MAXIMAL EQUILATERAL SETS

KONRAD J. SWANEPOEL AND RAFAEL VILLA

ABSTRACT. A subset of a normed space *X* is called equilateral if the distance between any two points is the same. Let m(X) be the smallest possible size of an equilateral subset of *X* maximal with respect to inclusion. We first observe that Petty's construction of a *d*-dimensional *X* of any finite dimension $d \ge 4$ with m(X) = 4 can be generalised to show that $m(X \oplus_1 \mathbb{R}) = 4$ for any *X* of dimension at least 2 which has a smooth point on its unit sphere. By a construction involving Hadamard matrices we then show that both $m(\ell_p)$ and $m(\ell_p^d)$ are finite and bounded above by a function of *p*, for all $1 \le p < 2$. Also, for all $p \in [1, \infty)$ and $d \in \mathbb{N}$ there exists c = c(p, d) > 1 such that $m(X) \le d + 1$ for all *d*-dimensional *X* with Banach-Mazur distance less than *c* from ℓ_p^d . Using Brouwer's fixed-point theorem we show that $m(X) \le d + 1$ for all *d*-dimensional *X* with Banach-Mazur distance less than 3/2 from ℓ_{∞}^d . A graph-theoretical argument furthermore shows that $m(\ell_{\infty}^d) = d + 1$.

The above results lead us to conjecture that $m(X) \le 1 + \dim X$.

1. INTRODUCTION

Vector spaces in this paper are over the field \mathbb{R} of real numbers. Write $[d] := \{1, 2, ..., d\}$ for any $d \in \mathbb{N}$ and $\binom{V}{k} := \{A \subseteq V : |A| = k\}$ for any set V and $k \in \mathbb{N}$. Consider d-dimensional vectors to be functions $\mathbf{x} : [d] \to \mathbb{R}$ denoted using the superscript notation $\mathbf{x} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(d)})$. Similarly, write $\mathbf{x} = (\mathbf{x}^{(n)})_{n \in \Gamma}$ for any scalar-valued function defined on a set Γ . Write \mathbf{o} for zero vectors and the zero function. For any $\gamma \in \Gamma$, let \mathbf{e}_{γ} denote the indicator function of $\{\gamma\}$, i.e., $\mathbf{e}_{\gamma}(\gamma) = 1$ and $\mathbf{e}_{\gamma}(\delta) = 0$ for all $\delta \in \Gamma \setminus \{\gamma\}$. Given $\mathbf{a} = (\mathbf{a}^{(1)}, ..., \mathbf{a}^{(d)}) \in \mathbb{R}^d$ and $\mathbf{b} \in X$ whith X any vector space, define the *Kronecker product* $\mathbf{a} \otimes \mathbf{b}$ by $(\mathbf{a}^{(1)}\mathbf{b}, ..., \mathbf{a}^{(d)}\mathbf{b}) \in X^d$.

Let *X* denote a real normed space with norm $\|\cdot\| = \|\cdot\|_X$. Denote the multiplicative Banach-Mazur distance between two isomorphic normed spaces X_1 and X_2 by

 $d(X_1, X_2) := \inf \{ \|T\| \cdot \|T^{-1}\| : T \text{ is a linear isomorphism from } X_1 \text{ to } X_2 \}.$

Here, as usual, the notation ||T|| doubles as the operator norm. Let Γ be any set. For $p \in [1,\infty)$ let $\ell_p(\Gamma)$ denote the Banach space of all functions $x: \Gamma \to \mathbb{R}$ such that $\sum_{n \in \Gamma} |x^{(n)}|^p < \infty$ with norm $||x||_p = \left(\sum_{n \in \Gamma} |x^{(n)}|^p\right)^{1/p}$. Let $\ell_p(\Gamma)$ denote the Banach space of all bounded scalar-valued functions on Γ with norm $||x||_{\infty} := \max_{n \in \Gamma} |x^{(n)}|$. As usual, write ℓ_p for the sequence spaces $\ell_p(\mathbb{N})$ and ℓ_p^d for $\ell_p([d])$. If X and Y are two normed spaces, their ℓ_p -sum $X \oplus_p Y$ is defined to be the direct sum $X \oplus Y$ with norm $||(x, y)||_p := ||(||x||_X, ||y||_Y)||_p$. Also, write c for the subspace of ℓ_{∞} of convergent sequences, and c_0 for the subspace of null

Date: 25th August 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B04; Secondary 46B20, 52A21, 52C17.

Key words and phrases. equilateral set, equilateral simplex, equidistant points, Brouwer's fixed point theorem. Parts of this paper were written while the first author was at the Chemnitz University of Technology, and also during a visit to the Discrete Analysis Programme at the Newton Institute in Cambridge in May 2011.

sequences. Denote the *sphere* in X with center $c \in X$ and radius r > 0 by

$$S(c,r) = S_X(c,r) := \{x \in X : ||x - c|| = r\}.$$

Definition 1. A subset $A \subseteq X$ is λ -equilateral if $||\mathbf{x} - \mathbf{y}|| = \lambda$ for all $\{\mathbf{x}, \mathbf{y}\} \in \binom{A}{2}$. A set $A \subseteq X$ is equilateral if A is λ -equilateral for some $\lambda > 0$. An equilateral set $A \subseteq X$ is maximal if there does not exist an equilateral set $A' \subseteq X$ with $A \subsetneq A'$.

It is clear that a λ -equilateral set is a maximal equilateral set if and only if it does not lie on a sphere of radius λ .

For a survey on equilateral sets, see [8]. See also [9] for recent results on the existence of large equilateral sets in finite-dimensional spaces. This paper will be exclusively concerned with maximal equilateral sets.

Definition 2. Let m(X) denote the minimum cardinality of a maximal equilateral set in the normed space *X*.

By a simple continuity argument, any set of two points in a normed space of dimension at least 2 can be extended to an equilateral set of size 3. It is also easy to find a maximal equilateral set of size 3 in any 2-dimensional X. It follows that m(X) = 3 for all 2-dimensional X.

Using a topological result, Petty [7] showed that if the dimension of X is at least 3, any equilateral set of size 3 can be extended to one of size 4. He also constructed, for each dimension $d \ge 3$, a *d*-dimensional normed space with a maximal equilateral set of size 4. Below we modify his example to show that ℓ_1^d also has this property. Petty showed furthermore that an equilateral set in a *d*-dimensional normed space has size at most 2^d , attained by ℓ_{∞}^d . Thus his results may be summarized as saying that $4 \le m(X) \le 2^d$ when dim $X = d \ge 3$, with equality possible in the first inequality in each dimension.

A simple linear algebra argument shows that $m(\ell_2^d) = d + 1$. Brass [2] and Dekster [3] independently showed that if $d(X, \ell_2^d) < 1 + 1/(d+1)$, then m(X) = d + 1. In particular, since $d(\ell_p^d, \ell_2^d) = d^{|1/p-1/2|}$, it follows that

$$m(\ell_p^d) = d + 1 \quad \text{if} \quad \left| \frac{1}{p} - \frac{1}{2} \right| < \frac{1}{2d \ln d}.$$
 (1)

Even though ℓ_{∞}^d has an equilateral set of size 2^d , it has a maximal equilateral set of size d + 1. More generally, we show the following:

Theorem 3. If $d(X, \ell_{\infty}^d) < 3/2$, then $m(X) \leq d+1$. In addition, $m(\ell_{\infty}^d) = d+1$.

Theorem 3 will follow from Propositions 8 and 10 below. A similar result holds for the ℓ_p^d spaces.

Theorem 4. For each $p \in (1, \infty)$ and $d \ge 3$ there exists c = c(p, d) > 1 such that $m(X) \le d + 1$ for any *d*-dimensional X with $d(X, \ell_p^d) < c$.

Theorem 4 will be proved in Section 5 below. Our main result is the following surprising property of ℓ_p where p < 2.

Theorem 5. For each $p \in [1,2)$ there exist $C = C(p) \in \mathbb{N}$ and $d_0 = d_0(p) \in \mathbb{N}$ such that for any normed space X, any $d \ge d_0$, and any $q \in [1,\infty)$, $m(\ell_p^d \oplus_q X) \le C$. For p close to 1, upper bounds are given in Table 1. When $p \to 2$, C(p) = O(1/(2-p)) and $d_0(p) = O(1/(2-p))$.

Note that the bound on C(p) in the above theorem for p close to 2 is close to optimal, as (1) implies that

$$C(p) = \Omega\left(\frac{1}{(2-p)\ln(2-p)^{-1}}\right).$$

Range of <i>p</i>	C(p)	$d_0(p)$	Reason
$1 \le p < \frac{\log 5/2}{\log 2} \approx 1.32$	5	4	Prop. 17
$\frac{\log 5/2}{\log 2} \le p < \frac{\log 3}{\log 2} \approx 1.58$	8	6	Prop. 21 with $(k_1, k_2) = (2, 2)$
$\frac{\log 3}{\log 2} \le p < \frac{\log 13/4}{\log 2} \approx 1.70$	12	10	Prop. 21 with $(k_1, k_2) = (2, 4)$
$\frac{\log 13/4}{\log 2} \le p < \frac{\log 7/2}{\log 2} \approx 1.81$	16	14	Prop. 21 with $(k_1, k_2) = (4, 4)$
$\frac{\log 7/2}{\log 2} \le p < \frac{\log 29/8}{\log 2} \approx 1.86$	24	22	Prop. 21 with $(k_1, k_2) = (4, 8)$
$\frac{\log 29/8}{\log 2} \le p < \frac{\log 15/4}{\log 2} \approx 1.907$	32	30	Prop. 21 with $(k_1, k_2) = (8, 8)$
$\frac{\log 15/4}{\log 2} \le p < \frac{\log 91/24}{\log 2} \approx 1.923$	40	38	Prop. 21 with $(k_1, k_2 = (8, 12)$
$\frac{\log 91/24}{\log 2} \le p < \frac{\log 23/4}{\log 2} \approx 1.939$	48	46	Prop. 21 with $(k_1, k_2) = (12, 12)$

TABLE 1. Values of C(p) and $d_0(p)$ in Theorem 5

Theorem 5 will be proved in Section 6 below.

We do not know of any *d*-dimensional space *X* for which m(X) > d + 1. The above theorems give some evidence for the following conjecture:

Conjecture 6. For any *d*-dimensional normed space X, $m(X) \le d + 1$.

2. Generalising Petty's example

Petty [7] showed that $m(\ell_2^d \oplus_1 \mathbb{R}) = 4$ for all $d \ge 2$. In his argument ℓ_2^d can in fact be replaced by any, not necessarily finite-dimensional, normed space which has a smooth point on its unit sphere. By a theorem of Mazur [6] any separable normed space enjoys this property.

Proposition 7. Let X be a normed space of dimension at least 2 with a norm that is Gâteaux differentiable at some point. Then $m(X \oplus_1 \mathbb{R}) = 4$.

Proof. Since $X \oplus \mathbb{R}$ is at least 3-dimensional, $m(X) \ge 4$, as mentioned in Section 1. For the upper bound, let $u \in X$ be a unit vector such that the norm of X is Gâteaux differentiable at u. Let $A := \{(o, 1), (o, -1), (u, 0), (-u, 0)\}$. Then A is 2-equilateral. If there exist $(x, r) \in X \oplus_1 \mathbb{R}$ at distance 2 to each point in A, then it easily follows that r = 0, ||x|| = 1 and $||x \pm u|| = 2$. Then $\pm \frac{1}{2}x \pm \frac{1}{2}u$ are all unit vectors, which implies that the unit ball of the subspace generated by u and x is the parallelogram with vertices $\pm u, \pm x$. In particular, u is not a point of Gâteaux differentiability of the norm.

As special cases, $m(\ell_1) = m(\ell_1^d) = 4$ for $d \ge 3$. However, if Γ is an uncountable set, then the norm of $\ell_1(\Gamma)$ is nowhere Gâteaux differentiable. It will follow from the results in Section 6 that $m(\ell_1(\Gamma)) \le 5$.

3. Using Brouwer's fixed point theorem

Proposition 8. If $d(X, \ell_{\infty}^d) < 3/2$, then there exists a maximal equilateral set with d + 1 elements. As a consequence, $m(X) \le d + 1$.

Proof. As preparation for the proof, we first exhibit a 2-equilateral set A of d + 1 points in ℓ_{∞} such that S(o, 1) is the unique sphere (of any radius) that passes through A. For $i \in [d + 1]$ and $n \in [d]$, let

$$\boldsymbol{p}_{i}^{(n)} := \begin{cases} -1 & \text{if } n = i, \\ 0 & \text{if } n > i, \\ 1 & \text{if } n < i, \end{cases}$$

and set $A = \{p_1, \ldots, p_{d+1}\}$. Suppose that $A \subset S(x, r)$ for some $x \in X$ and r > 0. Then for each $n \in [d]$, $|x^{(n)} \pm 1| \leq r$, hence $|x^{(n)}| \leq r - 1$ and $r \geq 1$. If we can show that r = 1, we would also get x = o. Suppose for the sake of contradiction that r > 1.

We first show that $\mathbf{x} = (r-1, r-1, \dots, r-1)$. If not, let *m* be the smallest index such that $\mathbf{x}^{(m)} \neq r-1$. Then for all n < m, $|\mathbf{x}^{(n)} - \mathbf{p}_m^{(n)}| = |r-1-1| < r$, and for n > m, $|\mathbf{x}^{(n)} - \mathbf{p}_m^{(n)}| = |\mathbf{x}^{(n)}| < r$, and for n > m, $|\mathbf{x}^{(n)} - \mathbf{p}_m^{(n)}| = |\mathbf{x}^{(n)}| \leq r-1$. It follows that $r = ||\mathbf{x} - \mathbf{p}_m||_{\infty} = |\mathbf{x}^{(m)} + 1|$. Thus $\mathbf{x}^{(m)} = -1 \pm r$, which contradicts $|\mathbf{x}^{(n)}| \leq r-1$ and the choice of *m*. Therefore, $\mathbf{x} = (r-1, r-1, \dots, r-1)$.

Since $r = ||\mathbf{x} - \mathbf{p}_{d+1}||_{\infty} = |r - 1 - 1| < r$, we have obtained a contradiction. Therefore, *A* lies on a unique sphere. Since this sphere has radius 1, *A* is maximal equilateral. This shows that $m(\ell_{\infty}^d) \le d + 1$.

We now prove the general result. Let $D := d(X, \ell_{\infty}^d) < 3/2$, and assume without loss of generality that $X = (\mathbb{R}^d, \|\cdot\|)$ such that

$$\|\mathbf{x}\| \le \|\mathbf{x}\|_{\infty} \le D\|\mathbf{x}\| \text{ for all } \mathbf{x} \in \mathbb{R}^d.$$
(2)

We will prove that $m(X) \leq d+1$ by finding a perturbation of the above set A that will be maximal equilateral in X. We use Brouwer's theorem as in [2] and [9]. Consider the space $\mathbb{R}^{\binom{[d+1]}{2}}$ of vectors indexed by unordered pairs of elements from [d+1]. Write $z^{\{i,j\}}$ for the coordinate of $z \in \mathbb{R}^{\binom{[d+1]}{2}}$ indexed by $\{i, j\}$. For $z \in I := [0,1]^{\binom{[d+1]}{2}} \subset \mathbb{R}^{\binom{[d+1]}{2}}$, define $p_1(z), \ldots, p_{d+1}(z) \in \mathbb{R}^d$ as follows. For $i \in [d+1]$ and $n \in [d]$, let

$$p_i^{(n)}(z) := \begin{cases} -1 & \text{if } n = i, \\ 0 & \text{if } n > i, \\ 1 + z^{\{n,i\}} & \text{if } n < i. \end{cases}$$
(3)

Define the mapping $\varphi : I \to I$ by

$$\varphi^{\{i,j\}}(z) := \| p_i(z) - p_j(z) \|_{\infty} - \| p_i(z) - p_j(z) \| = 2 + z^{\{i,j\}} - \| p_i(z) - p_j(z) \|$$

for each $\{i, j\} \in {[d+1] \choose 2}$. Then by (2), $\varphi^{\{i, j\}}(z) \ge 0$ and

$$egin{aligned} & arphi^{\{i,j\}}(m{z}) \leq \|m{p}_i(m{z}) - m{p}_j(m{z})\|_\infty - rac{1}{D}\|m{p}_i(m{z}) - m{p}_j(m{z})\|_\infty \ & = \left(1 - rac{1}{D}
ight)(2 + m{z}^{\{i,j\}}) \ & < \left(1 - rac{2}{3}
ight)(2 + 1) = 1. \end{aligned}$$

Thus φ is well-defined. It is clearly continuous, and so has a fixed point z_0 by Brouwer's theorem: 15 -

$$2+z_0^{\{i,j\}}-\|p_i(z_0)-p_j(z_0)\|=z_0^{\{i,j\}} ext{ for all } \{i,j\}\in igg(rac{[d+1]}{2}igg).$$

Therefore, $\{p_1(z_0), \ldots, p_{d+1}(z_0)\}$ is 2-equilateral in *X*.

From now on, write p_i for $p_i(z_0)$. We have to show that $\{p_1, \dots, p_{d+1}\}$ is maximal equilateral. Suppose for the sake of contradiction that $x \in X$ satisfies $||x - p_i|| = 2$ for each $i \in [d+1]$. We first show that $|\mathbf{x}^{(n)}| < 2$ for all $n \in [d]$, and then obtain a contradiction. By (2),

$$2 \leq ||\mathbf{x} - \mathbf{p}_i||_{\infty} \leq 2D$$
 for each $i \in [d+1]$.

In particular, $\left| \boldsymbol{x}^{(n)} - \boldsymbol{p}_n^{(n)} \right| = \left| \boldsymbol{x}^{(n)} + 1 \right| \le 2D$, which gives $\boldsymbol{x}^{(n)} \le 2D - 1 < 2$ for all $n \in [d]$. Also, $\left| \boldsymbol{x}^{(n)} - \boldsymbol{p}_{n+1}^{(n)} \right| \le 2D$, i.e., $\left| \boldsymbol{x}^{(n)} - 1 - \boldsymbol{z}^{\{n,n+1\}} \right| \le 2D$, which gives $\boldsymbol{x}^{(n)} \ge 1 + \boldsymbol{z}^{\{n,n+1\}} - 1$ 2D > -2. It follows that $|\mathbf{x}^{(n)}| < 2$ for all $n \in [d]$.

Since $\|\mathbf{x} - \mathbf{p}_i\|_{\infty} \ge 2$ for each $i \in [d+1]$, by the pigeon-hole principle there exist a coordinate $n \in [d]$ and two points $\mathbf{p}_i, \mathbf{p}_j, \{i, j\} \in \binom{[d+1]}{2}$, such that $|\mathbf{x}^{(n)} - \mathbf{p}_i^{(n)}|, |\mathbf{x}^{(n)} - \mathbf{p}_j^{(n)}| \ge 2$. Without loss of generality, $i \neq n$. Then $p_i^{(n)} \ge 0$ from (3), and it follows that $|x^{(n)} - p_i^{(n)}| < 2$, a contradiction.

We have shown that $\{p_1, \dots, p_{d+1}\}$ is maximal equilateral.

4. Using graph theory

In their studies of neighborly axis-parallel boxes, Zaks [10] and Alon [1] considered coverings of complete graphs by complete bipartite subgraphs. We will also use graphs in the proof that an arbitrary equilateral set of at most d points in ℓ_{∞}^{d} can be extended to a larger equilateral set. Our proof shows in fact that any collection of at most d pairwise touching, axis-parallel boxes in \mathbb{R}^d can be extended to a pairwise touching collection of d+1axis-parallel boxes.

As usual, the edges of a graph are considered to be unordered pairs. Let K_k denote the complete graph with vertex set [k] and edge set $\binom{[k]}{2}$. For $A, B \subseteq [k]$ such that $A \cap B = \emptyset$, $A \cup B \neq \emptyset$, define their unordered product to be $A \bowtie B := \{\{a, b\} : a \in A, b \in B\}$. Thus $A \bowtie B$ is the set of edges of a complete bipartite subgraph of K_k , where we allow one, but not more than one, of *A* or *B* to be empty. As the definition implies, $A \bowtie B = B \bowtie A$.

Lemma 9. Let $d \ge k \ge 1$ be integers. Suppose that the edges of the complete graph K_k are covered by d (not necessarily distinct) unordered products $A_n^0 \bowtie A_n^1$, $n \in [d]$, where for each n, A_n^0 , $A_n^1 \subseteq [k]$, $A_n^0 \cap A_n^1 = \emptyset$, and $A_n^0 \cup A_n^1 \neq \emptyset$. Then there exist $\sigma_1, \ldots, \sigma_d \in \{0, 1\}$ such that $A_1^{\sigma_1} \cup \cdots \cup A_d^{\sigma_d} = A_n^0 \cap A_n^1 = \emptyset$. [k].

Proof. We use induction on $k \in \mathbb{N}$. The case k = 1 is trivial, so we assume that $k \ge 2$ and that the theorem holds for K_{k-1} . If for each $j \in [k]$, some $A_n^0 \bowtie A_n^1 = \emptyset \bowtie \{j\}$, take σ_n such that $A_n^{\sigma_n} = \{j\}$ for each of these *n*. Then choose all remaining σ_n arbitrarily to obtain the required covering of [k].

Thus assume without loss of generality that $\emptyset \bowtie \{k\}$ does not occur as a $A_n^0 \bowtie A_n^1$. The edge {1, k} is covered by some $A_n^0 \bowtie A_n^1$ (note $k \ge 2$). Without loss of generality, n = d, i.e., $k \in A_d^{\sigma_d}$ for some $\sigma_d \in \{0, 1\}$. Set $B_n^0 := A_n^0 \setminus \{k\}$ and $B_n^1 := A_n^1 \setminus \{k\}$ for each $n \in [d]$. Then $B_n^0 \bowtie B_n^1$, $n \in [d-1]$, cover the edges of K_{k-1} . Since all $A_n^0 \bowtie A_n^1 \neq \emptyset \bowtie \{k\}$, we still have $B_n^0 \cup B_n^1 \neq \emptyset$, so we may apply the induction hypothesis to obtain $B_n^{\sigma_n}$, $n \in [d-1]$, that cover [k-1]. Together with $A_d^{v_d}$ we have obtained the required covering of [k].

Proposition 10. $m(\ell_{\infty}^d) \ge d+1$.

Proof. We show that any 1-equilateral set $\{p_1, \ldots, p_k\} \subset \ell_{\infty}^d$ of size at most $k \leq d$ can be extended. Without loss of generality, $k \geq 1$.

Since $|p_i^{(n)} - p_j^{(n)}| \le 1$ for all $\{i, j\} \in {\binom{[k]}{2}}$ and $n \in [d]$, we may assume after a suitable translation that all $p_i \in [0, 1]^d$. For each $n \in [d]$, define $A_n^0 := \{i : p_i^{(n)} = 0\}$ and $A_n^1 := \{i : p_i^{(n)} = 1\}$. Again by making a suitable translation we may assume that each $A_n^0 \cup A_n^1 \neq \emptyset$.

Since $\{p_1, \ldots, p_k\}$ is 1-equilateral, the edges of K_k are covered by $A_n^0 \bowtie A_n^1$, $n \in [d]$. Indeed, since for any edge $\{i, j\}$ of K_k , $\|p_i - p_j\|_{\infty} = 1$, there exists an $n \in [d]$ with $\left|p_i^{(n)} - p_j^{(n)}\right| = 1$. Since $0 \le p_i^{(n)}, p_j^{(n)} \le 1$, it follows that $p_i^{(n)}, p_j^{(n)} = \{0, 1\}$, which gives $\{i, j\} \in A_n^0 \bowtie A_n^1$.

By Lemma 9 we may choose $A_n^{\sigma_n}$, $\sigma_n \in \{0,1\}$, such that $A_1^{\sigma_1} \cup \cdots \cup A_d^{\sigma_d} = [k]$. Define $q = (1, 1, \ldots, 1) - (\sigma_1, \ldots, \sigma_d)$. We show that for each $i \in [k]$, $\|p_i - q\|_{\infty} = 1$. Since $q \in [0, 1]^d$, $\|p_i - q\|_{\infty} \leq 1$. There exists $n \in [d]$ such that $i \in A_n^{\sigma_n}$, i.e., $p_i^{(n)} = \sigma_n$. It follows that $|p_i^{(n)} - q^{(n)}| = 1$, which gives $\|p_i - q\|_{\infty} = 1$.

5. A CALCULATION

We omit the simple proof of the following lemma.

Lemma 11. For any $p \ge 1$ and $\lambda > 0$ the function $f(x) = |x + \lambda|^p - |x|^p$, $x \in \mathbb{R}$, is increasing, and strictly increasing if p > 1.

Proposition 12. For any $p \ge 1$, $m(\ell_p^d) \le d + 1$.

Proof. We have already observed above that m(X) = 3 for any two-dimensional X, so we may assume that $d \ge 3$. We have also observed that $m(\ell_1^d) \le 4$ for all $d \ge 3$, so we may assume that p > 1.

The set of standard unit basis vectors $S = \{e_1, \ldots, e_d\}$ in \mathbb{R}^d is $2^{1/p}$ -equilateral in ℓ_p^d . We show that *S* can be extended, and if *S* is extended in two ways $S \cup \{p\}$ and $S \cup \{q\}$, then the distance $||p - q||_p > 2^{1/p}$. Thus both $S \cup \{p\}$ and $S \cup \{q\}$ will be maximal equilateral. (In fact *S* has exactly two extensions, but we don't need this for the proof.)

Let p be equidistant to all points of S, say $||p_i - e_i||_p = c$ for all $i \in [d]$ where c > 0 is fixed. It then follows that $|p^{(i)} - 1|^p - |p^{(i)}|^p = c^p - ||p||_p^p$ for all i. By Lemma 11, $p^{(1)} = \cdots = p^{(d)}$, i.e., p is a multiple of $j = (1, 1, \dots, 1) \in \mathbb{R}^d$.

Suppose now p = xj satisfies $||p - e_i||_p = 2^{1/p}$ for all $i \in [d]$. It follows that

$$|x-1|^{p} + (d-1)|x|^{p} = 2.$$
(4)

Consider the function $f(x) = |x-1|^p + (d-1)|x|^p$. It is clearly strictly decreasing on $(-\infty, 0]$, and since f(0) = 1 and f(-1) > 2, equation (4) has a unique negative solution $-\mu$, say, in the interval (-1, 0). Let λ be any other solution to (4). Then $\lambda > 0$ (there is in fact a unique positive solution to (4), but we don't need to show this), and we have to show that $||-\mu j - \lambda j||_p > 2^{1/p}$, i.e., $\lambda + \mu > (2/d)^{1/p}$. Since λ is a solution to (4), it follows that $2 = (1 - \lambda)^p + (d - 1)\lambda^p < 1 + d\lambda^p$, hence $\lambda > (1/d)^{1/p}$. It remains to show that $\mu \ge (2^{1/p} - 1)/d^{1/p}$. Suppose then that

$$\mu < \frac{2^{1/p} - 1}{d^{1/p}}.$$
(5)

Since $x = -\mu$ is a solution of (4),

$$2 = (1+\mu)^p + (d-1)\mu^p$$

$$\leq (1+\mu)^p - \mu^p + (2^{1/p} - 1)^p \quad \text{by (5),}$$

hence

$$(1+2^{1/p}-1)^p - (2^{1/p}-1)^p \le (1+\mu)^p - \mu^p$$

By Lemma 11, $2^{1/p} - 1 \le \mu$, which contradicts (5).

Proposition 13. Let $1 , <math>d \ge 3$, $0 < \varepsilon \le (d-2)^{-1/(p-1)}$, and $R = (1 + \frac{p-1}{2}\varepsilon)^{1/p}$. Suppose that $X = (\mathbb{R}^d, \|\cdot\|)$ is given such that

$$\|x\| \leq \|x\|_p \leq R\|x\|$$
 for all $x \in \mathbb{R}^d$.

Then X has a λ -equilateral set $\{p_1, \ldots, p_d\}$, where $\lambda = (2 + (d-2)\varepsilon^p)^{1/p}$, such that $p_i^{(i)} = 1$ for all $i \in [d]$, $-\varepsilon < p_i^{(j)} < 0$ for all $i, j \in [d]$ with j < i, and $p_i^{(j)} = 0$ for all $i, j \in [d]$ with j > i.

Proof. Let R > 1 and $\beta, \gamma > 0$ be arbitrary (to be fixed later). For $i \in [d]$ define $p_i \colon \mathbb{R}^{\binom{[d]}{2}} \to \mathbb{R}^d$ by setting for each $n \in [d]$,

$$p_i^{(n)}(z) = \begin{cases} z^{\{i,j\}} & \text{if } n < i, \\ -\gamma & \text{if } n = i, \\ 0 & \text{if } n > i. \end{cases}$$

That is,

$$p_i(z) = (z^{\{1,i\}}, \dots, z^{\{i-1,i\}}, -\gamma, 0, \dots, 0)$$

Let $I = [0, \beta]^{\binom{[d]}{2}}$ and define $\varphi \colon I \to I$ by

$$\varphi^{\{i,j\}}(z) = 1 + z^{\{i,j\}} - \|p_i(z) - p_j(z)\|$$
 for each $\{i,j\} \in {[d] \choose 2}$.

It is clear that φ is continuous. We next show that φ is well defined if R, β , and γ are chosen appropriately. Let $z \in I$. Then $0 \leq z^{\{i,j\}} \leq \beta$ for all $\{i,j\} \in \binom{[d]}{2}$. We first bound $\|p_i(z) - p_j(z)\|_p$. Without loss of generality, i < j. Then

$$\|\boldsymbol{p}_{i}(\boldsymbol{z}) - \boldsymbol{p}_{j}(\boldsymbol{z})\|_{p}^{p} = \sum_{k=1}^{i-1} \left| z^{\{k,i\}} - z^{\{k,j\}} \right|^{p} + \left| \gamma + z^{\{i,j\}} \right|^{p} + \sum_{k=i+1}^{j-1} \left| z^{\{k,j\}} \right|^{p} + \gamma^{p} \leq (i-1)\beta^{p} + (\gamma + z^{\{i,j\}})^{p} + (j-1-i)\beta^{p} + \gamma^{p} = (j-2)\beta^{p} + \gamma^{p} + (\gamma + z^{\{i,j\}})^{p}$$
(6)

and

$$\|\boldsymbol{p}_{i}(\boldsymbol{z}) - \boldsymbol{p}_{j}(\boldsymbol{z})\|_{p}^{p} \geq \gamma^{p} + (\gamma + \boldsymbol{z}^{\{i,j\}})^{p}.$$
(7)

Thus

$$\varphi^{\{i,j\}} \ge 1 + z^{\{i,j\}} - \left((j-2)\beta^p + \gamma^p + (\gamma + z^{\{i,j\}})^p \right)^{1/p}.$$

Let
$$f(x) = 1 + x - ((j-2)\beta^p + \gamma^p + (\gamma + x)^p)^{1/p}, 0 \le x \le \beta$$
. Then

$$f'(x) = 1 - \frac{1}{p} ((j-1)\beta^p + \gamma^p + (\gamma + x)^p)^{1/p} p(\gamma + x)^{p-1}$$

$$= 1 - \left(\frac{(j-1)\beta^p + \gamma^p + (\gamma + x)^p}{(\gamma + x)^p}\right)^{\frac{1}{p} - 1}$$

$$> 1 - 1 = 0 \quad \text{since } \frac{1}{p} - 1 < 0.$$

It follows that f is strictly increasing, which gives that

$$p^{\{i,j\}} \ge f\left(z^{\{i,j\}}\right) \ge f(0) = 1 - \left((j-2)\beta^p + 2\gamma^p\right)^{1/p}$$
$$\ge 1 - \left((d-2)\beta^p + 2\gamma^p\right)^{1/p}.$$

If we require that

$$(d-2)\beta^p + 2\gamma^p = 1 \tag{8}$$

then $\varphi^{\{i,j\}} \ge 0$ for all $z \in I$. Also,

$$arphi^{\{i,j\}}(m{z}) \leq 1 + z^{\{i,j\}} - rac{1}{R} \|m{p}_i(m{z}) - m{p}_j(m{z})\|_p \ \leq 1 + z^{\{i,j\}} - rac{1}{R} \left(\gamma^p + (\gamma + z^{\{i,j\}})^p
ight)^{1/p}.$$

Let $g(x) = 1 + x - \frac{1}{R} (\gamma^p + (\gamma + x)^p)^{1/p}, 0 \le x \le \beta$. Then

$$g'(x) = 1 - \frac{1}{R} \left(\gamma^p + (\gamma + x)^p \right)^{\frac{1}{p} - 1} p(\gamma + x)^{p-1}$$

= $1 - \frac{1}{R} \left(\frac{\gamma^p + (\gamma + x)^p}{(\gamma + x)^p} \right)^{\frac{1}{p} - 1}$
> $1 - \frac{1}{R} > 0.$

Therefore, *g* is strictly increasing, which gives that

$$\varphi^{\{i,j\}}(z) \le g(z^{\{i,j\}} \le g(\beta) = 1 + \beta - \frac{1}{R} (\gamma^p + (\gamma + \beta)^p)^{1/p}.$$

To derive $\varphi^{\{i,j\}}(z) \leq \beta$, it is sufficient to require that

$$\gamma^p + (\gamma + \beta)^p \ge R^p. \tag{9}$$

If we can find $\beta, \gamma > 0$ and R > 1 such that (8) and (9) are satisfied, then φ is well defined, and by Brouwer's fixed point theorem φ has a fixed point, that is, for some $z_0 \in I$, $\varphi(z_0) = z_0$, which implies that $\{p_i(z_0) : i \in [d]\}$ is 1-equilateral. Since $p_i^{(i)} = p_i^{(i)}(z_0) = -\gamma$, we have to divide each vector in this set by $-\gamma$. This means we have to set $\gamma = 1/\lambda$ and $\beta/\gamma = \varepsilon$. We can then rewrite (8) as

$$(d-2)\varepsilon^p + 2 = \lambda^p$$

and (9) as

$$\frac{1+(1+\varepsilon)^p}{2+(d-2)\varepsilon^p} \ge R^p.$$

Now assume that $\varepsilon \leq (d-2)^{-1/(p-1)}$ and $R^p = 1 + \frac{p-1}{2}\varepsilon$. Since p > 1, $(1+\varepsilon)^p \geq 1 + p\varepsilon + \frac{p}{p-1}2\varepsilon^2$ for all $\varepsilon \geq 0$, and it is thus sufficient to show that

$$\frac{2+p\varepsilon+\frac{p}{p-1}2\varepsilon^2}{2+(d-2)\varepsilon^p} \ge 1+\frac{p-1}{2}\varepsilon.$$

However,

$$\begin{aligned} 2 + p\varepsilon + \frac{p}{p-1} 2\varepsilon^2 - (2 + (d-2)\varepsilon^p) \left(1 + \frac{p-1}{2}\varepsilon\right) \\ &= -(d-2)\varepsilon^p + \varepsilon - \frac{1}{2}(d-2)(p-1)\varepsilon^{p+1} + \frac{p(p-1)}{2}\varepsilon^2 \\ &= \left(1 - (d-2)\varepsilon^{p-1}\right)\varepsilon + \frac{1}{2}(p-1) \left(1 - (d-2)\varepsilon^{p-1}\right)\varepsilon^2 + \frac{1}{2}(p-1)^2\varepsilon^2 \\ &> 0 \quad \text{since } 1 - (d-2)\varepsilon^{p-1} \ge 0 \text{ and } p > 1. \end{aligned}$$

We have shown that if we choose $\gamma = 1/\lambda = (2 + (d-2)\varepsilon^p)^{-1/p}$, $\beta = \varepsilon\gamma$, and $R = (1 + \frac{p-1}{2}\varepsilon)^{1/p}$, then (8) and (9) are satisfied, which finishes the proof.

Proof of Theorem 4. Suppose that the theorem is false. Then for some $p \in (0, \infty)$ and $d \ge 3$ and for all c > 1, there exists a *d*-dimensional *X* such that $d(X, \ell_p^d) < c$ and $m(X) \ge d + 2$. Choose a sequence $X_n = (\mathbb{R}^d, \|\cdot\|_{(n)})$ such that $m(X_n) \ge d + 2$ and

$$\|\mathbf{x}\|_{(n)} \leq \|\mathbf{x}\|_p \leq \left(1+\frac{1}{n}\right)^{1/p} \|\mathbf{x}\|_{(n)}$$
 for all $\mathbf{x} \in \mathbb{R}^d$.

If *n* is sufficiently large, in particular,

$$n > \frac{2(d-2)^{1/(p-1)}}{p-1},$$

and if we choose $\varepsilon = \frac{2}{n(p-1)}$, then $\frac{1}{n} = \frac{p-1}{2}\varepsilon$ and $\varepsilon < (d-2)^{-1/(p-1)}$, and we may apply Proposition 13 to obtain an equilateral set $\{p_i(n) : i \in [d]\}$ in X_n such that $p_i^{(i)}(n) = 1$ for all $i \in [d]$ and $-\varepsilon < p_i^{(j)}(n) \le 0$ for all $i, j \in [d], i \ne j$. Since $m(X_n) \ge d+2$, there exist points $p_{d+1}(n), p_{d+2}(n) \in X_n$ such that $\{p_i(n) : i \in [d+2]\}$ is equilateral. By passing to a subsequence we may assume without loss of generality that $p_{d+1}(n) \rightarrow p$ and $p_{d+2}(n) \rightarrow q$ as $n \rightarrow \infty$. Since $p_i(n) \rightarrow e_i$ and $d(\|\cdot\|_{(n)}, \|\cdot\|_p) \rightarrow 0$ as $n \rightarrow \infty$, it follows that $\{e_1, \ldots, e_d, p, q\}$ is equilateral in ℓ_p^d . However, in the proof of Proposition 12 we have shown this to be impossible.

6. Using Hadamard matrices

Before introducing the properties of Hadamard matrices that will be needed, we first do a special case to illustrate the construction.

Lemma 14. Let $1 \le p \le 2$. For each $\lambda \in [2^{1-1/p}, 2^{1/p}]$ there exist unit vectors $u, v \in \ell_p^2$ such that $\|u + v\|_p = \|u - v\|_p = \lambda$.

Proof. Let $\boldsymbol{u} = (\alpha, \beta)$ and $\boldsymbol{v} = (-\beta, \alpha)$ where $\alpha, \beta \ge 0$ and $\alpha^p + \beta^p = 1$. Then $\|\boldsymbol{u} \pm \boldsymbol{v}\|_p^p = |\alpha + \beta|^p - |\alpha - \beta|^p$, which ranges from 2 when $\alpha = 0$ and $\beta = 1$, to 2^{p-1} when $\alpha = \beta = 2^{1/p}$.

Lemma 15 (Monotonicity lemma). Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional normed space. Let $p \neq o$ be any point such that u is between $\frac{1}{\|p\|}p$ and v on the boundary of the unit ball. Then $\|p - u\| < \|p - v\|$.

For a proof of the above lemma, see [5, Proposition 31]. For non-strictly convex norms the above lemma still holds with a non-strict inequality. On the other hand, the following corollary of the monotonicity lemma is false when the norm is not strictly convex, as easy examples show.

Lemma 16. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional normed space. Suppose that x is such that ||x - u|| = ||x + u|| and ||x - v|| = ||x + v||. Then x = o.

Proof. Without loss of generality, $x = \alpha u + \beta v$ with $\alpha, \beta \ge 0$. If $x \ne o$, then by Lemma 15,

$$||x - v|| < ||x + u|| = ||x - u|| < ||x + v||$$

a contradiction.

Proposition 17. Let X be any normed space, $q \in [1, \infty)$, and $1 \le p < \frac{\log 5/2}{\log 2}$. Then $m(\ell_p^4 \oplus_q X) \le 5$. If $p = \frac{\log 5/2}{\log 2}$, then $m(\ell_p^4 \oplus_q X) \le 6$.

Proof. Consider the following subset of $\ell_p^4 \oplus_q X$:

$S = \{$	(1,	1,	1,	0,	o),
	(1, -	-1, -	-1,	0,	o),
	(-	-1,	1,-	-1,	0,	o),
	(-	-1, -	-1,	1,	0,	o),
	(0,	0,	0,	λ,	o)}

By setting $\lambda = (2^{p+1} - 3)^{1/p}$, *S* becomes a $2^{1+1/p}$ -equilateral set. We show that *S* is maximal equilateral. Suppose that $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \mathbf{x})$ has distance $2^{1+1/p}$ to each point in *S*.

Then $(\alpha_1, \alpha_2, \alpha_3)$ has the same distance in ℓ_p^3 to the points

$$(1,1,1), (1,-1,-1), (-1,1,-1), (-1,-1,1).$$

Then

$$\|(\alpha_1, \alpha_2) - (1, 1)\|_p = \|(\alpha_1, \alpha_2) - (-1, -1)\|_p$$

and

$$\|(\alpha_1, \alpha_2) - (1, -1)\|_p = \|(\alpha_1, \alpha_2) - (-1, 1)\|$$

It follows (from Lemma 16 if p > 1) that $(\alpha_1, \alpha_2) = (0, 0)$. Thus $|\alpha_3 - 1| = |\alpha_3 + 1|$, which gives $\alpha_3 = 0$.

It follows that $3 + |\alpha_4|^p = |\alpha_4 - \lambda|^p$. By Lemma 11, the function $f(x) = 3 + |x|^p - |x - \lambda|^p$ is increasing (strictly increasing if p > 1). Since $f(\alpha_4) = 0$ and $f(-\lambda) = 2^{p+1}(\frac{5}{2} - 2^p) \ge 0$ (> 0 if p = 1), it follows that $\alpha_4 \le -\lambda$. Then by assumption,

$$\begin{aligned} 2^{1+1/p} &= \|(0,0,0,\alpha_4,\boldsymbol{x}) - (1,1,1,0,\boldsymbol{o})\|_q \\ &= \left((3+|\alpha_4|^p)^{q/p} + \|\boldsymbol{x}\|^q \right)^{1/q} \\ &\geq (3+\lambda^p)^{1/p} = 2^{1+1/p}, \end{aligned}$$

and equality holds throughout, which implies that $p = \frac{\log 5/2}{\log 2}$, $\alpha_4 = -\lambda$ and x = o. Therefore, *S* is maximal equilateral unless $p = \frac{\log 5/2}{\log 2}$, in which case $S \cup \{(0, 0, 0, -\lambda, o)\}$ is maximal equilateral.

An $n \times n$ matrix *H* is called a *Hadamard matrix* of order *n* if each entry equals ± 1 and $HH^{T} = nI$. It is easy to see that if a Hadamard matrix of order *n* exists, then n = 1, n = 2 or *n* is divisible by 4. It is conjectured that there exist Hadamard matrices of all orders divisible by 4. This is known for all multiples of for 4 up to 664 [4]. The next lemma summarises the only (well-known) results on the existence of Hadamard matrices that we will use.

Lemma 18. There exist Hadamard matrices of orders 1, 2, 4, 8, 12.

Let $x \ge 1$. The interval (x, 2x) contains the order of some Hadamard matrix iff $x \notin \{1, 2, 4\}$. Let H(x) be the largest order n of a Hadamard matrix with n < x. Then $\lim_{x\to\infty} H(x)/x = 1$.

Proof. Given Hadamard matrices H_1 of order n_1 and H_2 of order n_2 , the Kronecker product $H_1 \otimes H_2$ will be a Hadamard matrix of order n_1n_2 . Starting with the unique Hadamard matrices of orders 2 and 12, we obtain Hadamard matrices of orders 2^k and $12 \cdot 2^k$, $k \in \mathbb{N}$. This is sufficient to cover every interval (x, 2x) except for (1, 2), (2, 4) and (4, 8).

The Paley construction gives a Hadamard matrix of order q + 1 for any prime power $q \cong 3 \pmod{4}$. The prime number theorem for arithmetic progressions states in particular that the number of primes less than x that are congruent to 3 modulo 4 is $(1 + o(1))x/(2 \ln x)$. This implies that the largest such prime less than x is $\geq (1 + o(1))x$, which gives $H(x)/x \to 1$ as $x \to \infty$.

A Hadamard matrix is normalised if its first column are all +1s. If

$$H = \begin{bmatrix} 1 & h_1 \\ 1 & h_2 \\ \vdots & \vdots \\ 1 & h_n \end{bmatrix}$$

is a normalised Hadamard matrix we say that $\{h_1, \ldots, h_n\} \subset \mathbb{R}^{n-1}$ is a *Hadamard simplex*. Note that a Hadamard simplex is equilateral in ℓ_p^{n-1} for any value of p and lies on a sphere with centre o. Note that the next lemma shows in particular that a Hadamard simplex cannot lie on any other sphere of ℓ_p^{n-1} if $p \in [1, \infty)$.

Lemma 19. Let h_1, \ldots, h_n be a Hadamard simplex. Let X be a normed space and let $u \in X$. Suppose that

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) \in \underbrace{X \oplus_p \dots \oplus_p X}_{n-1 \text{ summands}}$$

has the same distance in the p-norm to each $h_i \otimes u$, $i \in [n]$. Then $||x_i - u|| = ||x_i + u||$ for all $i \in [n]$.

Proof. Let $h_i = [h_{i,1}, h_{i,2}, ..., h_{i,n-1}]$ for $i \in [n]$. We may assume without loss of generality that $h_1 = [-1, -1, ..., -1]$. Since $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{n-1})$ is equidistant to all $h_i \otimes u$, there exists $D \ge 0$ such that $\sum_{j=1}^{n-1} ||\mathbf{x}_j - h_{i,j}\mathbf{u}||^p = D^p$ for each $i \in [n]$. Subtract the first of these equations from the others to obtain the system

$$\begin{bmatrix} h_{2} - h_{1} \\ h_{3} - h_{1} \\ \vdots \\ h_{n-1} - h_{1} \end{bmatrix} \begin{bmatrix} \|x_{1} - u\|^{p} - \|x_{1} + u\|^{p} \\ \|x_{2} - u\|^{p} - \|x_{2} + u\|^{p} \\ \vdots \\ \|x_{k-1} - u\|^{p} - \|x_{k-1} + u\|^{p} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(10)

The Hadamard matrix H is invertible. If we subtract the first row from all the other rows, the resulting matrix

$$\begin{bmatrix} 1 & \boldsymbol{o} \\ 0 & \boldsymbol{h}_2 - \boldsymbol{h}_1 \\ 0 & \vdots \\ 0 & \boldsymbol{h}_{n-1} - \boldsymbol{h}_1 \end{bmatrix}$$

is still invertible. It follows that (10) has the unique solution

$$\|\mathbf{x}_j - \mathbf{u}\|^p - \|\mathbf{x}_j + \mathbf{u}\|^p = 0$$
 for all $j \in [n-1]$.

Lemma 20. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional normed space X. Let h_1, \ldots, h_n be a Hadamard simplex. Suppose that

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) \in \underbrace{X \oplus_p \dots \oplus_p X}_{n-1 \text{ summands}}$$

has the same distance in the p-norm to each $h_i \otimes u$, $i \in [n]$, and the same distance to each $h_i \otimes v$, $i \in [n]$. Then x = o.

Proof. Combine Lemmas 16 and 19.

Proposition 21. Let $p \in (1,2)$, $q \in [1,\infty)$, and X any normed space. Let $k_1, k_2 \in \mathbb{N}$ be such that there exist Hadamard matrices of orders k_1 and k_2 and such that

$$2 - 2^{p-1} \le \frac{1}{k_1} + \frac{1}{k_2} < 4 - 2^p, \tag{11}$$

$$\frac{5}{2} - 2^{p-1} - 2^{1-p} \le (1 - 2^{1-p})\frac{1}{k_1} + \frac{1}{k_2},\tag{12}$$

$$\frac{5}{2} - 2^{p-1} - 2^{1-p} \le \frac{1}{k_1} + (1 - 2^{1-p})\frac{1}{k_2},$$
(13)

and if
$$k_1 = k_2$$
, then $2 - 2^{p-1} < \frac{1}{k_1} + \frac{1}{k_2}$. (14)

Then $m(\ell_p^{2(k_1+k_2-1)} \oplus_q X) \le 2(k_1+k_2).$

Proof. It is sufficient to construct an equilateral set S of cardinality $2(k_1 + k_2)$ in $\ell_p^{2(k_1+k_2-1)}$ that does not lie on any sphere. Then $S \oplus \{o\}$ will be maximal equilateral in $\ell_p^{2(k_1+k_2-1)} \oplus_q X$ for any $q \in [1, \infty)$.

Let $\alpha_1, \alpha_2, \lambda_1, \lambda_2 \in \mathbb{R}$ to be fixed later such that

$$\alpha_1, \alpha_2 \ge 0 \quad \text{and} \quad 2^{1-1/p} \le \lambda_1, \lambda_2 \le 2^{1/p}. \tag{15}$$

By Lemma 14 there exist $u_1, u_2, v_1, v_2 \in \ell_p^2$ such that $||u_i \pm v_i||_p = \lambda_i$, i = 1, 2. Consider the following subset of $\ell_p^{2(k_1+k_2-1)} = \mathbb{R} \oplus_p \ell_p^{2(k_1-1)} \oplus_p \mathbb{R} \oplus_p \ell_p^{2(k_2-1)}$:

$$S_{1}^{-} = \{ (-\alpha_{1}, k_{1}^{-1/p} g_{i} \otimes u_{1}, 0, o) : i \in [k] \}, S_{1}^{+} = \{ (\alpha_{1}, k_{1}^{-1/p} g_{i} \otimes v_{1}, 0, o) : i \in [k] \}, S_{2}^{-} = \{ (0, o, -\alpha_{2}, h_{i} \otimes u_{2}) : i \in [k] \}, S_{2}^{+} = \{ (0, o, \alpha_{2}, h_{i} \otimes v_{2}) : i \in [k] \}.$$

We would like to choose $\alpha_1, \alpha_2, \lambda_1, \lambda_2$ so as to make $S = S_1^- \cup S_1^+ \cup S_2^- \cup S_2^+$ equilateral and non-spherical. Note that $|S| = 2(k_1 + k_2)$.

The p^{th} power of the distance between points

- in the same set S[±]₁ is ^{k₁}/₂ ¹/_{k₁}2^p/_p = 2^{p-1},
 in the same set S[±]₂ is ^{k₂}/₂ ¹/_{k₂}2^p/_p = 2^{p-1},
- in S_1^- and S_1^+ is

$$(2\alpha_1)^p + (k_1 - 1)\frac{1}{k_1} \|\boldsymbol{u}_1 \pm \boldsymbol{v}_1\|_p^p = (2\alpha_1)^p + (1 - \frac{1}{k_1})\lambda_1^p,$$

• in S_2^- and S_2^+ is similarly $(2\alpha_2)^p + (1 - \frac{1}{k_2})\lambda_2^p$,

• in $S_1^- \cup S_1^+$ and $S_2^- \cup S_2^+$ is

$$\alpha_1^p + \alpha_2^p + \frac{k_1 - 1}{k_1} + \frac{k_2 - 1}{k_2} = \alpha_1^p + \alpha_2^p + 2 - \left(\frac{1}{k_1} + \frac{1}{k_2}\right).$$

For *S* to be equilateral, we need

$$(2\alpha_1)^p + \left(1 - \frac{1}{k_1}\right)\lambda_1^p = 2^{p-1}, \quad (2\alpha_2)^p + \left(1 - \frac{1}{k_2}\right)\lambda_2^p = 2^{p-1} \tag{16}$$

$$\alpha_1^p + \alpha_2^p + 2 - \left(\frac{1}{k_1} + \frac{1}{k_2}\right) = 2^{p-1}.$$
(17)

The set *S* will lie on some sphere iff some (β, x, γ, y) is equidistant to *S*. This implies that *x* is equidistant to all $k_1^{-1/p} g_i \otimes u_1$ and also equidistant to all $k_1^{-1/p} g_i \otimes v_1$. By Lemma 20, x = o. Similarly, y = o. Then $|-\alpha_1 - \beta| = |\alpha_1 - \beta|$, which gives $\beta = 0$. Similarly, $\gamma = 0$. Thus *S* can only lie on a sphere with centre *o*. It follows that *S* lies on a sphere iff $\alpha_1 = \alpha_2$. Therefore, for *S* not to lie on a sphere, we need

$$\alpha_1 \neq \alpha_2. \tag{18}$$

It turns out that the three simultaneous equations (16) and (17) have a solution in α_1 , α_2 , γ_1 , γ_2 given the constraints (15) and (18), iff the hypotheses (11), (12), (13), (14) are satisfied. This can be seen as follows. First use (16) to eliminate α_1 and α_2 from (16), (17) and (18), and set $x_1 = \lambda_1^p$ and $x_2 = \lambda_2^p$ to obtain that the condition is equivalent to the existence of $x_1, x_2 \in \mathbb{R}$ such that

$$2^{p-1} \le x_i \le \min\left\{2, 2^{p-1}\left(1 - \frac{1}{k_i}\right)^{-1}\right\}, \quad i = 1, 2$$
(19)

$$\left(1 - \frac{1}{k_1}\right) x_1 + \left(1 - \frac{1}{k_2}\right) x_2 = 2^p \left(3 - 2^{p-1} - \left(\frac{1}{k_1} + \frac{1}{k_2}\right)\right)$$
(20)
$$x_1 \neq x_2$$
(21)

$$x_1 \neq x_2 \tag{21}$$

This means that the line in the x_1x_2 plane described by (20) should intersect the axis-aligned rectangle with bottom-left corner $(2^{p-1}, 2^{p-1})$ and top-right corner

$$\left(\min\{2,2^{p-1}(1-\frac{1}{k_1})^{-1}\},\min\{2,2^{p-1}(1-\frac{1}{k_2})^{-1}\}\right),$$

and if this line intersects the rectangle in a single point (x_1, x_2) which is then necessarily either the bottom-left or top-right corner, then $x_1 \neq x_2$. Define the linear functional $f(x_1, x_2) = \left(1 - \frac{1}{k_1}\right) x_1 + \left(1 - \frac{1}{k_2}\right) x_2$. That the line intersects the rectangle is equivalent to

$$f(2^{p-1}, 2^{p-1}) \le 2^{p} \left(3 - 2^{p-1} - \left(\frac{1}{k_{1}} + \frac{1}{k_{2}}\right)\right)$$

$$\le \min\left\{f(2, 2), f\left(2, 2^{p-1}(1 - \frac{1}{k_{2}})^{-1}\right), f\left(2^{p-1}(1 - \frac{1}{k_{1}})^{-1}, 2\right), f\left(2^{p-1}(1 - \frac{1}{k_{1}})^{-1}, 2^{p-1}(1 - \frac{1}{k_{2}})^{-1}\right)\right\},$$

which is easily seen to be equivalent to (11) (with weak right-hand side inequality), (12), (13). If there is only solution (x_1, x_2) to (19), (20), and it fails to satisfy (21), it follows that $x_1 = x_2$ and (x_1, x_2) is either the bottom-left corner or the top-right corner of the rectangle. In the first case, $x_1 = x_2 = 2^{p-1}$, and $f(2^{p-1}, 2^{p-1}) = 2^p \left(3 - 2^{p-1} - \left(\frac{1}{k_1} + \frac{1}{k_2}\right)\right)$, which implies $\frac{1}{k_1} + \frac{1}{k_2} = 4 - 2^p$, contrary to assumption. In the second case, one of the following four possibilities occurs:

First:

$$2^{p}\left(3-2^{p-1}-\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)\right)=f(2,2)$$
(22)

and

$$2 \le 2^{p-1} \left(1 - \frac{1}{k_1} \right)^{-1}, 2^{p-1} \left(1 - \frac{1}{k_2} \right)^{-1}.$$
(23)

The equation (22) implies that $2 - 2^{p-1} = \frac{1}{k_1} + \frac{1}{k_2}$. Then (23) implies that $1 - 2^{p-2} \le \frac{1}{k_1}, \frac{1}{k_2}$, which shows that equality has to hold in both inequalities of (23), hence $k_1 = k_2$, contrary to assumption.

Second:

$$2^{p} \left(3 - 2^{p-1} - \left(\frac{1}{k_{1}} + \frac{1}{k_{2}}\right)\right) = f\left(2, 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1}\right),$$

$$2 \le 2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1}, \quad 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1} \le 2,$$

$$x_{1} = 2 \quad \text{and} \quad x_{2} = 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1}.$$

Again equality holds in both inequalities of (6), which again gives that $2 - 2^{p-1} = \frac{1}{k_1} + \frac{1}{k_2}$ and $k_1 = k_2$, contrary to assumption.

Third:

$$2^{p} \left(3 - 2^{p-1} - \left(\frac{1}{k_{1}} + \frac{1}{k_{2}}\right)\right) = f \left(2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1}, 2\right),$$
$$2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1} \le 2 \le 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1},$$
$$x_{1} = 2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1} \text{ and } x_{2} = 2.$$

This gives a contradiction as before.

Fourth:

$$2^{p} \left(3 - 2^{p-1} - \left(\frac{1}{k_{1}} + \frac{1}{k_{2}}\right)\right) = f\left(2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1}, 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1}\right),$$
$$2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1}, 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1} \le 2,$$
$$x_{1} = 2^{p-1} \left(1 - \frac{1}{k_{1}}\right)^{-1} \text{ and } x_{2} = 2^{p-1} \left(1 - \frac{1}{k_{2}}\right)^{-1}.$$

This gives a contradiction as before.

Proof of Theorem 5. The last column of Table 1 indicates how each line in that table is obtained: Proposition 17 covers the case $1 \le p < \frac{\log 5/2}{\log 2}$, and in the remaining cases Proposition 21 is applied with Hadamard matrices of various orders k_1 and k_2 . To derive the asymptotic upper bound of $O(1/(4-2^p))$ as $p \to \infty$, we may assume without loss of generality that p is close to 2. Let $k_1 = k_2 = k$ be the largest order of a Hadamard matrix with $k < 4 - 2^p$. This ensures that $2/k < 4 - 2^p$. By Lemma 18 there is a Hadamard matrix of some order in the interval $(2/(4-2^p), 4/(4-2^p))$ if p is sufficiently large. It follows by maximality that $2/(4-2^p) < k$,

giving that (11) and (14) are satisfied. The equivalent conditions (12) and (13) are equivalent to $k \le 4/(4-2^p)$, so they are also satisfied. Proposition 21 gives the upper bound

$$2(k_1 + k_2) = 4k \sim \frac{8}{4 - 2^p} \sim \frac{2}{(2 - p)\ln 2}.$$

Acknowledgements

We thank Roman Karasev for his helpful remarks on a preliminary version of this paper.

References

- 1. N. Alon, *Neighborly families of boxes and bipartite coverings*, The mathematics of Paul Erdős (J. Graham, R. L. & Nešetřil, ed.), vol. II, Springer Verlag, Berlin, 1997, pp. 27–31.
- 2. P. Brass, On equilateral simplices in normed spaces, Beiträge Algebra Geom. 40 (1999), 303–307.
- 3. B. V. Dekster, Simplexes with prescribed edge lengths in Minkowski and Banach spaces, Acta Math. Hungar. 86 (2000), no. 4, 343–358.
- 4. H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Des. 13 (2005), 435-440.
- 5. H. Martini, K J. Swanepoel, and G. Weiß, *The geometry of Minkowski spaces—a survey. I*, Expo. Math. **19** (2001), no. 2, 97–142.
- 6. S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
- 7. C. M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc. 29 (1971), 369-374.
- 8. K. J. Swanepoel, *Equilateral sets in finite-dimensional normed spaces*, Seminar of Mathematical Analysis, vol. 71, Univ. Sevilla Secr. Publ., 2004, pp. 195–237.
- 9. K. J. Swanepoel and R. Villa, A lower bound for the equilateral number of normed spaces, Proc. Amer. Math. Soc. 136 (2008), 127–131.
- 10. J. Zaks, Unsolved problems: How does a complete graph split into bipartite graphs and how are neighborly cubes arranged?, Amer. Math. Monthly 92 (1985), 568–571.

Department of Mathematics, London School of Economics and Political Science E-mail address: k.swanepoel@lse.ac.uk

Departamento Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, c/Tarfia, S/N, 41012 Sevilla, Spain

E-mail address: villa@us.es