
MAXIMAL EQUILATERAL SETS
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Abstract. A subset of a normed space X is called equilateral if the distance between any two
points is the same. Let m(X) be the smallest possible size of an equilateral subset of X maximal
with respect to inclusion. We first observe that Petty’s construction of a d-dimensional X of
any finite dimension d ≥ 4 with m(X) = 4 can be generalised to show that m(X ⊕1 R) = 4 for
any X of dimension at least 2 which has a smooth point on its unit sphere. By a construction

involving Hadamard matrices we then show that both m(ℓp) and m(ℓd
p) are finite and bounded

above by a function of p, for all 1 ≤ p < 2. Also, for all p ∈ [1, ∞) and d ∈ N there exists
c = c(p, d) > 1 such that m(X) ≤ d + 1 for all d-dimensional X with Banach-Mazur distance

less than c from ℓd
p. Using Brouwer’s fixed-point theorem we show that m(X) ≤ d + 1 for

all d-dimensional X with Banach-Mazur distance less than 3/2 from ℓd
∞. A graph-theoretical

argument furthermore shows that m(ℓd
∞) = d + 1.

The above results lead us to conjecture that m(X) ≤ 1 + dim X.

1. Introduction

Vector spaces in this paper are over the field R of real numbers. Write [d] := {1, 2, . . . , d}

for any d ∈ N and (V
k ) := {A ⊆ V : |A| = k} for any set V and k ∈ N. Consider d-di-

mensional vectors to be functions x : [d] → R denoted using the superscript notation

x = (x(1), . . . , x(d)). Similarly, write x = (x(n))n∈Γ for any scalar-valued function defined
on a set Γ. Write o for zero vectors and the zero function. For any γ ∈ Γ, let eγ denote
the indicator function of {γ}, i.e., eγ(γ) = 1 and eγ(δ) = 0 for all δ ∈ Γ \ {γ}. Given

a = (a(1), . . . , a(d)) ∈ R
d and b ∈ X whith X any vector space, define the Kronecker product

a ⊗ b by (a(1)b, . . . , a(d)b) ∈ Xd.
Let X denote a real normed space with norm ‖·‖ = ‖·‖X . Denote the multiplicative

Banach-Mazur distance between two isomorphic normed spaces X1 and X2 by

d(X1, X2) := inf
{

‖T‖ · ‖T−1‖ : T is a linear isomorphism from X1 to X2

}

.

Here, as usual, the notation ‖T‖ doubles as the operator norm. Let Γ be any set. For p ∈

[1, ∞) let ℓp(Γ) denote the Banach space of all functions x : Γ → R such that ∑n∈Γ

∣
∣
∣x(n)

∣
∣
∣

p
< ∞

with norm ‖x‖p =
(

∑n∈Γ

∣
∣
∣x(n)

∣
∣
∣

p)1/p

. Let ℓp(Γ) denote the Banach space of all bounded

scalar-valued functions on Γ with norm ‖x‖∞ := maxn∈Γ

∣
∣
∣x(n)

∣
∣
∣. As usual, write ℓp for the

sequence spaces ℓp(N) and ℓd
p for ℓp([d]). If X and Y are two normed spaces, their ℓp-sum

X ⊕p Y is defined to be the direct sum X ⊕Y with norm ‖(x, y)‖p := ‖(‖x‖X , ‖y‖Y)‖p. Also,
write c for the subspace of ℓ∞ of convergent sequences, and c0 for the subspace of null
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sequences. Denote the sphere in X with center c ∈ X and radius r > 0 by

S(c, r) = SX(c, r) := {x ∈ X : ‖x − c‖ = r} .

Definition 1. A subset A ⊆ X is λ-equilateral if ‖x − y‖ = λ for all {x, y} ∈ (A
2 ). A set A ⊆ X

is equilateral if A is λ-equilateral for some λ > 0. An equilateral set A ⊆ X is maximal if there
does not exist an equilateral set A′ ⊆ X with A $ A′.

It is clear that a λ-equilateral set is a maximal equilateral set if and only if it does not lie
on a sphere of radius λ.

For a survey on equilateral sets, see [8]. See also [9] for recent results on the existence of
large equilateral sets in finite-dimensional spaces. This paper will be exclusively concerned
with maximal equilateral sets.

Definition 2. Let m(X) denote the minimum cardinality of a maximal equilateral set in the normed
space X.

By a simple continuity argument, any set of two points in a normed space of dimension at
least 2 can be extended to an equilateral set of size 3. It is also easy to find a maximal equi-
lateral set of size 3 in any 2-dimensional X. It follows that m(X) = 3 for all 2-dimensional
X.

Using a topological result, Petty [7] showed that if the dimension of X is at least 3, any
equilateral set of size 3 can be extended to one of size 4. He also constructed, for each
dimension d ≥ 3, a d-dimensional normed space with a maximal equilateral set of size

4. Below we modify his example to show that ℓd
1 also has this property. Petty showed

furthermore that an equilateral set in a d-dimensional normed space has size at most 2d,

attained by ℓd
∞. Thus his results may be summarized as saying that 4 ≤ m(X) ≤ 2d when

dim X = d ≥ 3, with equality possible in the first inequality in each dimension.

A simple linear algebra argument shows that m(ℓd
2) = d + 1. Brass [2] and Dekster [3]

independently showed that if d(X, ℓd
2) < 1 + 1/(d + 1), then m(X) = d + 1. In particular,

since d(ℓd
p, ℓd

2) = d|1/p−1/2|, it follows that

m(ℓd
p) = d + 1 if

∣
∣
∣
∣

1

p
−

1

2

∣
∣
∣
∣
<

1

2d ln d
. (1)

Even though ℓd
∞ has an equilateral set of size 2d, it has a maximal equilateral set of size

d + 1. More generally, we show the following:

Theorem 3. If d(X, ℓd
∞) < 3/2, then m(X) ≤ d + 1. In addition, m(ℓd

∞) = d + 1.

Theorem 3 will follow from Propositions 8 and 10 below. A similar result holds for the ℓd
p

spaces.

Theorem 4. For each p ∈ (1, ∞) and d ≥ 3 there exists c = c(p, d) > 1 such that m(X) ≤ d + 1
for any d-dimensional X with d(X, ℓd

p) < c.

Theorem 4 will be proved in Section 5 below. Our main result is the following surprising
property of ℓp where p < 2.

Theorem 5. For each p ∈ [1, 2) there exist C = C(p) ∈ N and d0 = d0(p) ∈ N such that for any

normed space X, any d ≥ d0, and any q ∈ [1, ∞), m(ℓd
p ⊕q X) ≤ C. For p close to 1, upper bounds

are given in Table 1. When p → 2, C(p) = O(1/(2 − p)) and d0(p) = O(1/(2 − p)).

Note that the bound on C(p) in the above theorem for p close to 2 is close to optimal, as
(1) implies that

C(p) = Ω

(
1

(2 − p) ln(2 − p)−1

)

.
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Range of p C(p) d0(p) Reason

1 ≤ p <
log 5/2

log 2
≈ 1.32 5 4 Prop. 17

log 5/2

log 2
≤ p <

log 3

log 2
≈ 1.58 8 6 Prop. 21 with (k1, k2) = (2, 2)

log 3

log 2
≤ p <

log 13/4

log 2
≈ 1.70 12 10 Prop. 21 with (k1, k2) = (2, 4)

log 13/4

log 2
≤ p <

log 7/2

log 2
≈ 1.81 16 14 Prop. 21 with (k1, k2) = (4, 4)

log 7/2

log 2
≤ p <

log 29/8

log 2
≈ 1.86 24 22 Prop. 21 with (k1, k2) = (4, 8)

log 29/8

log 2
≤ p <

log 15/4

log 2
≈ 1.907 32 30 Prop. 21 with (k1, k2) = (8, 8)

log 15/4

log 2
≤ p <

log 91/24

log 2
≈ 1.923 40 38 Prop. 21 with (k1, k2 = (8, 12)

log 91/24

log 2
≤ p <

log 23/4

log 2
≈ 1.939 48 46 Prop. 21 with (k1, k2) = (12, 12)

Table 1. Values of C(p) and d0(p) in Theorem 5

Theorem 5 will be proved in Section 6 below.
We do not know of any d-dimensional space X for which m(X) > d + 1. The above

theorems give some evidence for the following conjecture:

Conjecture 6. For any d-dimensional normed space X, m(X) ≤ d + 1.

2. Generalising Petty’s example

Petty [7] showed that m(ℓd
2 ⊕1 R) = 4 for all d ≥ 2. In his argument ℓd

2 can in fact be
replaced by any, not necessarily finite-dimensional, normed space which has a smooth point
on its unit sphere. By a theorem of Mazur [6] any separable normed space enjoys this
property.

Proposition 7. Let X be a normed space of dimension at least 2 with a norm that is Gâteaux differ-
entiable at some point. Then m(X ⊕1 R) = 4.

Proof. Since X ⊕ R is at least 3-dimensional, m(X) ≥ 4, as mentioned in Section 1. For the
upper bound, let u ∈ X be a unit vector such that the norm of X is Gâteaux differentiable at u.
Let A := {(o, 1), (o,−1), (u, 0), (−u, 0)}. Then A is 2-equilateral. If there exist (x, r) ∈ X⊕1 R

at distance 2 to each point in A, then it easily follows that r = 0, ‖x‖ = 1 and ‖x ± u‖ = 2.

Then ± 1
2 x± 1

2 u are all unit vectors, which implies that the unit ball of the subspace generated
by u and x is the parallelogram with vertices ±u,±x. In particular, u is not a point of Gâteaux
differentiability of the norm. �

As special cases, m(ℓ1) = m(ℓd
1) = 4 for d ≥ 3. However, if Γ is an uncountable set,

then the norm of ℓ1(Γ) is nowhere Gâteaux differentiable. It will follow from the results in
Section 6 that m(ℓ1(Γ)) ≤ 5.
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3. Using Brouwer’s fixed point theorem

Proposition 8. If d(X, ℓd
∞) < 3/2, then there exists a maximal equilateral set with d + 1 elements.

As a consequence, m(X) ≤ d + 1.

Proof. As preparation for the proof, we first exhibit a 2-equilateral set A of d + 1 points in ℓ∞

such that S(o, 1) is the unique sphere (of any radius) that passes through A. For i ∈ [d + 1]
and n ∈ [d], let

p
(n)
i :=







−1 if n = i,

0 if n > i,

1 if n < i,

and set A = {p1, . . . , pd+1}. Suppose that A ⊂ S(x, r) for some x ∈ X and r > 0. Then for

each n ∈ [d],
∣
∣
∣x(n) ± 1

∣
∣
∣ ≤ r, hence

∣
∣
∣x(n)

∣
∣
∣ ≤ r − 1 and r ≥ 1. If we can show that r = 1, we

would also get x = o. Suppose for the sake of contradiction that r > 1.
We first show that x = (r − 1, r − 1, . . . , r − 1). If not, let m be the smallest index such

that x(m) 6= r − 1. Then for all n < m,
∣
∣
∣x(n) − p

(n)
m

∣
∣
∣ = |r − 1 − 1| < r, and for n > m,

∣
∣
∣x(n) − p

(n)
m

∣
∣
∣ =

∣
∣
∣x(n)

∣
∣
∣ ≤ r− 1. It follows that r = ‖x− pm‖∞ =

∣
∣
∣x(m) + 1

∣
∣
∣. Thus x(m) = −1± r,

which contradicts
∣
∣
∣x(n)

∣
∣
∣ ≤ r − 1 and the choice of m. Therefore, x = (r − 1, r − 1, . . . , r − 1).

Since r = ‖x − pd+1‖∞ = |r − 1 − 1| < r, we have obtained a contradiction. Therefore, A
lies on a unique sphere. Since this sphere has radius 1, A is maximal equilateral. This shows
that m(ℓd

∞) ≤ d + 1.
We now prove the general result. Let D := d(X, ℓd

∞) < 3/2, and assume without loss of
generality that X = (Rd, ‖·‖) such that

‖x‖ ≤ ‖x‖∞ ≤ D‖x‖ for all x ∈ R
d. (2)

We will prove that m(X) ≤ d + 1 by finding a perturbation of the above set A that will
be maximal equilateral in X. We use Brouwer’s theorem as in [2] and [9]. Consider the

space R
([d+1]

2 ) of vectors indexed by unordered pairs of elements from [d + 1]. Write z{i,j}

for the coordinate of z ∈ R
([d+1]

2 ) indexed by {i, j}. For z ∈ I := [0, 1](
[d+1]

2 ) ⊂ R
([d+1]

2 ), define
p1(z), . . . , pd+1(z) ∈ R

d as follows. For i ∈ [d + 1] and n ∈ [d], let

p
(n)
i (z) :=







−1 if n = i,

0 if n > i,

1 + z{n,i} if n < i.

(3)

Define the mapping ϕ : I → I by

ϕ{i,j}(z) := ‖pi(z)− pj(z)‖∞ − ‖pi(z)− pj(z)‖ = 2 + z{i,j} − ‖pi(z)− pj(z)‖

for each {i, j} ∈ ([d+1]
2 ). Then by (2), ϕ{i,j}(z) ≥ 0 and

ϕ{i,j}(z) ≤ ‖pi(z)− pj(z)‖∞ −
1

D
‖pi(z)− pj(z)‖∞

=

(

1 −
1

D

)

(2 + z{i,j})

<

(

1 −
2

3

)

(2 + 1) = 1.
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Thus ϕ is well-defined. It is clearly continuous, and so has a fixed point z0 by Brouwer’s
theorem:

2 + z
{i,j}
0 − ‖pi(z0)− pj(z0)‖ = z

{i,j}
0 for all {i, j} ∈

(
[d + 1]

2

)

.

Therefore, {p1(z0), . . . , pd+1(z0)} is 2-equilateral in X.
From now on, write pi for pi(z0). We have to show that {p1, . . . pd+1} is maximal equi-

lateral. Suppose for the sake of contradiction that x ∈ X satisfies ‖x − pi‖ = 2 for each

i ∈ [d + 1]. We first show that
∣
∣
∣x(n)

∣
∣
∣ < 2 for all n ∈ [d], and then obtain a contradiction.

By (2),
2 ≤ ‖x − pi‖∞ ≤ 2D for each i ∈ [d + 1].

In particular,
∣
∣
∣x(n) − p

(n)
n

∣
∣
∣ =

∣
∣
∣x(n) + 1

∣
∣
∣ ≤ 2D, which gives x(n) ≤ 2D − 1 < 2 for all n ∈ [d].

Also,
∣
∣
∣x(n) − p

(n)
n+1

∣
∣
∣ ≤ 2D, i.e.,

∣
∣
∣x(n) − 1 − z{n,n+1}

∣
∣
∣ ≤ 2D, which gives x(n) ≥ 1 + z{n,n+1} −

2D > −2. It follows that
∣
∣
∣x(n)

∣
∣
∣ < 2 for all n ∈ [d].

Since ‖x − pi‖∞ ≥ 2 for each i ∈ [d + 1], by the pigeon-hole principle there exist a coor-

dinate n ∈ [d] and two points pi, pj, {i, j} ∈ ([d+1]
2 ), such that

∣
∣
∣x(n) − p

(n)
i

∣
∣
∣ ,
∣
∣
∣x(n) − p

(n)
j

∣
∣
∣ ≥ 2.

Without loss of generality, i 6= n. Then p
(n)
i ≥ 0 from (3), and it follows that

∣
∣
∣x(n) − p

(n)
i

∣
∣
∣ < 2,

a contradiction.
We have shown that {p1, . . . pd+1} is maximal equilateral. �

4. Using graph theory

In their studies of neighborly axis-parallel boxes, Zaks [10] and Alon [1] considered cov-
erings of complete graphs by complete bipartite subgraphs. We will also use graphs in the
proof that an arbitrary equilateral set of at most d points in ℓd

∞ can be extended to a larger
equilateral set. Our proof shows in fact that any collection of at most d pairwise touch-

ing, axis-parallel boxes in R
d can be extended to a pairwise touching collection of d + 1

axis-parallel boxes.
As usual, the edges of a graph are considered to be unordered pairs. Let Kk denote the

complete graph with vertex set [k] and edge set ([k]2 ). For A, B ⊆ [k] such that A ∩ B = ∅,
A ∪ B 6= ∅, define their unordered product to be A 1 B := {{a, b} : a ∈ A, b ∈ B}. Thus
A 1 B is the set of edges of a complete bipartite subgraph of Kk, where we allow one, but
not more than one, of A or B to be empty. As the definition implies, A 1 B = B 1 A.

Lemma 9. Let d ≥ k ≥ 1 be integers. Suppose that the edges of the complete graph Kk are covered
by d (not necessarily distinct) unordered products A0

n 1 A1
n, n ∈ [d], where for each n, A0

n, A1
n ⊆ [k],

A0
n ∩ A1

n = ∅, and A0
n ∪ A1

n 6= ∅. Then there exist σ1, . . . , σd ∈ {0, 1} such that Aσ1
1 ∪ · · · ∪ Aσd

d =
[k].

Proof. We use induction on k ∈ N. The case k = 1 is trivial, so we assume that k ≥ 2 and
that the theorem holds for Kk−1. If for each j ∈ [k], some A0

n 1 A1
n = ∅ 1 {j}, take σn such

that Aσn
n = {j} for each of these n. Then choose all remaining σn arbitrarily to obtain the

required covering of [k].
Thus assume without loss of generality that ∅ 1 {k} does not occur as a A0

n 1 A1
n. The

edge {1, k} is covered by some A0
n 1 A1

n (note k ≥ 2). Without loss of generality, n = d, i.e.,
k ∈ Aσd

d for some σd ∈ {0, 1}. Set B0
n := A0

n \ {k} and B1
n := A1

n \ {k} for each n ∈ [d]. Then

B0
n 1 B1

n, n ∈ [d − 1], cover the edges of Kk−1. Since all A0
n 1 A1

n 6= ∅ 1 {k}, we still have
B0

n ∪ B1
n 6= ∅, so we may apply the induction hypothesis to obtain Bσn

n , n ∈ [d − 1], that cover
[k − 1]. Together with Aσd

d we have obtained the required covering of [k]. �
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Proposition 10. m(ℓd
∞) ≥ d + 1.

Proof. We show that any 1-equilateral set {p1, . . . , pk} ⊂ ℓd
∞ of size at most k ≤ d can be

extended. Without loss of generality, k ≥ 1.

Since
∣
∣
∣p

(n)
i − p

(n)
j

∣
∣
∣ ≤ 1 for all {i, j} ∈ ([k]2 ) and n ∈ [d], we may assume after a suitable

translation that all pi ∈ [0, 1]d. For each n ∈ [d], define A0
n :=

{

i : p
(n)
i = 0

}

and A1
n :=

{

i : p
(n)
i = 1

}

. Again by making a suitable translation we may assume that each A0
n ∪ A1

n 6=

∅.
Since {p1, . . . , pk} is 1-equilateral, the edges of Kk are covered by A0

n 1 A1
n, n ∈ [d]. Indeed,

since for any edge {i, j} of Kk, ‖pi − pj‖∞ = 1, there exists an n ∈ [d] with
∣
∣
∣p

(n)
i − p

(n)
j

∣
∣
∣ = 1.

Since 0 ≤ p
(n)
i , p

(n)
j ≤ 1, it follows that p

(n)
i , p

(n)
j = {0, 1}, which gives {i, j} ∈ A0

n 1 A1
n.

By Lemma 9 we may choose Aσn
n , σn ∈ {0, 1}, such that Aσ1

1 ∪ · · · ∪ Aσd

d = [k]. Define

q = (1, 1, . . . , 1)− (σ1, . . . , σd). We show that for each i ∈ [k], ‖pi − q‖∞ = 1. Since q ∈ [0, 1]d,

‖pi − q‖∞ ≤ 1. There exists n ∈ [d] such that i ∈ Aσn
n , i.e., p

(n)
i = σn. It follows that

∣
∣
∣p

(n)
i − q(n)

∣
∣
∣ = 1, which gives ‖pi − q‖∞ = 1. �

5. A calculation

We omit the simple proof of the following lemma.

Lemma 11. For any p ≥ 1 and λ > 0 the function f (x) = |x + λ|p − |x|p, x ∈ R, is increasing,
and strictly increasing if p > 1.

Proposition 12. For any p ≥ 1, m(ℓd
p) ≤ d + 1.

Proof. We have already observed above that m(X) = 3 for any two-dimensional X, so we

may assume that d ≥ 3. We have also observed that m(ℓd
1) ≤ 4 for all d ≥ 3, so we may

assume that p > 1.
The set of standard unit basis vectors S = {e1, . . . , ed} in R

d is 21/p-equilateral in ℓd
p. We

show that S can be extended, and if S is extended in two ways S ∪ {p} and S ∪ {q}, then the
distance ‖p − q‖p > 21/p. Thus both S ∪ {p} and S ∪ {q} will be maximal equilateral. (In
fact S has exactly two extensions, but we don’t need this for the proof.)

Let p be equidistant to all points of S, say ‖pi − ei‖p = c for all i ∈ [d] where c > 0 is fixed.

It then follows that
∣
∣
∣p(i) − 1

∣
∣
∣

p
−
∣
∣
∣p(i)

∣
∣
∣

p
= cp −‖p‖

p
p for all i. By Lemma 11, p(1) = · · · = p(d),

i.e., p is a multiple of j = (1, 1, . . . , 1) ∈ R
d.

Suppose now p = xj satisfies ‖p − ei‖p = 21/p for all i ∈ [d]. It follows that

|x − 1|p + (d − 1) |x|p = 2. (4)

Consider the function f (x) = |x − 1|p + (d − 1) |x|p. It is clearly strictly decreasing on
(−∞, 0], and since f (0) = 1 and f (−1) > 2, equation (4) has a unique negative solution
−µ, say, in the interval (−1, 0). Let λ be any other solution to (4). Then λ > 0 (there is
in fact a unique positive solution to (4), but we don’t need to show this), and we have to

show that ‖−µj − λj‖p > 21/p, i.e., λ + µ > (2/d)1/p. Since λ is a solution to (4), it follows

that 2 = (1 − λ)p + (d − 1)λp < 1 + dλp, hence λ > (1/d)1/p. It remains to show that
µ ≥ (21/p − 1)/d1/p. Suppose then that

µ <
21/p − 1

d1/p
. (5)
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Since x = −µ is a solution of (4),

2 = (1 + µ)p + (d − 1)µp

≤ (1 + µ)p − µp + (21/p − 1)p by (5),

hence

(1 + 21/p − 1)p − (21/p − 1)p ≤ (1 + µ)p − µp.

By Lemma 11, 21/p − 1 ≤ µ, which contradicts (5). �

Proposition 13. Let 1 < p < ∞, d ≥ 3, 0 < ε ≤ (d − 2)−1/(p−1), and R = (1 + p−1
2 ε)1/p.

Suppose that X = (Rd, ‖·‖) is given such that

‖x‖ ≤ ‖x‖p ≤ R‖x‖ for all x ∈ R
d.

Then X has a λ-equilateral set {p1, . . . , pd}, where λ = (2 + (d − 2)εp)1/p, such that p
(i)
i = 1 for

all i ∈ [d], −ε < p
(j)
i < 0 for all i, j ∈ [d] with j < i, and p

(j)
i = 0 for all i, j ∈ [d] with j > i.

Proof. Let R > 1 and β, γ > 0 be arbitrary (to be fixed later). For i ∈ [d] define pi : R
([d]2 ) → R

d

by setting for each n ∈ [d],

p
(n)
i (z) =







z{i,j} if n < i,

−γ if n = i,

0 if n > i.

That is,

pi(z) = (z{1,i}, . . . , z{i−1,i},−γ, 0, . . . , 0).

Let I = [0, β](
[d]
2 ) and define ϕ : I → I by

ϕ{i,j}(z) = 1 + z{i,j} − ‖pi(z)− pj(z)‖ for each {i, j} ∈

(
[d]

2

)

.

It is clear that ϕ is continuous. We next show that ϕ is well defined if R, β, and γ are

chosen appropriately. Let z ∈ I. Then 0 ≤ z{i,j} ≤ β for all {i, j} ∈ ([d]2 ). We first bound
‖pi(z)− pj(z)‖p. Without loss of generality, i < j. Then

‖pi(z)− pj(z)‖
p
p =

i−1

∑
k=1

∣
∣
∣z{k,i} − z{k,j}

∣
∣
∣

p
+
∣
∣
∣γ + z{i,j}

∣
∣
∣

p

+
j−1

∑
k=i+1

∣
∣
∣z{k,j}

∣
∣
∣

p
+ γp

≤ (i − 1)βp + (γ + z{i,j})p + (j − 1 − i)βp + γp

= (j − 2)βp + γp + (γ + z{i,j})p (6)

and

‖pi(z)− pj(z)‖
p
p ≥ γp + (γ + z{i,j})p. (7)

Thus

ϕ{i,j} ≥ 1 + z{i,j} −
(

(j − 2)βp + γp + (γ + z{i,j})p
)1/p

.
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Let f (x) = 1 + x − ((j − 2)βp + γp + (γ + x)p)1/p, 0 ≤ x ≤ β. Then

f ′(x) = 1 −
1

p
((j − 1)βp + γp + (γ + x)p)1/p p(γ + x)p−1

= 1 −

(
(j − 1)βp + γp + (γ + x)p

(γ + x)p

) 1
p−1

> 1 − 1 = 0 since
1

p
− 1 < 0.

It follows that f is strictly increasing, which gives that

ϕ{i,j} ≥ f
(

z{i,j}
)

≥ f (0) = 1 − ((j − 2)βp + 2γp)1/p

≥ 1 − ((d − 2)βp + 2γp)1/p .

If we require that
(d − 2)βp + 2γp = 1 (8)

then ϕ{i,j} ≥ 0 for all z ∈ I. Also,

ϕ{i,j}(z) ≤ 1 + z{i,j} −
1

R
‖pi(z)− pj(z)‖p

≤ 1 + z{i,j} −
1

R

(

γp + (γ + z{i,j})p
)1/p

.

Let g(x) = 1 + x − 1
R (γp + (γ + x)p)1/p, 0 ≤ x ≤ β. Then

g′(x) = 1 −
1

R
(γp + (γ + x)p)

1
p−1

p(γ + x)p−1

= 1 −
1

R

(
γp + (γ + x)p

(γ + x)p

) 1
p−1

> 1 −
1

R
> 0.

Therefore, g is strictly increasing, which gives that

ϕ{i,j}(z) ≤ g(z{i,j} ≤ g(β) = 1 + β −
1

R
(γp + (γ + β)p)1/p .

To derive ϕ{i,j}(z) ≤ β, it is sufficient to require that

γp + (γ + β)p ≥ Rp. (9)

If we can find β, γ > 0 and R > 1 such that (8) and (9) are satisfied, then ϕ is well defined,
and by Brouwer’s fixed point theorem ϕ has a fixed point, that is, for some z0 ∈ I, ϕ(z0) = z0,

which implies that {pi(z0) : i ∈ [d]} is 1-equilateral. Since p
(i)
i = p

(i)
i (z0) = −γ, we have to

divide each vector in this set by −γ. This means we have to set γ = 1/λ and β/γ = ε. We
can then rewrite (8) as

(d − 2)εp + 2 = λp

and (9) as
1 + (1 + ε)p

2 + (d − 2)εp
≥ Rp.

Now assume that ε ≤ (d − 2)−1/(p−1) and Rp = 1 + p−1
2 ε. Since p > 1, (1 + ε)p ≥ 1 + pε +

p
p−12ε2 for all ε ≥ 0, and it is thus sufficient to show that

2 + pε + p
p−12ε2

2 + (d − 2)εp
≥ 1 +

p − 1

2
ε.
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However,

2 + pε +
p

p − 1
2ε2 − (2 + (d − 2)εp)

(

1 +
p − 1

2
ε

)

= −(d − 2)εp + ε −
1

2
(d − 2)(p − 1)εp+1 +

p(p − 1)

2
ε2

=
(

1 − (d − 2)εp−1
)

ε +
1

2
(p − 1)

(

1 − (d − 2)εp−1
)

ε2 +
1

2
(p − 1)2ε2

> 0 since 1 − (d − 2)εp−1 ≥ 0 and p > 1.

We have shown that if we choose γ = 1/λ = (2 + (d − 2)εp)−1/p, β = εγ, and R =
(

1 + p−1
2 ε
)1/p

, then (8) and (9) are satisfied, which finishes the proof. �

Proof of Theorem 4. Suppose that the theorem is false. Then for some p ∈ (0, ∞) and d ≥ 3
and for all c > 1, there exists a d-dimensional X such that d(X, ℓd

p) < c and m(X) ≥ d + 2.

Choose a sequence Xn = (Rd, ‖·‖(n)) such that m(Xn) ≥ d + 2 and

‖x‖(n) ≤ ‖x‖p ≤

(

1 +
1

n

)1/p

‖x‖(n) for all x ∈ R
d.

If n is sufficiently large, in particular,

n >
2(d − 2)1/(p−1)

p − 1
,

and if we choose ε = 2
n(p−1)

, then 1
n = p−1

2 ε and ε < (d − 2)−1/(p−1), and we may apply

Proposition 13 to obtain an equilateral set {pi(n) : i ∈ [d]} in Xn such that p
(i)
i (n) = 1 for

all i ∈ [d] and −ε < p
(j)
i (n) ≤ 0 for all i, j ∈ [d], i 6= j. Since m(Xn) ≥ d + 2, there exist

points pd+1(n), pd+2(n) ∈ Xn such that {pi(n) : i ∈ [d + 2]} is equilateral. By passing to a
subsequence we may assume without loss of generality that pd+1(n) → p and pd+2(n) → q
as n → ∞. Since pi(n) → ei and d(‖·‖(n), ‖·‖p) → 0 as n → ∞, it follows that {e1, . . . , ed, p, q}

is equilateral in ℓd
p. However, in the proof of Proposition 12 we have shown this to be

impossible. �

6. Using Hadamard matrices

Before introducing the properties of Hadamard matrices that will be needed, we first do
a special case to illustrate the construction.

Lemma 14. Let 1 ≤ p ≤ 2. For each λ ∈ [21−1/p, 21/p] there exist unit vectors u, v ∈ ℓ2
p such that

‖u + v‖p = ‖u − v‖p = λ.

Proof. Let u = (α, β) and v = (−β, α) where α, β ≥ 0 and αp + βp = 1. Then ‖u ± v‖
p
p =

|α + β|p − |α − β|p, which ranges from 2 when α = 0 and β = 1, to 2p−1 when α = β =
21/p. �

Lemma 15 (Monotonicity lemma). Let u and v be linearly independent unit vectors in a strictly

convex 2-dimensional normed space. Let p 6= o be any point such that u is between 1
‖p‖ p and v on

the boundary of the unit ball. Then ‖p − u‖ < ‖p − v‖.

For a proof of the above lemma, see [5, Proposition 31]. For non-strictly convex norms
the above lemma still holds with a non-strict inequality. On the other hand, the following
corollary of the monotonicity lemma is false when the norm is not strictly convex, as easy
examples show.
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Lemma 16. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional
normed space. Suppose that x is such that ‖x − u‖ = ‖x + u‖ and ‖x − v‖ = ‖x + v‖. Then
x = o.

Proof. Without loss of generality, x = αu + βv with α, β ≥ 0. If x 6= o, then by Lemma 15,

‖x − v‖ < ‖x + u‖ = ‖x − u‖ < ‖x + v‖,

a contradiction. �

Proposition 17. Let X be any normed space, q ∈ [1, ∞), and 1 ≤ p <
log 5/2

log 2 . Then m(ℓ4
p ⊕q X) ≤

5. If p = log 5/2
log 2 , then m(ℓ4

p ⊕q X) ≤ 6.

Proof. Consider the following subset of ℓ4
p ⊕q X:

S = { ( 1, 1, 1, 0, o ),
( 1,−1,−1, 0, o ),
(−1, 1,−1, 0, o ),
(−1,−1, 1, 0, o ),
( 0, 0, 0, λ, o ) }.

By setting λ = (2p+1 − 3)1/p, S becomes a 21+1/p-equilateral set. We show that S is maximal
equilateral. Suppose that (α1, α2, α3, α4, x) has distance 21+1/p to each point in S.

Then (α1, α2, α3) has the same distance in ℓ3
p to the points

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

Then
‖(α1, α2)− (1, 1)‖p = ‖(α1, α2)− (−1,−1)‖p

and
‖(α1, α2)− (1,−1)‖p = ‖(α1, α2)− (−1, 1)‖p.

It follows (from Lemma 16 if p > 1) that (α1, α2) = (0, 0). Thus |α3 − 1| = |α3 + 1|, which
gives α3 = 0.

It follows that 3 + |α4|
p = |α4 − λ|p. By Lemma 11, the function f (x) = 3 + |x|p − |x − λ|p

is increasing (strictly increasing if p > 1). Since f (α4) = 0 and f (−λ) = 2p+1( 5
2 − 2p) ≥ 0

(> 0 if p = 1), it follows that α4 ≤ −λ. Then by assumption,

21+1/p = ‖(0, 0, 0, α4, x)− (1, 1, 1, 0, o)‖q

=
(

(3 + |α4|
p)q/p + ‖x‖q

)1/q

≥ (3 + λp)1/p = 21+1/p,

and equality holds throughout, which implies that p = log 5/2
log 2 , α4 = −λ and x = o. Therefore,

S is maximal equilateral unless p = log 5/2
log 2 , in which case S ∪ {(0, 0, 0,−λ, o)} is maximal

equilateral. �

An n × n matrix H is called a Hadamard matrix of order n if each entry equals ±1 and
HHT = nI. It is easy to see that if a Hadamard matrix of order n exists, then n = 1, n = 2 or
n is divisible by 4. It is conjectured that there exist Hadamard matrices of all orders divisible
by 4. This is known for all multiples of for 4 up to 664 [4]. The next lemma summarises the
only (well-known) results on the existence of Hadamard matrices that we will use.

Lemma 18. There exist Hadamard matrices of orders 1, 2, 4, 8, 12.
Let x ≥ 1. The interval (x, 2x) contains the order of some Hadamard matrix iff x /∈ {1, 2, 4}.
Let H(x) be the largest order n of a Hadamard matrix with n < x. Then limx→∞ H(x)/x = 1.
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Proof. Given Hadamard matrices H1 of order n1 and H2 of order n2, the Kronecker product
H1 ⊗ H2 will be a Hadamard matrix of order n1n2. Starting with the unique Hadamard
matrices of orders 2 and 12, we obtain Hadamard matrices of orders 2k and 12 · 2k, k ∈ N.
This is sufficient to cover every interval (x, 2x) except for (1, 2), (2, 4) and (4, 8).

The Paley construction gives a Hadamard matrix of order q+ 1 for any prime power q ∼= 3
(mod 4). The prime number theorem for arithmetic progressions states in particular that the
number of primes less than x that are congruent to 3 modulo 4 is (1 + o(1))x/(2 ln x). This
implies that the largest such prime less than x is ≥ (1 + o(1))x, which gives H(x)/x → 1 as
x → ∞. �

A Hadamard matrix is normalised if its first column are all +1s. If

H =








1 h1

1 h2
...

...
1 hn








is a normalised Hadamard matrix we say that {h1, . . . , hn} ⊂ R
n−1 is a Hadamard simplex.

Note that a Hadamard simplex is equilateral in ℓn−1
p for any value of p and lies on a sphere

with centre o. Note that the next lemma shows in particular that a Hadamard simplex cannot
lie on any other sphere of ℓn−1

p if p ∈ [1, ∞).

Lemma 19. Let h1, . . . , hn be a Hadamard simplex. Let X be a normed space and let u ∈ X. Suppose
that

x = (x1, . . . , xn−1) ∈ X ⊕p · · · ⊕p X
︸ ︷︷ ︸

n − 1 summands

has the same distance in the p-norm to each hi ⊗ u, i ∈ [n]. Then ‖xi − u‖ = ‖xi + u‖ for all i ∈ [n].

Proof. Let hi = [hi,1, hi,2, . . . , hi,n−1] for i ∈ [n]. We may assume without loss of generality that
h1 = [−1,−1, . . . ,−1]. Since x = (x1, x2, . . . , xn−1) is equidistant to all hi ⊗ u, there exists

D ≥ 0 such that ∑
n−1
j=1 ‖xj − hi,ju‖

p = Dp for each i ∈ [n]. Subtract the first of these equations

from the others to obtain the system







h2 − h1

h3 − h1
...

hn−1 − h1















‖x1 − u‖p − ‖x1 + u‖p

‖x2 − u‖p − ‖x2 + u‖p

...
‖xk−1 − u‖p − ‖xk−1 + u‖p







=








0
0
...
0








(10)

The Hadamard matrix H is invertible. If we subtract the first row from all the other rows,
the resulting matrix








1 o
0 h2 − h1

0
...

0 hn−1 − h1








is still invertible. It follows that (10) has the unique solution

‖xj − u‖p − ‖xj + u‖p = 0 for all j ∈ [n − 1].

�

Lemma 20. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional
normed space X. Let h1, . . . , hn be a Hadamard simplex. Suppose that

x = (x1, . . . , xn−1) ∈ X ⊕p · · · ⊕p X
︸ ︷︷ ︸

n − 1 summands
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has the same distance in the p-norm to each hi ⊗ u, i ∈ [n], and the same distance to each hi ⊗ v,
i ∈ [n]. Then x = o.

Proof. Combine Lemmas 16 and 19. �

Proposition 21. Let p ∈ (1, 2), q ∈ [1, ∞), and X any normed space. Let k1, k2 ∈ N be such that
there exist Hadamard matrices of orders k1 and k2 and such that

2 − 2p−1 ≤
1

k1
+

1

k2
< 4 − 2p, (11)

5

2
− 2p−1 − 21−p ≤ (1 − 21−p)

1

k1
+

1

k2
, (12)

5

2
− 2p−1 − 21−p ≤

1

k1
+ (1 − 21−p)

1

k2
, (13)

and if k1 = k2, then 2 − 2p−1
<

1

k1
+

1

k2
. (14)

Then m(ℓ
2(k1+k2−1)
p ⊕q X) ≤ 2(k1 + k2).

Proof. It is sufficient to construct an equilateral set S of cardinality 2(k1 + k2) in ℓ
2(k1+k2−1)
p

that does not lie on any sphere. Then S ⊕ {o} will be maximal equilateral in ℓ
2(k1+k2−1)
p ⊕q X

for any q ∈ [1, ∞).
Let α1, α2, λ1, λ2 ∈ R to be fixed later such that

α1, α2 ≥ 0 and 21−1/p ≤ λ1, λ2 ≤ 21/p. (15)

By Lemma 14 there exist u1, u2, v1, v2 ∈ ℓ2
p such that ‖ui ± vi‖p = λi, i = 1, 2. Consider the

following subset of ℓ
2(k1+k2−1)
p = R ⊕p ℓ

2(k1−1)
p ⊕p R ⊕p ℓ

2(k2−1)
p :

S−
1 = { (−α1 , k

−1/p
1 gi ⊗ u1 , 0 , o ) : i ∈ [k]} ,

S+
1 = { ( α1 , k

−1/p
1 gi ⊗ v1 , 0 , o ) : i ∈ [k]} ,

S−
2 = { ( 0 , o ,−α2 , hi ⊗ u2 ) : i ∈ [k]} ,

S+
2 = { ( 0 , o , α2 , hi ⊗ v2 ) : i ∈ [k]} .

We would like to choose α1, α2, λ1, λ2 so as to make S = S−
1 ∪ S+

1 ∪ S−
2 ∪ S+

2 equilateral and
non-spherical. Note that |S| = 2(k1 + k2).

The pth power of the distance between points

• in the same set S±
1 is k1

2
1
k1

2
p
p = 2p−1,

• in the same set S±
2 is k2

2
1
k2

2
p
p = 2p−1,

• in S−
1 and S+

1 is

(2α1)
p + (k1 − 1)

1

k1
‖u1 ± v1‖

p
p = (2α1)

p + (1 −
1

k1
)λ

p
1 ,

• in S−
2 and S+

2 is similarly (2α2)p + (1 − 1
k2
)λ

p
2 ,

• in S−
1 ∪ S+

1 and S−
2 ∪ S+

2 is

α
p
1 + α

p
2 +

k1 − 1

k1
+

k2 − 1

k2
= α

p
1 + α

p
2 + 2 −

(
1

k1
+

1

k2

)

.
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For S to be equilateral, we need

(2α1)
p +

(

1 −
1

k1

)

λ
p
1 = 2p−1, (2α2)

p +

(

1 −
1

k2

)

λ
p
2 = 2p−1 (16)

α
p
1 + α

p
2 + 2 −

(
1

k1
+

1

k2

)

= 2p−1. (17)

The set S will lie on some sphere iff some (β, x, γ, y) is equidistant to S. This implies that x is

equidistant to all k
−1/p
1 gi ⊗ u1 and also equidistant to all k

−1/p
1 gi ⊗ v1. By Lemma 20, x = o.

Similarly, y = o. Then |−α1 − β| = |α1 − β|, which gives β = 0. Similarly, γ = 0. Thus S can
only lie on a sphere with centre o. It follows that S lies on a sphere iff α1 = α2. Therefore,
for S not to lie on a sphere, we need

α1 6= α2. (18)

It turns out that the three simultaneous equations (16) and (17) have a solution in α1, α2, γ1, γ2

given the constraints (15) and (18), iff the hypotheses (11), (12), (13), (14) are satisfied. This
can be seen as follows. First use (16) to eliminate α1 and α2 from (16), (17) and (18), and set
x1 = λ

p
1 and x2 = λ

p
2 to obtain that the condition is equivalent to the existence of x1, x2 ∈ R

such that

2p−1 ≤ xi ≤ min

{

2, 2p−1

(

1 −
1

ki

)−1
}

, i = 1, 2 (19)

(

1 −
1

k1

)

x1 +

(

1 −
1

k2

)

x2 = 2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

(20)

x1 6= x2 (21)

This means that the line in the x1x2 plane described by (20) should intersect the axis-aligned
rectangle with bottom-left corner (2p−1, 2p−1) and top-right corner

(

min{2, 2p−1(1 −
1

k1
)−1}, min{2, 2p−1(1 −

1

k2
)−1}

)

,

and if this line intersects the rectangle in a single point (x1, x2) which is then necessar-
ily either the bottom-left or top-right corner, then x1 6= x2. Define the linear functional

f (x1, x2) =
(

1 − 1
k1

)

x1 +
(

1 − 1
k2

)

x2. That the line intersects the rectangle is equivalent to

f (2p−1, 2p−1) ≤ 2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

≤ min

{

f (2, 2), f
(

2, 2p−1(1 − 1
k2
)−1
)

, f
(

2p−1(1 − 1
k1
)−1, 2

)

,

f
(

2p−1(1 − 1
k1
)−1, 2p−1(1 − 1

k2
)−1
)}

,

which is easily seen to be equivalent to (11) (with weak right-hand side inequality), (12), (13).
If there is only solution (x1, x2) to (19), (20), and it fails to satisfy (21), it follows that x1 = x2

and (x1, x2) is either the bottom-left corner or the top-right corner of the rectangle. In the

first case, x1 = x2 = 2p−1, and f (2p−1, 2p−1) = 2p
(

3 − 2p−1 −
(

1
k1
+ 1

k2

))

, which implies
1
k1
+ 1

k2
= 4 − 2p, contrary to assumption. In the second case, one of the following four

possibilities occurs:

First:

2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

= f (2, 2) (22)
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and

2 ≤ 2p−1

(

1 −
1

k1

)−1

, 2p−1

(

1 −
1

k2

)−1

. (23)

The equation (22) implies that 2 − 2p−1 = 1
k1
+ 1

k2
. Then (23) implies that 1 − 2p−2 ≤ 1

k1
, 1

k2
,

which shows that equality has to hold in both inequalities of (23), hence k1 = k2, contrary to
assumption.

Second:

2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

= f

(

2, 2p−1

(

1 −
1

k2

)−1
)

,

2 ≤ 2p−1

(

1 −
1

k1

)−1

, 2p−1

(

1 −
1

k2

)−1

≤ 2,

x1 = 2 and x2 = 2p−1

(

1 −
1

k2

)−1

.

Again equality holds in both inequalities of (6), which again gives that 2 − 2p−1 = 1
k1
+ 1

k2

and k1 = k2, contrary to assumption.

Third:

2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

= f

(

2p−1

(

1 −
1

k1

)−1

, 2

)

,

2p−1

(

1 −
1

k1

)−1

≤ 2 ≤ 2p−1

(

1 −
1

k2

)−1

,

x1 = 2p−1

(

1 −
1

k1

)−1

and x2 = 2.

This gives a contradiction as before.

Fourth:

2p

(

3 − 2p−1 −

(
1

k1
+

1

k2

))

= f

(

2p−1

(

1 −
1

k1

)−1

, 2p−1

(

1 −
1

k2

)−1
)

,

2p−1

(

1 −
1

k1

)−1

, 2p−1

(

1 −
1

k2

)−1

≤ 2,

x1 = 2p−1

(

1 −
1

k1

)−1

and x2 = 2p−1

(

1 −
1

k2

)−1

.

This gives a contradiction as before. �

Proof of Theorem 5. The last column of Table 1 indicates how each line in that table is obtained:

Proposition 17 covers the case 1 ≤ p <
log 5/2

log 2 , and in the remaining cases Proposition 21 is

applied with Hadamard matrices of various orders k1 and k2. To derive the asymptotic upper
bound of O(1/(4 − 2p)) as p → ∞, we may assume without loss of generality that p is close
to 2. Let k1 = k2 = k be the largest order of a Hadamard matrix with k < 4− 2p. This ensures
that 2/k < 4 − 2p. By Lemma 18 there is a Hadamard matrix of some order in the interval
(2/(4 − 2p), 4/(4 − 2p) if p is sufficiently large. It follows by maximality that 2/(4 − 2p) < k,
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giving that (11) and (14) are satisfied. The equivalent conditions (12) and (13) are equivalent
to k ≤ 4/(4 − 2p), so they are also satisfied. Proposition 21 gives the upper bound

2(k1 + k2) = 4k ∼
8

4 − 2p
∼

2

(2 − p) ln 2
. �
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3. B. V. Dekster, Simplexes with prescribed edge lengths in Minkowski and Banach spaces, Acta Math. Hungar. 86

(2000), no. 4, 343–358.
4. H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Des. 13 (2005), 435–440.
5. H. Martini, K J. Swanepoel, and G. Weiß, The geometry of Minkowski spaces—a survey. I, Expo. Math. 19 (2001),

no. 2, 97–142.
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