This is also what statistical software packages do. All of the above generalizes

to any nested multi-stratum design, including any nested block structure. The results for

a split-split-plot structure are given in the appendix.

4 Illustrations

We illustrate the PE-REML method and compare it with the standard response surface

RS-REML method using three data sets. These were chosen to show how the new method

works in di�erent kinds of designs. The �rst thing to note is that many multi-stratum

designs, especially D-optimal designs, do not allow pure error estimation of variance com-

ponents, so that PE-REML estimation is infeasible and standard RS-REML estimation is

the only possibility to obtain variance component estimates. The designs in our examples

include an equivalent estimation split-plot design which has ample degrees of freedom for

pure error, a split-plot design constructed by hand which has limited pure error degrees of

freedom and an I-optimal split-split-plot design, which illustrates how the method extends

to general multi-stratum structures.

4.1 Strength of Ceramic Pipes

The design for the experiment on ceramic pipes reported by Vining et al. (2005) has 12

whole plots, each with four runs, and three of which consist of replicated center points.

We name the coded factors in the experiment X1 (zone 1 temperature), X2 (zone 2

temperature), X3 (amount of binder) and X4 (grinding speed), where X1 and X2 are

whole-plot factors. Because the design has the equivalent-estimation property (i.e. the
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Table 1: Estimates and estimated standard errors for the ceramic pipe data

Parameter Estimate
Standard Error

RS-REML PE-REML

β1 4.5579 0.4893 0.3027

β2 -6.5592 0.4893 0.3027

β3 -4.9733 0.0648 0.0721

β4 4.0922 0.0648 0.0721

β11 1.7381 0.8974 0.5551

β22 -0.5407 0.8974 0.5551

β33 -2.3864 0.6059 0.3958

β44 2.5736 0.6059 0.3958

β12 0.8431 0.5993 0.3707

β13 1.4356 0.0688 0.0765

β14 -1.4794 0.0688 0.0765

β23 -1.0019 0.0688 0.0765

β24 1.9856 0.0688 0.0765

β34 -1.0394 0.0688 0.0765
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OLS and GLS estimators are equivalent), both the RS-REML and PE-REML methods

give the same estimates for the factor e�ects from empirical GLS. These estimates are

shown in Table 1 along with their estimated standard errors. In this case, the Kenward-

Roger correction has no e�ect.

Using the full treatment model to estimate the variance components gives the same vari-

ance component estimates (σ̂2
1 = 0.52626 and σ̂2 = 0.09355), and, hence, the same esti-

mated standard errors of the �xed e�ects as the sample variance method of Vining et al.

(2005) (although their Table 6 actually gives variances, wrongly labeled as standard er-

rors). The estimated standard errors from the polynomial regression model for the linear

and quadratic main e�ects of the whole-plot factors X1 and X2 and their interaction ef-

fect are larger than those from the PE-REML method, while for the other e�ects they

are smaller. The RS-REML estimates of the variance components are σ̂2
1 = 1.4176 and

σ̂2 = 0.07563.

The fact that the PE-REML method yields the same estimates as the sample variance

approach of Vining et al. (2005) shows that, whereas they contrasted their pure error

standard error estimates with those obtained from REML, the point is not the method

(REML or sample variances) used, but the treatment model used as a starting point for

estimating variance components (rather than the RS model).

We note that the standard errors for all e�ects estimated at least partially in the whole-plot

stratum are actually smaller when the pure error estimators of the variance components

(based on the full treatment model) are used than when the variance component estimates

are based on the polynomial model. The opposite is true for all other e�ects. This is due

to the fact that the pure error estimate for σ2
1 is smaller than the RS-REML estimate,

while the pure error estimate for σ2 is larger than the corresponding RS-REML estimate.
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Table 2: Design with 12 whole plots of �ve runs for estimating a second order response
surface model in two whole-plot factors and two subplot factors, along with simulated
responses.

Whole plot Treatment X1 X2 X3 X4 Y
1 1 -1 -1 -1 -1 29.46

1 2 -1 -1 1 -1 31.50

1 3 -1 -1 -1 1 23.41

1 4 -1 -1 1 1 19.12

1 5 -1 -1 0 0 24.38

2 6 1 -1 -1 -1 53.32

2 7 1 -1 1 -1 50.18

2 8 1 -1 -1 1 55.08

2 9 1 -1 1 1 47.97

2 10 1 -1 0 0 49.08

3 11 -1 1 -1 -1 37.10

3 12 -1 1 1 -1 41.39

3 13 -1 1 -1 1 43.22

3 14 -1 1 1 1 38.18

3 15 -1 1 0 0 38.85

4 16 1 1 -1 -1 39.10

4 17 1 1 1 -1 44.05

4 18 1 1 -1 1 58.19

4 19 1 1 1 1 51.32

4 20 1 1 0 0 47.68

5 21 -1 0 -1 0 37.74

5 22 -1 0 1 0 32.18

5 23 -1 0 0 -1 37.27

5 24 -1 0 0 1 34.25

5 25 -1 0 0 0 36.18

6 26 1 0 -1 0 49.91

6 27 1 0 1 0 50.84

6 28 1 0 0 -1 49.24

6 29 1 0 0 1 54.78

6 30 1 0 0 0 50.45

7 31 0 -1 -1 0 40.63

7 32 0 -1 1 0 46.87

7 33 0 -1 0 -1 47.88

7 34 0 -1 0 1 42.95

7 35 0 -1 0 0 47.16

8 36 0 1 -1 0 48.59

8 37 0 1 1 0 49.21

8 38 0 1 0 -1 48.14

8 39 0 1 0 1 53.42

8 40 0 1 0 0 49.59

9 41 0 0 -1 -1 48.61

9 42 0 0 1 -1 51.91

9 43 0 0 -1 1 55.17

9 44 0 0 1 1 50.13

9 45 0 0 0 0 49.47

10 46 0 0 -1 0 49.08

10 47 0 0 1 0 48.77

10 48 0 0 0 -1 51.00

10 49 0 0 0 1 49.52

10 45 0 0 0 0 49.72

11 41 0 0 -1 -1 41.26

11 42 0 0 1 -1 43.83

11 43 0 0 -1 1 57.94

11 44 0 0 1 1 42.02

11 45 0 0 0 0 40.65

12 46 0 0 -1 0 49.43

12 47 0 0 1 0 46.00

12 48 0 0 0 -1 54.96

12 49 0 0 0 1 55.10

12 45 0 0 0 0 44.45
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Table 3: Estimates and standard errors for the simulated data from the design in Table 2

Parameter
Estimate Standard error

RS-REML PE-REML RS-REML PE-REML RS-REML-KR PE-REML-KR

β1 8.2320 8.2320 0.8551 1.1169 0.8551 1.1169

β2 2.6347 2.6347 0.8551 1.1169 0.8551 1.1169

β3 -0.8825 -0.8825 0.4215 0.5414 0.4215 0.5414

β4 0.8769 0.8769 0.4215 0.5414 0.4215 0.5414

β11 -6.1579 -6.1591 1.2865 1.6801 1.2867 1.6810

β22 -1.9979 -1.9991 1.2865 1.6801 1.2867 1.6810

β33 -0.3846 -0.3787 0.7137 0.9174 0.7245 0.9578

β44 2.0538 2.0596 0.7137 0.9174 0.7245 0.9578

β12 -4.3080 -4.3080 1.0473 1.3679 1.0473 1.3679

β13 -0.1340 -0.1340 0.5655 0.7264 0.5655 0.7264

β14 2.4995 2.4995 0.5655 0.7264 0.5655 0.7264

β23 0.2105 0.2105 0.5655 0.7264 0.5655 0.7264

β24 2.9180 2.9180 0.5655 0.7264 0.5655 0.7264

β34 -2.4283 -2.4283 0.5162 0.6631 0.5162 0.6631

4.2 Another split-plot example

To illustrate some di�erent points, we simulated data for another design involving four

factors, two of which are applied in the whole-plot stratum, and 12 whole plots, each

containing �ve runs. The design was constructed by hand, using standard treatment

sets and the ideas of fractional partial confounding (Mead, 1990; Mead et al., 2012) to

distribute the 49 treatments between whole plots - see Table 2. Unlike the design for

the ceramic pipe experiment, this design has replicated treatments which appear only in

di�erent whole plots. All the replicated treatments, labelled 41-49, appear in whole plots

9-12. This example shows that it is possible to get considerable information on pure error

variance components using the PE-REML method even from a design which does not

have within-whole-plot replicates. This is in contrast to the sample variance method of

Vining and Kowalski (2008) which would not allow pure error to be estimated from this

design.
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When simulating the responses, the true values of the variance components were σ2
1 = 4

and σ2 = 2. Using PE-REML, the estimate of σ2
1 is 5.3738 and the estimate of σ2

is 10.552, while the RS-REML estimates are 3.1085 and 6.3957 respectively. In this

case, σ2 is not very well estimated by either method, even though there are adequate

degrees of freedom for its estimation. The true values of the �xed e�ects were β′ =

[50 8 3 0 0 − 7 − 3 0 1 − 4 0 2 0 3 − 2]. The �xed e�ects' estimates and their estimated

standard errors, with and without the Kenward-Roger correction, are shown in Table 3.

The partially orthogonal structure of the design implies that the �xed e�ects estimates

are the same for each method, except for the quadratic e�ects of the subplot factors which

di�er slightly. As a result, the Kenward-Roger correction only a�ects the standard errors

of the estimates of the subplot factors' quadratic e�ects. In this case, we �nd that the

methods give very similar estimates, but slightly di�erent standard errors. The standard

errors obtained using the pure error estimates of the variance components are larger than

those based on the polynomial regression model. This is because the pure error estimates

of the variance components are larger than their RS-REML counterparts.

4.3 A split-split-plot example

In the same way as for split-plot designs, it is possible to obtain pure error estimates from

designs other than split-plot designs, such as split-split-plot designs. To illustrate this,

we created arti�cial data for an I-optimal split-split-plot design produced by the software

package JMP. The true �xed e�ects parameters were the same as in Example 2 and the

variance components were σ2
1 = 4, σ2

2 = 2 and σ2 = 1. The split-split-plot design involves

six whole plots, twelve subplots and 36 runs. Every whole plot has two subplots of three

runs. The I-optimal design, which minimizes the average variance of prediction, includes

30 distinct design points and hence 30 di�erent treatments. The design and the treatment

labels are shown in Table 4, along with the simulated data.

The �xed e�ects' estimates obtained and their estimated standard errors are shown in
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Table 4: Design with six whole plots, each containing two suplots of three runs for esti-
mating a second order response surface model in one whole-plot factor, one subplot factor,
and two subsubplot factors, along with simulated responses.

Whole plot Subplot Treatment X1 X2 X3 X4 Y
1 1 1 0 0 -1 1 50.77
1 1 2 0 0 0 0 49.08
1 1 2 0 0 0 0 50.21
1 2 2 0 0 0 0 47.28
1 2 3 0 0 1 -1 48.64
1 2 2 0 0 0 0 49.18
2 3 4 1 -1 1 1 48.68
2 3 5 1 -1 -1 -1 51.67
2 3 6 1 -1 0 0 50.76
2 4 7 1 0 -1 0 52.02
2 4 8 1 0 1 -1 52.36
2 4 9 1 0 0 1 54.37
3 5 10 -1 -1 0 1 22.13
3 5 11 -1 -1 1 -1 37.65
3 5 12 -1 -1 -1 0 28.17
3 6 13 -1 0 -1 -1 37.88
3 6 14 -1 0 1 1 35.33
3 6 15 -1 0 0 0 37.38
4 7 16 0 -1 0 -1 48.69
4 7 17 0 -1 -1 1 44.92
4 7 18 0 -1 1 0 44.14
4 8 19 0 1 -1 -1 46.72
4 8 20 0 1 1 0 50.06
4 8 21 0 1 0 1 54.69
5 9 22 1 0 1 0 49.46
5 9 23 1 0 0 -1 47.67
5 9 24 1 0 -1 1 55.59
5 10 25 1 1 0 -1 43.34
5 10 26 1 1 -1 0 48.88
5 10 27 1 1 1 1 51.32
6 11 28 -1 1 0 0 43.68
6 11 29 -1 1 -1 1 44.96
6 11 30 -1 1 1 -1 44.26
6 12 14 -1 0 1 1 38.21
6 12 13 -1 0 -1 -1 38.72
6 12 15 -1 0 0 0 39.02
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Table 5: Estimates and standard errors for simulated data from the design in Table 4

Parameter
Estimate Standard error

RS-REML PE-REML RS-REML PE-REML RS-REML-KR PE-REML-KR

β1 6.6134 6.6134 0.5340 0.5410 0.5340 0.5410

β2 2.8402 2.8427 0.3856 0.4256 0.5499 0.6250

β3 0.0218 0.0387 0.2310 0.2014 0.2391 0.2051

β4 0.1216 0.1046 0.2310 0.2014 0.2391 0.2051

β11 -4.5637 -4.5452 0.9322 0.9430 0.9362 0.9454

β22 -1.9252 -1.8964 0.5460 0.6025 0.7756 0.8812

β33 0.1064 0.0969 0.3995 0.3474 0.4023 0.3495

β44 0.5142 0.5048 0.3932 0.3419 0.3959 0.3440

β12 -3.8645 -3.9355 0.5125 0.5599 0.8285 0.9257

β13 -0.8496 -0.8420 0.2742 0.2386 0.2769 0.2404

β14 2.1437 2.1439 0.2759 0.2397 0.2760 0.2398

β23 -0.0526 -0.0526 0.3107 0.2700 0.3107 0.2700

β24 3.2443 3.2443 0.3107 0.2700 0.3107 0.2700

β34 -1.3678 -1.4290 0.3152 0.2944 0.4401 0.3776
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Table 5. The estimates of the whole-plot, subplot and subsubplot variance components,

σ2
1, σ

2
2 and σ

2 were, respectively, 0.799, 0.296 and 1.159 from the RS-REML analysis and

0.743, 0.565 and 0.874 from the PE-REML analysis. This explains the di�erences we can

see in the estimation of the treatment factor e�ects. It is not clear which analysis is better

in this case.

5 Comparison of Methods

The examples in the previous section illustrated several interesting points about the two

di�erent REML methods: in Example 1, PE-REML gave considerably smaller standard

errors of some �xed e�ects; in Example 2, the methods gave quite di�erent estimates

of the variance components; Example 3 showed quite di�erent estimates of �xed e�ects

being obtained from the two methods. However, no general conclusions can be drawn

from these examples about which method is to be preferred. To do this, we conducted

a simulation study using the design from the arti�cial split-plot example in Section 4.2.

Initially, we assume that the second order polynomial model is exactly correct. This, of

course, is unrealistic, but allows us to compare the new PE-REML method with the usual

RS-REML method in the situation that is most favorable for the latter.

5.1 Assumed Model is Correct

We simulated 10,000 data sets from the normal distribution, assuming a second order

response surface model with β′ = [50 8 3 0 0 − 7 − 3 0 1 − 4 0 2 0 3 − 2], σ2
1 = 4 and

σ2 = 2 and analyzed all of them using the RS-REML and PE-REML methods. The mean

estimated values of σ2
1 and σ2 were 4.0215 and 2.0021 respectively from the RS-REML

method and 4.1180 and 1.9993 from the PE-REML method. The design has the property

that all subplot factor e�ects, except the quadratic e�ects of the subplot factors, are
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Table 6: Empirical standard errors of quadratic parameter estimates estimated from

simulations when σ2
1 = 4 and σ2 = 2

PE-REML RS-REML

β11 1.2939 1.2937

β22 1.2830 1.2832

β33 0.4074 0.4073

β44 0.4117 0.4117

estimated orthogonally to blocks. For this reason, it is only the standard errors of these

quadratic e�ects which di�er. The empirical standard errors for these e�ects, calculated

from the sample variances of the parameter estimates in the simulations, are shown in

Table 6. In this case, where all necessary assumptions are known to be true, using the

variance component estimates from the polynomial model should result in the most precise

parameter estimates for the quadratic e�ects. The di�erence in precision with the PE-

REML method is, however, almost nonexistent. The biases of the �xed e�ects estimators

were also estimated from the simulations; they are similar for both methods and never

more than 2.31% of the corresponding standard deviation. For this setup, it is clear that

either method is acceptable for estimating the �xed e�ects parameters.

It is generally more di�cult to get good estimators of the standard errors of the �xed

e�ects and these are usually biased. The biases estimated from the simulations, expressed

as percentages of the corresponding empirical standard errors, are shown in Table 7.

Because (X′Σ̂
−1

X)−1 underestimates the true variance, the biases are generally negative.

They are small but non-negligible and the biases from the PE-REML method are larger

than those from the RS-REML method. This is not surprising, as there are fewer residual

degrees of freedom in each stratum when using the full treatment model to obtain variance

component estimates, and the estimated standard errors are asymptotically unbiased as

these degrees of freedom go to in�nity. The Kenward-Roger correction was applied and,
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Table 7: Relative biases (%) of uncorrected estimated standard errors when σ2
1 = 4 and

σ2 = 2

PE-REML RS-REML

β1 -7.98 -3.84

β2 -7.83 -3.68

β3 -2.38 0.19

β4 -2.78 -0.22

β11 -8.53 -4.42

β22 -7.75 -3.64

β33 -8.49 -1.42

β44 -9.73 -2.47

β12 -7.32 -3.15

β13 -3.15 -0.60

β14 -3.77 -1.24

β23 -4.01 -1.48

β24 -3.97 -1.44

β34 -3.89 -1.35

Table 8: Relative biases (%) of estimated standard errors for quadratic e�ects, corrected

using the Kenward-Roger method, when σ2
1 = 4 and σ2 = 2

PE-REML RS-REML

β11 -8.51 -4.42

β22 -7.74 -3.64

β33 -6.37 -0.70

β44 -7.64 -1.75
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Table 9: Relative biases (%) from estimated standard errors, corrected using the Kenward-

Roger method, when the true model has a third order term with a large e�ect estimated

in the whole-plot stratum.

PE-REML RS-REML

β1 -8.99 46.35

β2 -9.42 45.66

β3 -3.75 -1.11

β4 -2.55 0.13

β11 -8.94 46.26

β22 -9.23 45.91

β33 -6.60 0.38

β44 -8.10 -1.12

β12 -8.70 46.81

β13 -4.28 -1.65

β14 -3.17 -0.51

β23 -3.34 -0.68

β24 -1.86 0.83

β34 -3.32 -0.66

for the quadratic e�ects where it makes some di�erence, the results are shown in Table

8. For both methods, the correction works well for the quadratic e�ects of the subplot

factors (β33 and β44), but less well for the quadratic e�ects of the whole-plot factors. For

the method based on the polynomial regression model, the bias in standard errors is small,

and the Kenward-Roger correction reduces that small bias even further.
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5.2 Assumed Model is Incorrect

In Section 5.1, the results from using the polynomial treatment model to estimate the

random e�ects showed smaller biases than the results from using the full treatment model.

This is not surprising since the data were simulated from this polynomial model. However,

if the polynomial model is wrong, the results can change drastically. In Table 9, the

relative biases are shown from simulations in which the quadratic by linear interaction

e�ect β112 was given the value 5, i.e. similar in size to the other active e�ects. Also, the

model misspeci�cation involves whole-plot factors only, so that we should expect that

the whole-plot aspects of the analysis are a�ected, rather than the subplot parts of the

analysis.

It can be seen that the estimated standard errors obtained when using the pure error

variance components are quite robust to this model misspeci�cation (having a relative bias

of no more than about 10%), while those based on the polynomial model fail completely for

the linear e�ects β1 and β2, the quadratic e�ects β11 and β22, and the interaction e�ect

β12 (with relative biases greater than 40%). This is due to the fact that the variance

component σ2
1 is overestimated substantially by the RS-REML method. The RS-REML

method produced a mean estimate of 9.6323, compared with 4.0358 from the PE-REML

method. This results in in�ated standard errors for the e�ects estimated in the whole-plot

or block stratum. The estimates of σ2 have means 1.9980 and 2.0091 from the PE- and

RS-REML methods respectively.

The importance of the overestimated standard errors is not only that we might draw

wrong conclusions about speci�c e�ects, but that we can easily be led to believe that

there are few active e�ects and potentially miss factors which could be very important

for process or product improvement. Note that a negative bias of 10% in the estimated

standard error will lead to a 5% signi�cance test for that parameter having a true size of

6.69%, while a positive bias of 40% leads to a true size of 1.77%.
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Table 10: Relative biases (%) from estimated standard errors, corrected using the

Kenward-Roger method, when the true model has a third order term with a large ef-

fect estimated in the subplot stratum.

PE-REML RS-REML

β1 -9.02 -4.50

β2 -9.33 -4.83

β3 -3.47 87.66

β4 -2.65 89.25

β11 -8.59 -3.85

β22 -8.81 -4.05

β33 -5.97 76.20

β44 -6.00 75.99

β12 -9.12 -4.61

β13 -2.67 89.22

β14 -4.12 86.40

β23 -3.32 87.95

β24 -3.31 87.97

β34 -4.73 85.21

25



Table 11: Relative biases (%) from estimated standard errors, corrected using the

Kenward-Roger method, when third order terms have small but non-zero e�ects.

PE-REML RS-REML

β1 -7.36 1.59

β2 -8.97 -0.17

β3 -2.87 19.77

β4 -3.03 19.58

β11 -8.80 0.03

β22 -8.52 0.32

β33 -5.79 19.83

β44 -7.06 18.18

β12 -8.39 0.47

β13 -4.15 18.19

β14 -2.57 20.14

β23 -2.79 19.87

β24 -3.13 19.46

β34 -3.26 19.29

Simulations were also run with the e�ect β334, which is estimated in the subplot stratum,

having value 5. This is a scenario in which the model misspeci�cation is in the subplot

stratum rather than in the whole-plot stratum. On average, the RS-REML method es-

timated σ2
1 and σ2 respectively to be 2.8964 and 7.0989, whereas PE-REML again gave

reasonable estimates of 4.0006 and 1.9868. The biases of the estimated standard errors,

shown in Table 10, are unacceptable for all parameters estimated in the subplots stratum

if the RS-REML method is used.

Some simulations were also run in which all third order terms except the pure cubic terms

had small, but non-zero, e�ects of size 0.5 for linear by quadratic interactions and 0.25 for
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linear by linear by linear interactions. The result was that σ2
1 and σ

2 were estimated to be

4.0483 and 1.9888 respectively by PE-REML and 4.2139 and 2.8793 by RS-REML. The

biases of the estimated standard errors of the �xed e�ects, shown in Table 11, indicate that,

in general, it is clearly better to use the pure error estimates of the variance components.

Using that approach, the relative biases are less than 10%, compared with up to 20%

when using the RS-REML method. This time, it is mainly the estimate for σ2 which is

in�ated, resulting in substantial upward biases for the estimated standard errors of e�ects

estimated in the subplot stratum when using the RS-REML method. A positive bias of

20% for the standard errors corresponds to a size of 2.91% for a signi�cance test at the

5% level.

6 Discussion

On the basis of our results, we strongly recommend that the variance components in multi-

stratum response surface designs should be routinely estimated using PE-REML, and thus

based on the full treatment model. REML is implemented in many statistical packages

and generally has good properties. Implementing PE-REML simply involves running the

available REML procedure with the full set of treatment indicators as the �xed e�ects,

to obtain the estimates of the variance components. These are then plugged in to the

generalized least squares formula to obtain the estimates of the �xed e�ects parameters.

The same method could be used for analyzing data from blocked experiments, though

in most cases it will make little di�erence, since most information on treatment e�ects

comes from within the blocks.

The results in Section 5 show that PE-REML gives stable estimates of the �xed e�ects

parameters, along with their standard errors, irrespective of whether or not the assumed

model is correct. The standard errors are consistently negatively biased, by up to about

10% in relative terms. This is not a major concern, but it does mean that aspects of
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inference, such as p-values and interval estimates at a given level of con�dence are not

exact. In this case, the Kenward-Roger correction helps only a little and looking for

better correction methods might be a fruitful avenue for further research. For now, we

recommend the PE-REML method presented here.

Appendix

The derivation of results needed to calculate the Kenward-Roger correction for PE-REML

in the split-split-plot design follows the same steps as for the split-plot design, given in

Section 3.3, though, of course, there is an additional variance component. In a split-split-

plot design with b subplots within each whole plot and k subsubplots within each subplot,

σ′ = [σ2
1 σ

2
2 σ

2] and

Σ = σ2I + σ2
1Z1Z

′
1 + σ2

2Z2Z
′
2.

By twice applying the formula for Schur complements, as in the derivation of (6), we

obtain

Σ−1 =
1

σ2

{
I− σ2σ2

1

(σ2 + σ2
2k)(σ

2 + σ2
1bk + σ2

2k)
Z1Z

′
1 −

σ2
2

σ2 + σ2
2k

Z2Z
′
2

}
.

Di�erentiating with respect to each variance component and simplifying, we obtain

∂Σ−1

∂σ2
1

= − 1

(σ2 + σ2
1bk + σ2

2k)
2
Z1Z

′
1,

∂Σ−1

∂σ2
2

=
1

(σ2 + σ2
2k)

2

{
σ2
1k(2σ

2 + 2kσ2
2kbσ

2
1)

(σ2 + σ2
1bk + σ2

2k)
2

Z1Z
′
1 − Z2Z

′
2

}
and

∂Σ−1

∂σ2
=

1

σ2

{
σ2
1(2σ

4 + 2σ2σ2
2k + σ2

1σ
2
2bk

2)

(σ2 + σ2
2k)

2(σ2 + σ2
1bk + σ2

2k)
2
Z1Z

′
1 +

σ2
2(2σ

2 + σ2
2k)

σ2(σ2 + σ2
2k)

2
Z2Z

′
2 −

1

σ2
I

}
.

The elements of the matrix U are obtained by direct numerical inversion.
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