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Finding optimal designs for experiments for non-linear models and dependent data is
a challenging task. We show how the problem simplifies when the search is restricted to
designs that are minimally supported; that is, the number of distinct runs (treatments)
is equal to the number of unknown parameters, p, in the model. Under this restriction,
the problem of finding a locally or robust D-optimal design decomposes into two simpler
problems that are more widely studied. The first is that of finding a minimum-support
D-optimal design d1 with p runs for the corresponding model for the mean but assum-
ing independent observations. The second problem is finding a D-optimal block design
for assigning the treatments in d1 to the experimental units. We find and assess optimal
minimum-support designs for three examples, each assuming a mean model from a differ-
ent member of the exponential family: binomial, Poisson and normal. In each case, the
efficiencies of the designs are compared to the optimal design where the restriction on the
number of distinct support points is relaxed. The optimal minimum-support designs are
found to often perform satisfactorily under both local and robust D-optimality for concen-
trated prior distributions. The results are also relatively insensitive to the assumed degree
of dependence in the data.

Keywords: Binary data; block designs; count data; D-optimality; Generalized Esti-
mating Equations; Generalized Linear Models; Michaelis Menten model.

1. Introduction

Many experiments aim to model a non-linear relationship between a response and
several explanatory variables. If a binary or count response variable is observed, an appro-
priate Generalized Linear Model (GLM) can be assumed to describe this relationship. In
other cases, the outcome may be continuous and normally distributed, but the relationship
between the mean and the explanatory variables may be non-linear. The data observed
from different runs in the experiment are often assumed to be independent and the pa-
rameters in the model are estimated using maximum likelihood estimation techniques. It
is, however, not uncommon for experiments to be performed in blocks; that is, different
runs are performed, for example, on different days, by different scientists or operators, or
using different batches of material. Such situations may induce dependence between the
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observations within a block, whilst observations in different blocks remain independent.
An estimation method that takes into account this dependence structure increases the ac-
curacy of inferences made from the experimental data. The blocking structure should also
be taken into account when designing the experiment.

Most literature on design for non-linear models and dependent data has been concerned
with nonlinear mixed effect models, see the seminal paper of Mentré et al. (1997), typically
in a clinical or biological setting (see also Han and Chaloner, 2004; Atkinson, 2008, and
references therein). Such methodology assumes a conditional, or subject-specific, modeling
approach, with potentially differing model parameters for each block. In this paper, we
find designs for marginal, or population-averaged, models where the dependencies in the
data do not arise from subject-specific parameters; see also Hughes-Oliver (1998) and
Atkinson and Ucinski (2004). For the linear model, where there has been substantial work
on designs with random block effects (see, for example, Goos and Vandebroek, 2001), these
two modelling paradigms coincide.

Recently, the first general results and methods for finding optimal blocked designs for
discrete data have been published. Niaparast (2009) presented local D-optimal designs
for Poisson regression models with a random intercept in the linear predictor and a single
explanatory variable. Woods and van de Ven (2011) presented approaches for finding
robust D-optimal designs for non-normal data and generalized estimating equations (GEE
models) and any number of explanatory variables. The focus in this paper is on designs
that are minimally supported, i.e. the number of distinct design points, or treatments, is
equal to the number of unknown parameters in the model.

Designs for nonlinear models generally suffer from their performance depending on the
values of the unknown model parameters. Hence, either an initial guess of these parameters
is required (Chernoff, 1953), perhaps as part of a sequential strategy (Dror and Steinberg,
2008), or a Bayesian, or pseudo-Bayesian, robust design is required; see Han and Chaloner
(2004), Woods et al. (2006) and Section 2 of this paper.

Here, we present methodology for finding block designs to estimate the model param-
eters in a nonlinear model with dependent observations for both continuous and discrete
responses. We consider the class of minimum-support designs, see also Cheng (1995), which
allow a decomposition of the robust D-optimality objective function, leading to two, sim-
pler, optimization problems (Section 3). This result allows either the analytic derivation of
optimal designs or the computational complexity of finding optimal designs to be reduced
and we show, through a series of examples (Section 4), that minimum-support designs can
suffer only a minor loss in performance compared to unrestricted designs.

2. Models and design criteria

Consider a continuous or discrete response Y (x) that may depend on the values taken
by m explanatory variables xT = (x1, x2, . . . , xm). In an experiment, responses are ob-
served for different settings of the explanatory variables according to a design d con-
sisting of N experimental runs. In run j, the jth experimental unit receives treatment
xT
j = (x1j, . . . , xmj), chosen from a bounded design space X ⊂ Rm (j = 1, . . . , N).
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We assume that the units are arranged in b blocks of size kl (l = 1, . . . , b) so that k1 +
k2 + . . . + kb = N . The entries in the design d = {x1,x2, . . . ,xN} and the observations
Y = (Y (x1) , Y (x2) , . . . , Y (xN))T are ordered by block and by unit within block. All
pairs of observations made in different blocks are assumed independent but observations
within the same block may be dependent.

We are interested in finding efficient designs for estimating the unknown parameters
β = (β1, β2, . . . , βp)

T in a marginal model for the mean response E [Y (x)] = µ (x,β). We
consider a general class of models for which the inverse of the model-based asymptotic
variance-covariance matrix for an estimator β̂ is of the form

M = FTV−1/2R−1V−1/2F, (1)

where only the matrices F and V depend on the design d and the parameter values β.
The matrix R is a block-diagonal correlation matrix. Common examples include marginal
models for correlated discrete data estimated using the GEE approach, under some as-
sumptions, and nonlinear models with additive correlated normally distributed errors.

Under a GEE model for a discrete response, the mean and variance of the observations
are assumed to come from an appropriate GLM such that Var [Y (x)] = ν [µ (x,β)] /φ,
where φ is a constant scale parameter and ν (·) is the variance function of the GLM (Liang
and Zeger, 1986). The mean is related to x through g [µ (x,β)] = fT (x)β, where g (·) is
the link function of the GLM and the product fT (x)β is the linear predictor, with the
p-vector f (x) holding known functions of x. The dependence in the data is modeled by
means of a “working correlation” matrix R, which is assumed known. This matrix will
typically have a standard structure and is not necessarly equal to the actual correlation
structure in Y. The model-based estimator for the asymptotic variance-covariance matrix
for the GEE estimator β̂ is given by

Var
(
β̂
)

=
(
XT∆V−1/2R−1V−1/2∆X

)−1
, (2)

where X is the N × p model matrix with rows fT (xj), ∆ = diag {1/g′ [µ (xj,β)]} and
V = diag {Var [Y (xj)]}; see Lee et al. (2006, p.75). The inverse of the variance-covariance
matrix given in (2) is of the form specified in (1) with F = ∆X. This model-based
estimator is derived under the assumption that the working correlation is exactly equal to
the true correlation structure, which may not hold. However, the choice of the design has
been shown to be relatively insensitive to the exact correlation structure (see Woods and
van de Ven, 2011).

In addition, we consider nonlinear models for continuous responses of the form

Y (xj) = µ (xj,β) + εj, (j = 1, . . . , N) , (3)

with the errors ε = (ε1, ε2, . . . , εN) distributed according to a multivariate normal distribu-
tion ε ∼ N (0, σ2R), where R is the correlation matrix modeling the block heterogeneity.
Under the assumption that the true correlation matrix R is known, the information matrix
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for the generalized least squares estimator β̂ is of the form specified in (1) with F the N×p
matrix containing the parameter sensitivities, i.e. Fj,i = ∂µ (xj,β) /∂βj, and V = σ2I.

We find designs that maximize functionals of the matrix M in (1), which depends on
the unknown parameters β and any parameters, α, required for the specification of R. For
a particular choice of parameter vectors β and α, a locally D-optimal design maximizes
the objective function

ψ(d;β,α) = log det [M (d;β,α)] , (4)

where M (d;β,α) is the inverse covariance matrix for d evaluated at β and α.
To overcome the dependence of the design on the value of β, we apply a pseudo-Bayesian

criterion for constructing designs that are robust to the values of the model parameters β.
The robust designs maximize the objective function

Ψ(d;B,α) =

∫
B
ψ(d;β,α) dF (β) , (5)

where B ⊂ Rp is the space of possible parameter values and F (β) is a proper prior distribu-
tion function for β. In common with Woods and van de Ven (2011), we have found design
performance to be robust to the values of α, and hence we do not include the correlation
parameters in the robust criterion.

In addition, we also consider the performance of designs under robust versions of the
Ds- and A-criteria. The objective functions for these criteria are given by, respectively,

ΨA (d;B,α) = −
∫
B

tr
[
M (d;β,α)−1

]
dF (β) , (6)

and

ΨDs (d;B,α) =

∫
B

log det
[
FT

1 WF1

− FT
1 WF2

(
FT

2 WF2

)−1
FT

2 WF1

]
dF (β) , (7)

where W = V−1/2R−1V−1/2 and F = [F1|F2]. For a GEE model, Fi = ∆Xi (i = 1, 2)
where X1 is the model matrix for the subset of parameters of interest and X2 is the
model matrix for the nuisance parameters. For a normal-theory model, F1 is the matrix
of parameter sensitivities for the parameters of interest, with F2 similarly defined for the
nuisance parameters.

3. D-optimal minimum-support designs

We now restrict attention to minimum-support designs with exactly p treatments, each
of which may be replicated in the experiment. For such designs, Theorem 3.1, given below,
establishes a decomposition of each of objective functions (4) and (5) into two additive
components, each of which can be optimized separately making use of existing results.
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The theorem is an extension to robust designs for nonlinear models of the work of Cheng
(1995) on designs for linear models.

Theorem 3.1. Let d be a minimally supported design with distinct points denoted by
x̃1, . . . , x̃p. If the model is such that the asymptotic variance-covariance matrix has the
form (1), the objective functions in (4) and (5) can be decomposed into two independent
functions as follows:

ψ(d;β,α) = log det [M1 (d1;β)] + log det [M2 (d2;α)] , (8)

and

Ψ(d;B,α) =

∫
B

log det [M1 (d1;β)] dF (β) + log det [M2 (d2;α)] , (9)

where M1 (d1;β) = FT
p V−1p Fp is the information matrix for an exact design d1 = {x̃1, . . . , x̃p}

under the corresponding GLM or non-linear model with independent observations; Fp and
Vp denote the F and V matrices defined in Section 2 for the minimum-support design d1;
M2 (d2;α) = ZTR−1Z is the information matrix for the p-vector τ of treatment effects
under the linear model with E(Y ) = Zτ and Var(Y ) = σ2R. Here, Z denotes the n × p
unit-treatment incidence matrix for the block design d2 whose (i, j)th element is 1 if the ith
unit is allocated treatment x̃j and 0 otherwise (i = 1, . . . , N ; j = 1, . . . , p).

Proof. As M (d;β,α) from (1) can be written as M (d;β,α) = FT
p V

−1/2
p ZTR−1ZV

−1/2
p Fp,

the determinant of M (d;β,α) for a minimum-support design d can be decomposed as

det[M (d;β,α)] = det
(
FT

p V−1/2p ZTR−1ZV−1/2p Fp

)
= det

(
V−1/2p FpF

T
p V−1/2p ZTR−1Z

)
= det

(
V−1/2p FpF

T
p V−1/2p

)
· det

(
ZTR−1Z

)
= det

(
FT

p V−1p Fp

)
· det

(
ZTR−1Z

)
= det [M1 (d1;β)] · det [M2 (d2;α)] .

Substitution of this equation in (4) and (5) gives (8) and (9), respectively.

Theorem 3.1 allows designs d? to be constructed that are locally or robust D-optimal
for the class of minimum-support designs by a three-step procedure:

1. Find a locally D-optimal or robust D-optimal minimum-supported design, d1, for the
corresponding GLM or non-linear model with points x̃1, . . . , x̃p.

2. Find a block design, d2, for comparing p treatments, labeled t1, . . . , tp, that is D-
optimal for the set of designs with b blocks of sizes k1, . . . , kb under the correlation
structure in R.
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3. Select an allocation of the points in d1 to the treatment labels of d2.

Established methods and theoretical results can be applied in steps 1 and 2 to a
minimum-support D-optimal design. For step 1 algorithmic approaches (Woods et al.,
2006) or theoretical results (Russell et al., 2009; Yang et al., 2011; McGree and Eccleston,
2011) can be used. For step 2, depending on the number of treatments and blocks, bal-
anced (incomplete) block designs can be used for exchangeable correlation structures (see,
for example, Shah and Sinha, 1989, p.86), and the universally optimal designs of Azzalini
and Giovagnoli (1987) for autoregressive structures. In other cases, a simple interchange
algorithm can be used to find to D-optimal block design with p treatments in the b blocks.
As all allocations in the final step give designs that are equivalent under (4) and (5),
the choice of allocation may be made using a secondary selection criterion, such as A- or
Ds-optimality.

4. Examples

4.1. Binary response and generalized estimating equations

Woods and van de Ven (2011) described an example of a designed experiment from the
aeronautics industry aimed at investigating the occurrence of cracking in a coating applied
to engine bearings. The experiment investigated three variables, x1, x2 and x3, and a
binary response was measured (pass/fail on a visual inspection); no surrogate continuous
response was available. A probit regression model was postulated to describe the response,
with linear predictor

g [µ (x,β)] = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 . (10)

There was a need to take account of blocks as the runs of the experiment were performed in
sessions, with potential changes in operator or resetting of equipment between sessions. We
consider the situation where four runs are performed within each session (block) and assume
seven sessions are available for the whole experiment. We consider a marginal (GEE) model
with an exchangeable working correlation structure, with common working correlation α
within blocks and independence of observations in different blocks. We assume independent
uniform prior distributions for each parameter in β across intervals given in Table 1 and,
assuming α = 0.2, find a robust D-optimal design with minimum support.

The robust D-optimal minimum-support design for the corresponding non-blocked
problem (probit regression) was found numerically, and is given in Table 2 along with
a balanced incomplete block design with seven treatments in seven blocks of size four.
Any allocation of the seven support points to treatments will produce a pseudo-Bayesian

Table 1: Example 4.1: Parameter space B for linear predictor (10)

Parameter β0 β1 β2 β3 β12, β13, β23
Range [-1.5,-0.5] [1.5,2.5] [0.5,1.5] [-1.5,0.5] [0,1]
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Table 2: Example 4.1: Components of the minimum-support block design dm for α = 0.2:
(a) Balanced incomplete block design for 7 treatments in 7 blocks of size 4; (b) Robust D-
optimal minimum-support GLM design for 3 variables, with mappings of design points to
treatment labels to obtain a design using A-optimality or Ds-optimality for (β0, β1, β2, β3)
as a secondary criterion

(a)

Treatment
block 1 t1 t2 t3 t4
block 2 t1 t2 t5 t6
block 3 t1 t3 t6 t7
block 4 t1 t4 t5 t7
block 5 t2 t3 t5 t7
block 6 t2 t4 t6 t7
block 7 t3 t4 t5 t6

(b)

Mapping for Variables
A Ds x1 x2 x3
t1 t3 −1 −1 −1
t2 t4 0.53 1 1
t3 t1 1 −1 1
t4 t5 0.79 1 −1
t5 t7 −0.79 1 −1
t6 t6 −0.53 1 1
t7 t2 1 −1 −1

D-optimal design, dm. The first allocation in Table 2 gives an A-optimal design, maximiz-
ing (6); the second allocation is a Ds-optimal design, maximizing (7), for estimating the
three “main effect” parameters in (10).

To assess the D-efficiency of dm, a simulation study was performed with 10,000 param-
eter vectors randomly drawn from the prior distribution. For each parameter vector βi,
the locally D-optimal (not necessarily minimally supported) design, d? was found numer-
ically, and the efficiency eff(dm) = exp {[ψ(dm; βi,α)− ψ(d?; βi,α)] /p} was calculated
(i = 1, . . . , 10, 000). This sample of efficiencies can then be summarised to assess and
compare designs.

Figure 1(a) presents boxplots of eff(dm) and also of eff(do), where do is the unrestricted
pseudo-Bayesian D-optimal block design found using the methods of Woods and van de
Ven (2011). The median efficiencies of both designs are high, 0.88 for dm and 0.94 for do.
The minimum efficiencies for dm and do are greater than 0.68 and 0.81 respectively.

Designs dm and do can also be directly compared through the relative efficiency

exp {[ψ(dm; βi,α)− ψ(do; βi,α)] /p} ,

for i = 1, . . . , 10, 000, see Figure 1(b). From both plots, it can be seen that the loss
in efficiency from restricting to minimum-support designs is only moderate; the median
relative efficiency of dm compared to do is around 0.95, and the median efficiency of dm
is 94% of that of do. Design dm is only very rarely less than 85% as efficient as do.
Clearly, this comparison depends on the prior distribution and for more diffuse priors
(results not shown), the loss in efficiency when using an minimum-support design can be
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Figure 1: Example 4.1 (a): Boxplots of D-efficiency for designs do and dm; (b) Relative
efficiency of dm compared to do.

greater. Optimal designs under such prior distributions tend to have a larger number
of support points, putting the minimum-support design at an immediate disadvantage.
Hence, minimum-support designs are not recommended for situations when there is little
prior knowledge about β.

4.2. Poisson response and generalized estimating equations

As a second example we consider a Poisson response possibly depending on 10 variables,
x1,. . . ,x10, through the linear predictor

log [µ (x,β)] = β0 +
10∑
j=1

βjxj .

For illustration, we assume β = (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3) and that a locally D-optimal
design maximizing (4) is sought. In this case, the unblocked D-optimal design for the
corresponding log-linear regression model is minimally supported, and can be obtained an-
alytically using the results of Russell et al. (2009). The support points are given in Table 3,
along with a D-optimal allocation into eight blocks of size six assuming an exchangeable
working correlation structute which was found via an interchange algorithm. The same
allocation to blocks was optimal for working correlation α = 0.1, . . . , 0.6.

We can again assess the loss in efficiency from using a minimum-support design by
comparing its performance to the unrestricted D-optimal design found from algorithmic
search for each of α = 0.1, . . . , 0.6. The relative efficiencies for the minimum-support design
compared to the unrestricted designs are displayed in Figure 2. Note that the minimum-

8



Table 3: Example 4.2: support points and allocation to 8 blocks of six 6.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Blocks
1 1 1 1 1 1 1 1 1 1 1 1, 2, 5, 6, 7
2 -1 1 1 1 1 1 1 1 1 1 1, 2, 3, 7
3 1 -1 1 1 1 1 1 1 1 1 1, 2, 6, 8
4 1 1 -1 1 1 1 1 1 1 1 1, 3, 4, 6, 8
5 1 1 1 0 1 1 1 1 1 1 1, 4, 5, 7, 8
6 1 1 1 1 0 1 1 1 1 1 1, 3, 4, 5
7 1 1 1 1 1 0 1 1 1 1 2, 4, 7, 8
8 1 1 1 1 1 1 0 1 1 1 2, 3, 5, 8
9 1 1 1 1 1 1 1 0.33 1 1 2, 4, 5, 6

10 1 1 1 1 1 1 1 1 0.33 1 3, 4, 6, 7
11 1 1 1 1 1 1 1 1 1 0.33 3, 5, 6, 7, 8

support design is D-optimal for α = 0 and that for α > 0, the unrestricted designs have,
on average, 23 support points. There is a slow decrease in the efficiency of the minimum-
support design as α increases, although it never drops below 0.75. For small values of α,
there is little loss in efficiency from using the minimum-support design.

In addition to the support points in Table 3 forming a locally D-optimal design, McGree
and Eccleston (2011) showed that such a design is also the minimum-support pseudo-
Bayesian D-optimal design for any discrete prior distribution on β with mean vector
(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3). Hence, from Theorem 3.1, the support points and allocation
to blocks in Table 3 also gives a minimum-support pseudo-Bayesian D-optimal block de-
sign.

4.3. Non-linear models with correlated errors

Bates and Watts (1988, Section 3.12) described the analysis of data on the utilization
of nitrite in bush beans as a function of light-intensity. The experiment involved subjecting
leaves from three 16-day-old bean plants to eight different levels of light intensity; each
intensity level was applied to one leaf from each plant. The Michaelis-Menten relationship
was used to define a suitable class of models. The two-parameter Michaelis-Menten model
is given by

µ (x,β) =
β1x

β2 + x
, (11)

where x ∈ [0, xmax] is the light-intensity (in µE/m2s). An alternative three-parameter
model is

µ (x,β) =
β1x

β2 + x+ β3x2
. (12)
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Figure 2: Example 4.2: relative efficiencies of the minimum-support D-optimal design
compared to the unrestricted D-optimal design.

The 24-run experiment was repeated on two days, giving 48 runs in total. Bates and
Watts (1988) took account of differences between days in their analysis by including an
additional dummy variable in the model, equaling one when the observation was made on
the second day, that resulted in 2 and 3 additional parameters in models (11) and (12),
respectively. This parameterization allowed the estimation of separate Michaelis-Menten
models for each day; parameter estimates from these models are given in Table 4.

To illustrate our design methods, we take a different approach when finding minimum-
support locally D-optimal designs for this problem and assume that the mean on both days,
which are treated here as blocks, follows the same Michaelis-Menten model (with equal
parameter values). Correlation between observations made on the same day is taken into
account by assuming an additive and normally distributed error term with exchangeable
intra-block correlation structure; see model (3).

We consider designs consisting of two blocks of 24 runs that are locally D-optimal for
the parameter values given in Table 4. It is well-known that an exact locally D-optimal
design for model (11) has two treatments, x = β2/ (1 + 2β2/xmax) and x = xmax (see,
for example, López-Fidalgo and Wong, 2002). In this experiment, xmax = 175 and hence
d1 = {24.49, 175}. The minimum-support locally D-optimal blocked design, dm1, is then
a balanced complete block design with these two treatments replicated 12 times on each
day.
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Table 4: Example 4.3: Parameter estimates and parameter values for models (11) and (12)
Estimates Parameter values for

Parameter Day 1 Day 2 locally optimal design
Two parameter model (11) β1 24734 22414 23500

β2 35.27 33.10 34
Three parameter model (12) β1 89846 50890 70360

β2 186.7 103.5 145
β3 0.01626 0.0078 0.012

Analytical solutions for exact locally D-optimal designs have not been derived for the
three-parameter model (12). Dette and Kiss (2009) gave the form of the approximate
locally D-optimal design for this model; however, although the design has three support
points, it is not equally-weighted. Therefore, the exact locally D-optimal design with
three support points was calculated numerically using a Nelder-Mead algorithm to be
d1 = {23.78, 80.74, 175}. The minimum-support locally D-optimal blocked design, dm2, for
the three parameter model has eight replications of this design on each day.

The minimum-support locally D-optimal designs were compared to locally D-optimal
designs that were not restricted to be minimally supported, found using a Nelder-Mead
algorithm and 1000 random starting designs. The D-efficiencies of the minimum-support
locally D-optimal designs are plotted in Figure 3 for models (11) and (12), and a range
of intra-block correlations. For low correlation (≤ 0.2), the minimum-support designs dm1

and dm2 are highly efficient (greater than 90%). For higher correlations, this efficiency
drops rapidly, when the unrestricted designs have many more than two or three support
points.

5. Concluding remarks

The theoretical results in this paper allow minimum-support D-optimal blocked designs
to be found that can exploit the increasing number of results on analytically available
completely randomised designs for non-linear models, both locally optimal and parameter-
robust designs for continuous and discrete responses. Even in situations where analytical
results on the form of the completely randomised design are not available, decomposing
the optimal design problem into finding a treatment design and its allocation to blocks
separately can provide a substantial increase in computational efficiency compared to an
unrestricted design search.

The examples in this paper demonstrate the efficiency that can be achieved using
minimum-support designs, particularly for robust designs with informative prior distribu-
tions on the model parameters and when there are low intra-block dependencies. For other
cases, we would recommend the more general design methods proposed by Woods and
van de Ven (2011).
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Figure 3: Example 5.3: D-efficiency of minimum-support locally D-optimal designs, dm1

and dm2, for models (11) and (12) respectively
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