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size and it is asymptotically normally distributed.

Keywords: Asymptotics; Bioassay; Consistency; Logistic model; Maximum
likelihood estimation; Parameter dependent support.



Inference on a new sigmoid regression model with
unknown support and unbounded likelihood function

Haiying Wang and Nancy Flournoy

hwzq7@mail.missouri.edu flournoyn@missouri.edu

Department of Statistics, University of Missouri, Columbia, Missouri 65211, U.S.A.

January 10, 2012

Abstract

In this paper we introduce a non-regular sigmoid shape regression model with
boundaries of support for the response variable being two unknown parameters; the
likelihood function is unbounded, for which the global maximizers are not consistent es-
timators. Although the two sample extremes, the smallest and the largest observations,
are consistent estimators of the two unknown boundaries, they have slow convergence
rate and are asymptotically biased. Improved estimators are developed by correcting
for the asymptotic biases of the two sample extremes for the one sample case; but these
proposed estimators do not obtain the optimal convergence rate either. To obtain effi-
cient estimation, we resort to the local maximizers of the likelihood function, i.e., the
solution to the likelihood equations that is obtained by setting to zero the gradient
of the log-likelihood function with respect to the parameters. We prove that, with
probability approaching one as the sample size goes to infinity, there exists a solution
to the likelihood equation that is consistent at the rate of the square root of the sample
size and it is asymptotically normally distributed.

Keywords: Asymptotics; Bioassay; Consistency; Logistic model; Maximum
likelihood estimation; Parameter dependent support.

1 Introduction

Assume an independent sample {(xi, Yi), i = 1, ..., n} is from the following model,

log

(
B − Y
Y − A

)
= a+ bx+ ε, (1)

where Y is the response variable and x is a nonrandom scalar covariate, such as dose; ε is
an error; a, b, σ, A and B are unknown parameters. This model can also be presented as

Y = B − B − A
1 + e−(a+bx+ε)

,
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by which one can see that this model is connected to the four parameter logistic model,

Y = B − B − A
1 + e−(a+bx)

+ ε. (2)

The four parameter logistic model for continuous responses is also called the Emax model, and
it is frequently used for curve-fitting analysis in immunoassays such as ELISAs and other
bioassays. See, for example, DeLean et al. (1978), V∅lund (1978), Holford and Sheiner
(1981), Ratkowsky and Reedy (1986), Nix and Wild (2001), MacDougall (2006), Dragalin
et al. (2007) and Sebaugh (2011). The E(Y | x) of model (2) is often used in phase I
clinical trials to model the mean response for Bernoulli random variables. The applications
considered here, and in the aforementioned references, focus on continuous random variables.
We take ε to have a normal distribution N(0, σ2) for models (1) and (2).

A drawback of the four parameter logistic model is that parameters A and B are often
interpreted as the minimum and maximum of possible responses, although model (2) allows
the responses to be unbounded. Another inadequacy of model (2) is that the responses Y
have the same variance for all possible values of the covariate x, which is often violated in
practice. Leonov and Miller (2009) tackled this problem by letting the variance of the model
error depend on the covariate, but the range of possible responses remained to be bounded.
Our model (1) has bounded responses and the distribution of the response for a given dose
is skewed like a beta distribution. Figure 1 displays simulated data from models (1) and
(2). Note that observations from model (2) may fall far outside the two hypothetical bounds,
while data from model (1) always stays between the two boundaries. Additionally, data from
model (2) still has large variation in the two tails, whereas variation in the tails is skewed
and very small for model (1), and this scenario is observed frequently in real data.

A special case of model (1) is, by setting b = 0 and replacing a by µ,

log

(
B − Y
Y − A

)
= Z, (3)

where Z ∼ N(µ, σ2), and µ, σ, A and B are unknown parameters. Model (3) has some
similarities to the three parameter log-normal distribution, in which

log (Y − A) = Z ∼ N(µ, σ2),

and which also has an unbounded likelihood function (see Hill, 1963). Although the three
parameter log-normal distribution has been studied by many, including Cohen (1951), Hill
(1963), Harter and Moore (1966), Giesbrecht and Kempthorne (1976) and Cohen and Whit-
ten (1980), the theoretical properties of the proposed methods were not addressed rigorously
in these papers. Cheng and Amin (1983) proposed an estimation method called maximum
product spacings and proved the asymptotic normality of the proposed estimator and the
local maximum likelihood estimator for the log-normal distribution. However, a rigorous
proof for the consistency of the local maximum likelihood estimator was not provided.

There is a large body of literature rigorously developing methods of statistical inference
for models with parameter-dependent support, including Woodroofe (1972), Weiss and Wol-
fowitz (1973), Woodroofe (1974), Smith (1985), Cheng and Iles (1987) and Smith (1994).
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(a). Model (1)
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(b). The four parameter logistic model
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Figure 1: Simulated data from models (1) and (2) with a = 5, b = −1, σ = 0.5, A = 0 and
B = 5. The sigmoid curve is the median response for model (1) while it is the mean response
for model (2).

More references on non-regular models and estimation approaches for them can be found in
Cheng and Traylor (1995) and the references and discussions therein.

This paper is closely related to the work of Smith (1985), in which instead of using the
global maximizer of the likelihood function, the solution to the likelihood equation is used
to estimate unknown parameters. This idea was originally proposed by Harter and Moore
(1966). The theory of local maximum likelihood estimation was established for a broad
class of non-regular models without covariates in Smith (1985) by an elegant mathemati-
cal derivation. A key requirement in their proof is that the difference between the sample
minimum and the lower bound of the support of a distribution has a non-degenerate dis-
tribution asymptotically. However, as is shown in Section 2, this quantity for samples from
model (3) always converges to a constant. Smith (1994) extended the results of Smith (1985)
to a class of non-regular regression models, but model (1) does not meet the assumptions
required in their analysis. In this paper, we find another technique to prove the existence
of the consistent maximum likelihood estimator. With small modifications, this technique
applies to the consistency of local maximum likelihood estimator for the well known three
parameter log-normal distribution, for which a rigorous proof has been missing for a long
time. Uniqueness of the local maximizer of the likelihood function is also investigated and a
theorem similar to Theorem 2 in Smith (1985) is formulated for a general regression model.

The rest of this paper is organized as follows. In Section 2, the one sample case is
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addressed and properties of estimators based on the sample extremes are derived. In Section
3, we present the results for the local maximum likelihood estimator for the regression
problem under a general setup. Results of simulation experiments that are designed to
investigate the finite sample properties are contained in Section 4. Technical details are
given in the appendix.

2 Estimation based on the extreme order statistics for

the one sample case

2.1 Naive estimator

Suppose an independent sample {Y1, ..., Yn} is taken from model (3). If parameters A and
B are estimated in advance, µ and σ can be estimated simply by ordinary least-squares. An
naive approach is then to use the two sample extremes, Y(1) and Y(n), to estimate A and
B, respectively, and then remove them from the sample and use the rest of the sample to
estimate µ and σ. We call such estimators naive. Why do the two sample extremes not
perform well? It is not difficult to show that the two sample extremes are consistent, but
their convergence rate is very slow. The proposition below gives asymptotic properties for
these two statistics.

Proposition 1. Let

rn = {2 log n}1/2 − log log n+ log(4π)

{8 log n}1/2
, sn =

1

{2 log n}1/2
.

The following convergence results hold in distribution as n→∞:

eµ0+σ0rn

σ0sn

(
1

eµ0+σ0rn
−
Y(1) − A0

B0 − A0

)
→ G1,

e−µ0+σ0rn

σ0sn

(
1

e−µ0+σ0rn
−
B0 − Y(n)
B0 − A0

)
→ G2,

(4)

where µ0, σ0, A0 and B0 are the true values of the parameters, and G1 and G2 are two
independent random variables having the same distribution function F (t) = e−e

−t
.

Proof. In Appendix A.1.

From this convergence result, it follows that, as n→∞,

eµ0+σ0rn
(
Y(1) − A0

)
→ B0 − A0,

e−µ0+σ0rn
(
B0 − Y(n)

)
→ B0 − A0,

(5)

in distribution, which gives the rate of convergence as e−σ0rn . Since, for any α > 0,
e−σ0rnnα → ∞, the rate of convergence is slower than n−α for any α > 0. But it is still
faster than 1/ log n because e−σ0rn log n → 0. This proposition also tells us that there does
not exist a constant sequence r∗n →∞ such that r∗n(Y(1) −A0) or r∗n(B0 − Y(n)) converges to
a non-degenerate distribution.
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2.2 Bias adjusted estimators

Estimation based on the two sample extreme values can be improved by adjusting for their
asymptotic biases. From (4) and (5), better estimators of A and B are obtained:

Âadj = Y(1) −
(1− γσ̂∗sn)(Y(n) − Y(1))

exp(µ̂∗ + σ̂∗rn)
,

B̂adj = Y(n) +
(1− γσ̂∗sn)(Y(n) − Y(1))

exp(−µ̂∗ + σ̂∗rn)
,

(6)

where µ̂∗ and σ̂∗ are two consistent estimates of µ and σ, respectively, and γ ≈ 0.577 is the
Euler-Mascheroni constant. Their sampling properties are given by the following convergence
results:

eµ0+σ0rn

σ0(B0 − A0)sn
(Âadj − A0)→ γ −G1,

eµ0+σ0rn

σ0(B0 − A0)sn
(B̂adj −B0)→ γ −G2,

in distribution. By adjusting for the asymptotic biases of the two sample extremes, the
estimators in (6) improve the rate of convergence from e−σ0rn to sne

−σ0rn . Although this
rate is also between 1/ log n and n−α for any α > 0, simulation results show that these
estimators are much more efficient than the two sample extremes.

3 Maximum likelihood estimators

Since the estimators given in Section 2 do not posses the optimal convergence rate, we
evaluate the method of maximum likelihood estimation. Generalizing model (1) in this
section, we assume that an independent random sample {(xi, Yi), i = 1, ..., n} is taken from
the model

log

(
B − Y
Y − A

)
= xTβ + ε, (7)

where x denotes a p dimensional covariate vector here and β is an unknown p dimensional
regression coefficient vector. For simplicity, let θ = (βT, σ, A,B)T and let θ0 be the true
value of θ. The likelihood function of θ based on the observed sample is

Ln(θ) =
(B − A)nI(A < Y(1) < Y(n) < B)

(2π)
n
2 σn

∏n
i=1(B − Yi)(Yi − A)

exp

−
∑n

i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}2

2σ2

 , (8)

where I(·) is the indicator function. This likelihood function is unbounded and may become
infinite along some paths; for example, let β = 0 and σ2 =

∑n
i=1 [log((B − Yi)/(Yi − A))]2;

then σn
∏n

i=1(B−Yi)(Yi−A) goes to 0 if A approaches Y(1) from the left or B approaches Y(n)
from the right. So the likelihood function in (8) goes to infinity as θ goes to

(
0,+∞, Y(1), Y(n)

)
along some paths. If µ and σ are known, the likelihood function is bounded because it is
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continuous and goes to 0 as A approaches Y(1) or −∞, or as B approaches Y(n) or ∞. Since
the likelihood function in (8) is unbounded, the global maximizer of the likelihood function
is not a consistent estimator. In this section, following the idea of Smith (1985), we study
the properties of local maximizer of the likelihood function, i.e., the solution to the likelihood
equations. We prove the existence and consistency of the resultant estimator.

From calculations in Appendix A.2, the Fisher information matrix based on the sample
is

In(θ) =
n∑
i=1



xix
T
i

σ2 0 −1−cid
σ2(B−A)x

T
i

−1− d
ci

σ2(B−A)x
T
i

0 2
σ2

−2cid
σ(B−A)

2 d
ci

σ(B−A)

−1−cid
σ2(B−A)xi

−2cid
σ(B−A)

c2i d
4

(B−A)2 +
1+2cid+c

2
i d

4

σ2(B−A)2
−1

(B−A)2 +
2+cid+

d
ci

σ2(B−A)2

−1− d
ci

σ2(B−A)xi
2 d
ci

σ(B−A)
−1

(B−A)2 +
2+cid+

d
ci

σ2(B−A)2

d4

c2
i

(B−A)2 +
1+2 d

ci
+ d4

c2
i

σ2(B−A)2


,

where ci = ex
T
i β and d = eσ

2/2. If the Assumptions 1-3 in Appendix A.3 hold, then In(θ)/n
converges to a positive-definite matrix, say I(θ).

Denote the log-likelihood function by `n(θ). The likelihood equations are

∂`n(θ)

∂β
=

n∑
i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2
xi = 0,

∂`n(θ)

∂σ
= −n

σ
+

n∑
i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ3
= 0,

∂`n(θ)

∂A
=

1

B − A

n∑
i=1

B − Yi
Yi − A

−
n∑
i=1

log
(
B−Yi
Yi−A

)
− xT

i β

σ2(Yi − A)
= 0,

∂`n(θ)

∂B
= − 1

B − A

n∑
i=1

Yi − A
B − Yi

−
n∑
i=1

log
(
B−Yi
Yi−A

)
− xT

i β

σ2(B − Yi)
= 0.

(9)

The following theorems present the properties of the local maximum likelihood estimator,
the solution to (9). Proofs of these theorems are given in Appendix A.3.

Theorem 1 (Existence). If assumptions 1-3 in Appendix A.3. hold, then with probability
approaching 1, there exists a sequence of solutions θ̂n to the likelihood equations in (9) that
is n1/2-consistent for θ.

Theorem 2 (Uniqueness). Assume assumptions 1-3 in Appendix A.3. hold. Let δ be some
fixed value and δn = n−α for some α > 0. Denote by Sδ = {θ : A ≤ A0− δ and B ≥ B0 + δ}
and Tδ,n = {θ : A0− δ ≤ A ≤ A0 + δn, B0− δn ≤ B ≤ B0 + δ and ‖β−β0‖+ |σ− σ0| > δ},
where ‖ · ‖ denote the Euclidean norm. Then, for any compact set K ⊂ Rp+3,

lim
n→∞

Pr

{
sup
Sδ∩K

`n(θ) < `n(θ0)

}
= 1, lim

n→∞
Pr

{
sup

Tδ,n∩K
`n(θ) < `n(θ0)

}
= 1.
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Theorem 3 (Asymptotic normality). If assumptions 1-3 in Appendix A.3. hold, the n1/2-
consistent estimator θ̂n in Theorem 1 satisfies

n1/2(θ̂n − θ0)→ N
{

0, I−1(θ0)
}
,

in distribution.

4 Numerical examples

In this section, simulation results are reported that examine the finite sample performance
of the biased adjusted and local maximum likelihood estimators given in Sections 2 and 3.
All the results are based on 1000 iterations of simulation.

Tables 1 and 2 give the relative mean square errors for model (3), the one sample case
without covariates. The relative mean square errors are the ratios of the mean square
errors of a given estimator calculated from simulated sample to that of the local maximum
likelihood estimator defined in Section 3. So a value of relative mean square error greater than
unity indicates that the given estimator is less efficient than the local maximum likelihood
estimator, and vise-versa. Table 1 reports results when µ and σ are assumed to be known
while they are unknown in Table 2. A consistent solution to the likelihood equations always
exists in our simulation studies if µ and σ are known. When µ and σ are unknown, a
consistent solution to the likelihood equations occasionally did not exist for small sample
sizes. From Table 2, one can see that this occurs rarely; in the worst case, consistent solutions
were not found in 6 iterations out of 1000. When a solution to the likelihood equations was
not found, the bias adjusted estimator was used instead.

It is seen in Tables 1 and 2 that all the relative mean square errors are greater than
unity, which means both the naive and the bias adjusted estimators are dominated by the
local maximum likelihood estimator. Furthermore, the relative performance of these two
estimators deteriorates as the sample size grows. The bias adjusted estimator outperforms
the naive estimator uniformly, and its performance relative to that of the naive estimator
improves as the sample size increases. It is also observed that improvement of the local
maximum likelihood estimator compared to the other estimators in Table 1 with known µ
and σ is more significant than in Table 2, in which µ and σ are unknown.

For the regression model (1), the covariate values, x, were generated from a discrete
uniform distribution on (1, 2, ..., 10). There was only one case in 1000 iterations where
the consistent solution was not found when n = 50. When n is larger than 50, consistent
solutions are always found in our studies. Table 3 gives the biases, standard errors, estimates
of standard errors and the coverage probabilities of confidence intervals with a nominal level
of 95%. The biases and the standard errors are calculated from the estimates based on the
1000 simulated samples, while the estimates of standard errors, ŜE, are calculated from
the Hessian matrix of the likelihood function. The confidence intervals are constructed by
θ̂ ± Z0.975ŜE, where θ̂ is the local maximum likelihood estimator and Z0.975 is the 97.5%
normal quantile.

It is seen that both the biases and standard errors are small, indicating the consistency
of the local likelihood estimator. Although it is evident that the standard errors are under-
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estimated for small sample sizes and the coverage probabilities are lower than the nominal
level, this situation ameliorates as the sample size increases.

Acknowledgement

We thank Doctor Valerii Fedorov for suggesting to us the importance of model (1).

Appendix A. Technical details

Appendix A.1. Proof of Proposition 1

Proof. First, following the idea in Section 2.3 of Galambos (1978), for any t,

lim
n→∞

Pr

[{
log(B0 − Y )− log(Y − A0)− µ0

σ0

}
(n)

< rn + snt

]
= e−e

−t

= lim
n→∞

Pr

{(
B0 − Y
Y − A0

)
(n)

< eµ0+σ0rn+σ0snt

}

= lim
n→∞

Pr

{
B0 − Y(1)
Y(1) − A0

< eµ0+σ0rn + σ0sne
µ0+σ0rn(1 + vσ0snt)t

}
,

where |v| ≤ 1. Since vσ0snt→ 0 as n→∞, it follows that

lim
n→∞

Pr

(
B0 − Y(1)
Y(1) − A0

< cn + dnt

)
= e−e

−t
,

where cn = eµ0+σ0rn and dn = σ0sne
µ0+σ0rn .

Then, for any t 6= 0,

Pr

(
B0 − Y(1)
Y(1) − A0

< cn + dnt

)
= Pr

(
Y(1) − A0

B0 − A0

>
1

1 + cn + dnt

)
= Pr

[
Y(1) − A0

B0 − A0

>
cn − 1

c2n
−
{
dn
c2n
− (1 + dnt)

c2n(1 + cn + dnt)t

}
t

]
.

It can be shown that [(1 + dnt)/{c2n(1 + cn + dnt)t}]/(dn/c2n)→ 0 and (1/c2n)/(dn/c
2
n)→ 0 as

n→∞. So from Lemma 2.2.2 in Galambos (1978),

lim
n→∞

Pr

{
B0 − Y(1)
Y(1) − A0

< cn + dnt

}
= lim

n→∞
Pr

{
Y(1) − A0

B0 − A0

>
1

cn
− dn
c2n
t

}
.

When t = 0, the result can be verified by using the properties of the extreme order statistics
of normal distribution directly. The second equation can be proved similarly.
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Appendix A.2. Derivation of the Fisher information

The lemma below is useful in deriving the Fisher information.

Lemma 1. From Lemma 2 of Stein (1981), we obtain that, if E|h′(Z)| < ∞ for a normal
random variable Z ∼ N(µ, σ2) and some differentiable function h. Then

E{(Z − µ)h(Z)} = σ2E{h′(Z)}.

The log-likelihood function of model (7) based on one observation (x, Y ) is

`(θ,x, Y ) = − log (2π)

2
− log σ + log(B − A)− log(Y − A)

− log(B − Y )− {log(B − Y )− log(Y − A)− xTβ}2

2σ2

for Y ∈ (A,B) and 0 otherwise. By direct calculation,

∂`(θ,x, Y )

∂A
=

1

Y − A+ (Y−A)2
B−Y

− {log(B − Y )− log(Y − A)− xTβ}
σ2(Y − A)

;

∂2`(θ,x, Y )

∂A2
=

1 + 2Y−A
B−Y{

Y − A+ (Y−A)2
B−Y

}2 −
{log(B − Y )− log(Y − A)− xTβ}

σ2(Y − A)2
− 1

σ2(Y − A)2

=
e2Z + 2eZ

(B − A)2
− (Z − xTβ)(1 + eZ)2

σ2(B − A)2
− (1 + eZ)2

σ2(B − A)2
.

Then from LEMMA 1,

E

{
∂2`(θ,x, Y )

∂A2

}
= −E

{
e2Z

(B − A)2
+

1 + 2eZ + e2Z

σ2(B − A)2

}
= −e

2xTβ+2σ2

(B − A)2
− 1 + 2ex

Tβ+σ2

2 + e2x
Tβ+2σ2

σ2(B − A)2
.

Other elements of the Fisher information can be derived similarly.

Appendix A.3. Proof of Theorems for the Regression Model

The following assumptions are required in this section.

Assumption 1. supi |xi| <∞.

Assumption 2. The following quantities converge as n→∞, n−1
∑n

i=1 xi, n
−1∑n

i=1 xix
T
i ,

n−1
∑n

i=1 ci, n
−1∑n

i=1 c
−1
i , n−1

∑n
i=1 cixi, n

−1∑n
i=1 c

−1
i xi, n

−1∑n
i=1 c

2
i and n−1

∑n
i=1 c

−2
i .

Assumption 3. (xT
1 , ...,x

T
n)T is full rank.

The proof of Theorem 1 begins with some lemmas.

9



Lemma 2. For constant sequences vn ↓ v and wn ↑ w as n → ∞, let ξvn ∈ (vn+1, vn) and
ξwn ∈ (wn, wn+1). If a continuous function sequence fn(·) > 0, which is decreasing in n,
satisfies n1+αfn(ξvn)→ 0 and n1+αfn(ξwn)→ 0 for α > 0 as n→∞, then

lim sup
n

∫ wn

vn

fn(x)dx <∞.

Proof. Let Sn =
∫ wn
vn

fn(x)dx. Then

Sn − Sn−1 =

∫ wn

vn

fn(x)dx−
∫ wn−1

vn−1

fn−1(x)dx

≤(vn−1 − vn)fn−1(ξvn−1) + (wn − wn−1)fn−1(ξwn−1)

=
(vn−1 − vn)n1+αfn−1(ξvn−1) + (wn − wn−1)n1+αfn−1(ξwn−1)

n1+α
= o

(
1

n1+α

)
.

So lim supn Sn = lim supn
∑n

i=1(Sn − Sn−1) is finite.

Lemma 3. For any α > 0, let δn = n−α. Then for any k1 ≥ 0 and k2 > 0, there exists a
constant M such that

lim
n→∞

Pr

{
1

n

n∑
i=1

| log(B − Yi)|k1
(Yi − A)k2

< M

}
= 1, lim

n→∞
Pr

{
1

n

n∑
i=1

| log(Yi − A)|k1
(B − Yi)k2

< M

}
= 1

(10)

uniformly in A and B such that |A− A0| < δn and |B −B0| < δn.

Proof. We gives the details of proof for the first quantity in (10). The proof for the other
one is similar.

logk1(B − Yi)
(Yi − A)k2

=
| log(B −B0 +B0 − Yi)|k1

(Yi − A0 + A0 − A)k2
I(Yi − A0 > 2δn, B0 − Yi > 2δn) + op(1)

=
| log(B −B0 +B0 − Yi)|k1

(Yi − A0 + A0 − A)k2
I(Yi − A0 > 2δn, 1− 2δn > B0 − Yi > 2δn)

+
| log(B −B0 +B0 − Yi)|k1

(Yi − A0 + A0 − A)k2
I(Yi − A0 > 2δn, B0 − Yi > 1) + op(1)

<
I(Yi − A0 > 2δn, 1− 2δn > B0 − Yi > 2δn)

(B0 − Yi − δn)k1(Yi − A0 − δn)k2

+
(B0 − Yi + δn)k1

(Yi − A0 − δn)k2
I(Yi − A0 > 2δn, B0 − Yi > 1) + op(1)

<
I(B0 − 2δn > Yi > A0 + 2δn)

(B0 − Yi − δn)k1(Yi − A0 − δn)k2

+
(B0 − A0 + 1)k1

(Yi − A0 − δn)k2
I(B0 − 1 > Yi > A0 + 2δn) + op(1)

=Cin1 + Cin2 + op(1).

10



Note that

(2π)
1
2E(Cin1)

=
1

σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1(y − A0 − δn)k2
×

B0 − A0

(B0 − y)(y − A0)
exp

−
{

log
(
B0−y
y−A0

)
− xT

i β0

}2

2σ2
0

 dy

≤ 1

σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1+1(y − A0 − δn)k2+1
exp

− 1
4

{
log
(
B0−y
y−A0

)}2

− (xT
i β0)

2

2σ2
0

 dy

=
exp

{
(xT
i β0)

2

2σ2
0

}
σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1+1(y − A0 − δn)k2+1
exp

−
{

log
(
B0−y
y−A0

)}2

8σ2
0

 dy.

From Lemma 2, lim supnE(Cin1) is bounded by a finite constant, say C1. Similarly, it can
also be shown that lim supnE(Cin2) is bounded by a finite constant, say C2. So using the
formula Xn = E(Xn) +OP{var(Xn)1/2}, we have

1

n

n∑
i=1

| log(B − Yi)|k1
(Yi − A)k2

=
1

n

n∑
i=1

E(Cin1) +
1

n

n∑
i=1

E(Cin2) +OP

(
n−

1
2

)
+ oP (1).

Thus any M that is greater than C1 + C2 satisfys the requirement.

Lemma 4. If Assumption 1- 3 hold, then −n−1∂2`n(θ)/(∂θ∂θT) → I(θ0) in probability
uniformly over ‖θ − θ0‖ < δn.

Proof. The first element of ∂2`n(θ)/(∂θ∂θT) is

∂2`n(θ)

∂A2
=

n∑
i=1

 1− 1
σ2

(Yi − A)2
− 1

(B − A)2
−

{
log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2(Yi − A)2

 .
So it is straightforward to get

1

n

∣∣∣∣∂2`n(θ)

∂A2
− ∂2`n(θ0)

∂A2

∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣ 1

(B − A)2
− 1

(B0 − A0)2

∣∣∣∣+
1

n

n∑
i=1

∣∣∣∣ 1 + 1
σ2

(Yi − A)2
− 1 + σ2

0

(Yi − A0)2

∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2(Yi − A)2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β0

}
σ2
0(Yi − A0)2

∣∣∣∣∣∣
=∆1 + ∆2 + ∆3.
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∆1 goes to 0 as δn goes to 0. By straightforward but tedious calculation, we obtain

∆3 ≤
1

n

n∑
i=1

∣∣∣∣log

(
B − Yi
Yi − A

)
− xT

i β

∣∣∣∣ ∣∣∣∣ 1

σ2(Yi − A)2
− 1

σ2
0(Yi − A0)2

∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β

σ2
0(Yi − A0)2

−
log
(
B0−Yi
Yi−A0

)
− xT

i β0

σ2
0(Yi − A0)2

∣∣∣∣∣∣
≤
∣∣∣∣ 1

σ2
− 1

σ2
0

∣∣∣∣× 1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi − A)2

+
1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

σ2
0

×
∣∣∣∣ 1

(Yi − A)2
− 1

(Yi − A0)2

∣∣∣∣
+

1

n

n∑
i=1

∣∣∣log
(
B−Yi
B0−Yi

)∣∣∣
σ2
0(Yi − A0)2

+
1

n

n∑
i=1

∣∣∣log
(
Yi−A
Yi−A0

)∣∣∣
σ2
0(Yi − A0)2

+
1

n

n∑
i=1

xT
i (β − β0)

σ2
0(Yi − A0)2

≤ 1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi − A)2
×
∣∣∣∣ 1

σ2
− 1

σ2
0

∣∣∣∣+
4B|A− A0|

σ2
0

× 1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi − A)2(Yi − A0)2

+
1

n

n∑
i=1

|B −B0|
σ2
0(B∗ − Yi)(Yi − A0)2

+
1

n

n∑
i=1

|A− A0|
σ2
0(Yi − A∗)(Yi − A0)2

+
1

n

n∑
i=1

xT
i (β − β0)

σ2
0(Yi − A0)2

=∆3.1 + ∆3.2 + ∆3.3 + ∆3.4 + ∆3.5,

where A∗ is between A and A0 and B∗ is between B and B0. Now we look into each term in
the last equation above.

∆3.2 ≤
2B|A− A0|

σ2
0

× 1

n

n∑
i=1

∣∣∣∣log

(
B − Yi
Yi − A

)
− xT

i β

∣∣∣∣ { 1

(Yi − A)4
+

1

(Yi − A0)2

}
. (11)

The right hand side term in (11) goes to 0 in probability uniformly since the second factor
is bound with probability tending to 1 by Lemma 3 and the boundedness of xi. Similarly,
∆3.1, ∆3.3, ∆3.4 and ∆3.5 can be shown to go to 0 in probability uniformly which implies ∆3

goes to 0 in probability uniformly. Similarly but more easily, ∆1 and ∆2 can be showen to
converge to 0 in probability uniformly, which implies n−1 |∂2`n(θ)/∂A2 − ∂2`n(θ0)/∂A

2| → 0
in probability uniformly. By similiar arguments, other components of ∂2`n(θ)/(∂θ∂θT) can
be shown to have the same property. This implys that −n−1∂2`n(θ)/(∂θ∂θT) → I(θ0) in
probability uniformly over ‖θ − θ0‖ < δn.

The following lemma is the Lemma 5 of Smith (1985). We state it for integrity and skip
the proof.

Lemma 5. Let h be a continuously differentiable real-valued function of p+ 1 real variables
and let H denote the gradient vector of h. Suppose that the scalar product of u and H(u) is
negative whenever ‖u‖ = 1. Then h has a local maximum, at which H = 0, for some u with
‖u‖ < 1.
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of Theorem 1. It suffices to show for any ε, there exists a constant c such that

Pr

{
uT
∂`n

(
θ0 + n−1/2cu

)
∂θ

< 0

}
> 1− ε (12)

for any vector u such that ‖u‖ = 1. Using Taylor’s expansion,

∂`n
(
θ0 + n−1/2cu

)
∂θ

=
∂`n (θ0)

∂θ
+ cn−1/2

∂2`n
(
θ0 + n−1/2cu∗

)
∂θ∂θT

u

=
∂`n (θ0)

∂θ
− cn1/2I(θ0)u + n1/2εn,u,

where u∗ is a vector satisfying ‖u∗‖ ≤ 1 and, by Lemma 3, εn,u → 0 in probability uniformly
over ‖u‖ ≤ 1 as n→∞. It follows that

n−1/2uT
∂`n

(
θ0 + n−1/2u

)
∂θ

= n−1/2uT
∂`n (θ0)

∂θ
− cuTI(θ0)u + uTεn,u. (13)

Note that n−1/2uT∂`n (θ0)/∂θ is OP (1). So the second term dominates the first term in (13)
for large enough c. This proves equation (12) and the result follows from Lemma 5.

of Theorem 2, part 1. For any θ1 ∈ S, E`n(θ1) <∞, so E[`n(θ1)− `n(θ0)] < 0 by Jensen’s
inequality. This implies the existence of ξθ1 such that

lim
n→∞

Pr {`n(θ1)− `n(θ0) < −ξθ1} = 1.

For θ and η such that |θ − θ1| < η < |θ1 − θ0| − δ,

|`n(θ)− `n(θ1)| ≤| log σ − log σ1|+
1

n

n∑
i=1

∣∣∣∣log

(
1

B − Yi
+

1

Yi − A

)
− log

(
1

B1 − Yi
+

1

Yi − A1

)∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B1−Yi
Yi−A1

)
− xT

i β1

}2

σ2
1

∣∣∣∣∣∣∣
=∆4 + ∆5 + ∆6.

∆4 can be made smaller than ξθ1/4 by choosing η small enough. By the mean value theorem,

∆5 =
1

n

n∑
i=1

∣∣∣∣ 1

B∗ − Yi
Yi − A∗

B∗ − A∗
(B −B1) +

1

Yi − A∗
B∗ − Yi
B∗ − A∗

(A− A1)

∣∣∣∣
≤ 1

n

n∑
i=1

{
B0 − A1 + η

B0 − A0

|B −B1|
B0 − Yi

+
B1 − A0 + η

B0 − A0

|A− A1|
Yi − A0

}
,

for some A∗ between A0 and A1 and B∗ between B0 and B1. So E(∆5) can be make arbitrarily
small by choosing small enough η, which implies

lim
n→∞

Pr

(
∆5 <

ξθ1

4

)
= 1
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for small enough η.

∆6 ≤
1

n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B1−Yi
Yi−A1

)
− xT

i β1

}2

σ2

∣∣∣∣∣∣∣
+

1

n

n∑
i=1

{
log

(
B1 − Yi
Yi − A1

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
− 1

σ2
1

∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β + log(B1−Yi
Yi−A1

)− xT
i β1

σ2

∣∣∣∣∣∣
×
{
|A− A0|
A0 − Yi

+
|B −B0|
B0 − Yi

+ |xT

i β − xT

i β1|
}

+
1

n

n∑
i=1

{
log

(
B1 − Yi
Yi − A1

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
− 1

σ2
1

∣∣∣∣ .
So, for small enough η, we obtain

lim
n→∞

Pr

(
∆6 <

ξθ1

4

)
= 1.

Combining results for ∆4, ∆5 and ∆6,

lim
n→∞

Pr

{
sup

|θ−θ1|<η
`n(θ)− `n(θ0) < −

ξθ1

4

}
= 1.

For any compact set K, Sδ∩K can be covered by a finite number of neighborhoods of points
in Sδ, so it follows that

lim
n→∞

Pr

{
sup
Sδ∩K

`n(θ)− `n(θ0) < −ξm
}

= 1.

of Theorem 2, part 2. First, if A0 and B0 are known, model (7) can be transformed to a
linear model with normal random error with unknown mean and variance. It follows that

lim
n→∞

Pr

{
sup

‖β−β0‖>δ |σ−σ0|>δ
`n(β, σ, A0, B0)− `n(θ0) < −ξ

}
= 1. (14)

For β1, σ1, η and (β, σ, A,B) ∈ T such that (β1, σ1, A,B) ∈ T , ‖β − β1‖ < η, |σ − σ1| < η
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and δ < η,

|`n(β, σ, A,B)− `n(β1, σ1, A0, B0)|
≤| log σ − log σ1|+ | log(B − A)− log(B0 − A0)|

+
1

n

n∑
i=1

| log(B − Yi)− log(B0 − Yi)|+
1

n

n∑
i=1

|log(Yi − A)− log(Yi − A0)|

+
1

2n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β1

}2

σ2
1

∣∣∣∣∣∣∣
=∆7 + ∆8 + ∆9 + ∆10 + ∆11.

(15)

The terms ∆7 and ∆8 can be made smaller than ξ/8 by choosing η small enough. By the
mean value theorem,

∆9 =
1

n

n∑
i=1

∣∣∣∣B −B0

B∗ − Yi

∣∣∣∣ ≤ |B −B0|
n

n∑
i=1

1

min(B,B0)− Yi

with probability tending to 1. IfB ≥ B0, n
−1∑n

i=1 1/|min(B,B0)− Yi| ≤ n−1
∑n

i=1 1/(B0 − Yi)
which goes to the limit of (1 + n−1

∑n
i=1 e

−xT
i β+σ

2/2)/(B0 − A0) in probability. If B0 − δn <
B < B0, Lemma 3 provides that there exists some constant M∗ such that

lim
n→∞

Pr

(
1

n

n∑
i=1

1

|B − Yi|
< M∗

)
= 1

for small enough η. This implies that for small enough η,

lim
n→∞

Pr

(
∆9 <

ξ

8

)
= 1. (16)

The same result can be found for ∆10 using similar arguments.

∆11 ≤
1

2n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β1

}2

σ2

∣∣∣∣∣∣∣
+

1

2n

n∑
i=1

{
log

(
B0 − Yi
Yi − A0

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
− 1

σ2
1

∣∣∣∣
≤ 1

2n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β + log
(
B0−Yi
Yi−A0

)
− xT

i β1

σ2

∣∣∣∣∣∣× |xT

i β − xT

i β1|

+
1

2n

n∑
i=1

{
log

(
B0 − Yi
Yi − A0

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
− 1

σ2
1

∣∣∣∣ .
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So we obtain, for small enough η,

lim
n→∞

Pr

(
∆11 <

ξ

8

)
= 1. (17)

Combining (14), (15), (16) and (17), we have

lim
n→∞

Pr

{
sup `n(a, b, σ, A,B)− `n(θ0) < −

3ξ

8

}
= 1,

where the supermum is taken over all θ satisfying (β1, σ1, A,B) ∈ T , ‖β − β1‖ < η and
|σ − σ1| < η for fixed β1 and σ1. This result can be extended directly to any finite set of
values of β1 and σ1, and then to any compact sets of values of β1 and σ1.

of Theorem 3. By Taylor expansion,

0 =
∂`n(θ̂n)

∂θ
=
∂`n (θ0)

∂θ
+
∂2`n(θ̂

∗
)

∂θ∂θT
(θ̂n − θ0),

where θ̂
∗

is between θ0 and θ̂n. From Lemma 4, n−1∂2`n(θ̂
∗
)/(∂θ∂θT)→ −I(θ0) in proba-

bility. So

n1/2(θ̂n − θ0) = {I(θ0)}−1 n−1/2
∂`n (θ0)

∂θ
+ oP (1). (18)

Note n−1/2∂`n (θ0)/∂θ = n−1/2
∑n

i=1 ∂`(θ0,xi, Yi)/∂θ is summation of independent random
vectors and its variance converges to I(θ0). Also we have for t > 0,

1

n

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2 I{∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥ > n1/2ε

}]

≤ 1

n

1

(n1/2ε)t

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2+t I{∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥ > n1/2ε

}]

≤ 1

n

1

(n1/2ε)t

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2+t
]
→ 0 as n→∞.

By the multivariate central limit theorem (cf. Rao, 1973; Serfling, 1980),

n−1/2
∂`n (θ0)

∂θ
→ N(0, I(θ0)) (19)

in distribution. Combining (18), (19) and applying Slutsky’s theorem, the result follows.
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Table 1: Relative mean square errors for the one sample case when µ and σ are known. In
this table, Adjusted is the bias adjusted estimator relative to the local maximum likelihood
estimator; Naive is the naive estimator relative to the local maximum likelihood estimator.

Parameter θ0 = (1, 0.5, 0, 10) θ0 = (−1, 0.5, 0, 5)
Adjusted Naive Adjusted Naive

n = 50 A 7.12 20.65 3.82 36.41
B 3.62 35.03 6.64 19.29

n = 100 A 9.85 33.20 5.43 64.44
B 5.13 62.55 9.15 31.13

n = 400 A 19.44 88.55 11.06 199.12
B 10.69 191.09 17.94 81.85

Table 2: Relative mean square errors for the one sample case when µ and σ are unknown. In
this table, Adjusted is the bias adjusted estimator relative to the local maximum likelihood
estimator; Naive is the naive estimator relative to the local maximum likelihood estimator;
NS is the number of cases out of 1000 iterations that consistent solutions to the likelihood
equation are not found.

Parameter θ0 = (1, 0.5, 0, 10) θ0 = (−1, 0.5, 0, 5)
Adjusted Naive Adjusted Naive

n = 50 NS= 6 NS= 3
µ 1.22 1.38 1.30 1.45
σ 1.63 2.21 1.67 2.26
A 1.37 1.93 1.47 1.84
B 1.38 1.75 1.27 1.81

n = 100 NS= 2 NS= 0
µ 1.47 1.73 1.66 1.92
σ 2.68 4.30 2.91 4.67
A 1.81 2.63 1.90 2.43
B 1.66 2.15 1.77 2.60

n = 400 NS= 0 NS= 0
µ 2.01 2.62 2.66 3.46
σ 4.08 8.53 6.01 12.57
A 2.72 4.53 3.10 4.38
B 2.14 3.05 3.42 5.73

19



Table 3: Biases (×103), standard errors (×103), estimates of standard errors (×103) and
coverage probabilities (×102) for the regression model. In this table, SE is standard errors;

ŜE is estimates of standard errors; CP is coverage probabilities.

θ0 = (5,−1, 0.5, 0, 10)
a b σ A B

n = 50 Bias 234 40 53 42 15
SE 270 46 65 53 19
SEE 248 42 61 42 16
CP 90.3 90.2 92.5 84.2 84.3

n = 100 Bias 142 24 35 25 9
SE 170 29 44 31 11
SEE 170 29 43 29 11
CP 93.8 93.6 93.3 89.2 89.6

n = 400 Bias 67 11 17 12 4
SE 83 14 22 14 5
SEE 82 14 21 14 5
CP 94.5 95 94.5 93.3 94.4
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