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Summary. This paper gives a general method for constructing quasi-Latin square, quasi-Latin12

rectangle and extended quasi-Latin rectangle designs for symmetric factorial experiments. Two13

further methods are given for parameter values satisfying certain conditions. Designs are14

constructed for a range of numbers of rows and columns so that the different construction15

techniques are illustrated. For some row and column combinations, different designs are com-16

pared, including designs constructed using computer search algorithms. The construction of17

designs with rows and columns that are nested or contiguous is also discussed.18
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1. Introduction20

The motivation for the work reported here comes from the need for designs for glasshouse21

experiments that involved several treatment factors (Tran, 2009), but is also applicable to22

experiments in other plant houses, such as in greenhouses, shade houses and polytunnels.23

In one experiment described by Tran (2009), a design was required for an experiment to24

investigate the effects of five treatment factors on the growth of species of Australian native25

plants that potentially could be used in the remediation of sites in the rail corridor either26
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side of railway tracks. Three factors, each at two levels, were whether or not a nurse crop27

was used, whether or not gypsum was added to the soil and whether or not mycorrhizal fungi28

were added to the soil. The resulting eight treatments were to be applied to main plots that29

were arranged in a 4×10 rectangle. It was thought that there would be interactions between30

the factors and so it was important that the design gave good estimates of all interactions.31

The other two factors were to be applied to subplots and are not considered in this paper.32

A design for the main plot treatments is required and, as plots are arranged in a rectangle,33

designs such as the quasi-Latin square designs cannot be employed. Originally, Design 2 in34

Section 7.3 was obtained using CycDesigN 2.0 (Whitaker et al., 2002) to be used for the35

experiment, but the same design is produced using CycDesigN 4.0 (CycSoftware Ltd, 2009)36

with default settings. The confounding in this design was derived by inspection. Design 337

in Section 7.3 was then constructed by choosing suitable sets of confounding characters,38

after which a version of the algorithm in Section 4 was used. Before the experiment was39

run, the researchers decided to reduce the number of replicates of the 8 treatments from 540

to 3 and so Design 3 in Section 7.2 for a 4× 6 rectangle was produced. It was employed in41

the experiment. The other designs in Sections 7.2 and 7.3 were constructed subsequently.42

Usually glasshouses are carefully aligned on North/South and East/West axes as in43

Edmondson (1989) and Williams and John (1996) and this is the case for the glasshouse44

experiments described in Tran (2009). It is usually anticipated that, in glasshouse exper-45

iments, there will be trends along both axes and so designs with rows and columns have46

long been recommended for these experiments. Youden (1940) recommended the use of47

Latin and Youden squares and Cochran and Cox (1957, Section 4.3.1) recommended Latin48

square designs for experiments involving a single treatment factor. Edmondson (1989) used49

a Graeco-Latin square in a split plot design. Williams and John (1996) used factorial50

designs with rows and columns in designing glasshouse experiments and Williams et al.51

(2002, Section 7.5.1) advocated the use of designs with rows and columns for glasshouse52

experiments.53

Tran (2009) reports a review of 20 ecological journals over the period from 1980 to54

2006. The review focussed on articles concerning experiments in glasshouses or greenhouses55

on native plants that grow in temperate and semi-arid climates like Australia. In total,56

59 experiments were reported, of which 43 involved factorial treatments. Only one of the57

59 experiments stated that a design with rows and columns was used and this utilized a58

strip-plot design. This somewhat surprised us because our experience, and that of other59

statisticians, is that designs with rows and columns are often used. While this disparity60

might indicate that the designs being employed are not always correctly reported, it could61

also mean that a large proportion of ecological experiments are being designed by researchers62

themselves and that they do not use designs with rows and columns. Hence, while the63

evidence is not conclusive, it does seem that there is under-utilization of designs with rows64
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and columns. Of course, they will not always be appropriate. However, to ensure they will65

be used whenever appropriate, every obstacle to their use needs to be removed. In this66

paper we facilitate the design of experiments for situations in which the number of rows67

does not equal the number of columns by extending the range of designs that can be readily68

constructed for this case.69

Natural contenders for designs with rows and columns for factorial experiments are quasi-70

Latin designs. These designs were introduced by Yates (1937) for factorial experiments in71

which, like a Latin square, the treatments are to be applied to units arranged in an equal72

number of rows and columns. However, unlike Latin squares, the treatments are arranged73

such that no treatment occurs more than once in a row or a column and not all treatments74

occur in any row or column. A quasi-Latin square design may consist of one or more quasi-75

Latin squares and each quasi-Latin square contains one or more complete sets of treatments76

(Rao, 1946; Cochran and Cox, 1957). If there is more than one quasi-Latin square, the design77

is usually treated as a nested row-column design that is α-resolved (Shah, 1978), where α78

is the number of complete sets of treatments per square.79

Quasi-Latin square designs extend the factorial designs that have treatment effects con-80

founded with blocks to those that allow for two-way elimination of heterogeneity. They81

require the (partial) confounding of interactions with rows and columns within squares.82

Treatments must be equally replicated and the number of replicates is restricted. For ex-83

ample, consider a 23 factorial experiment. The eight treatments can be arranged in one or84

more 4× 4 squares: the number of replicates for treatments must be a multiple of 2. We do85

not consider designs like that given by Cochran and Cox (1957, Plan 8.1b) to be quasi-Latin86

squares as they consist of Latin squares for subsets of the treatments; they do not fit into87

the class considered by Rao (1946) because the squares do not contain complete replicates88

and do not have treatment effects confounded within squares.89

However, as has already been suggested, not all experiments in practice satisfy the90

restrictions placed on the number of replicates for a quasi-Latin square design and this was91

the case for experiments considered in Tran (2009). To provide more flexible designs we92

look to Latin rectangle designs. Adapting Preece (2006), Latin rectangles are defined to93

have k rows and ℓ columns for v treatments with k ̸= ℓ, k ≤ v and ℓ ≤ v. This differs94

from Preece (2006) in not insisting that k < ℓ, although we will usually present designs95

so that this is true. Youden square designs, for which ℓ = v, are Latin rectangles and are96

constructed from balanced incomplete block designs, with columns corresponding to blocks.97

Healy (1951) describes Latin rectangle designs for 2k factorial experiments on a rectangle98

of 4 × 8 units. However, we refer to the subset of Latin rectangles in which a factorial set99

of treatments is assigned to a rectangle as quasi-Latin rectangles, because of their similarity100

to quasi-Latin squares. They retain the property of having no treatment repeated in any101

row or column. Then, a quasi-Latin rectangle design consists of one or more quasi-Latin102
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rectangles, and may contain more than one complete replicate of the treatments. Thus, the103

designs given by Healy (1951) are described as quasi-Latin rectangle designs that assign 23,104

24 or 25 factorial treatments to a single 4× 8 rectangle. In addition, we consider extended105

quasi-Latin rectangles for which k ̸= ℓ and at least one of k and ℓ exceeds v, so that either106

rows or columns or both contain some treatments more than once.107

We begin in Section 2 by giving notation and some definitions, while Section 3 outlines108

some general principles that apply in designing experiments with rows and columns. In Sec-109

tion 4, a general method for the construction of row-column designs for symmetric factorial110

experiments is described and this is illustrated for a range of combinations of numbers of111

rows and columns in Section 5. Section 6 gives two further methods for parameter values112

satisfying certain conditions and Section 7 discusses the construction of row-column designs113

using the different methods and compares the designs obtained. The examples are only114

representative of the designs that can be constructed using the methods. The only type115

of design considered up to this point is row-column designs, the construction of designs116

with multiple squares or rectangles and choosing between these different types of design117

being deferred until Section 8. Some general aspects of quasi-Latin designs are discussed in118

Section 9.119

2. Notation and some definitions120

We consider designs in which there are s squares or rectangles each with k rows by ℓ columns,121

for s ≥ 1 and k, ℓ ≥ 2. These squares and rectangles will be called whole frames. There are122

a total of v treatments, each with r replicates in each whole frame, and these treatments123

are the combinations of m factors each with p levels, where p divides both k and ℓ. Hence124

v = pm and vr = kℓ. Any subrectangle or subsquare of v units which contains one complete125

set of treatments will be called a grid. A single whole frame often contains grids of different126

shapes. The experimental unit, to which a single treatment is to be applied, is referred to127

simply as a unit. There are skℓ units in total. We assume that p is prime. This is not128

necessarily restrictive because, for a factor whose number of levels is a power of a prime, it129

is possible to substitute a combination of pseudofactors all of whose numbers of levels are130

equal to that prime.131

Our construction methods use characters (Bailey, 2008, Section 12.2). Each level of132

a p-level factor is coded with the integers 0, 1, . . . , p − 1. Each treatment combination133

of m factors can be written as an m-tuple of these levels. A character specifies a linear134

combination of factors that can be evaluated for each treatment combination; the coefficients135

are integers modulo p, as is the evaluation. For example, for the 3-level factors A and B,136

the levels are coded 0, 1 and 2 and one of their nine treatment combinations is (2, 1). One137

character is A+ 2B and, for (2, 1), it evaluates to 1× 2 + 2× 1 = 2 + 2 = 1.138
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For sources we use the notation of Brien et al. (2011). In particular, A#B denotes the139

interaction of factors A and B, R [Q] denotes the nested effects of factor R within the levels140

of factor Q, and R [P ∧Q] denotes the nested effects of R within the combinations of the141

levels of factors P and Q. For most designs in this paper, the only factors indexing the units142

before treatments are allocated are Rows and Columns, which are crossed. Hence, the unit143

sources are Rows, Columns and Rows#Columns.144

3. Some principles in designing experiments with rows and columns145

Firstly, as will be seen in this paper, often there are competing designs with different146

properties for fixed basic design parameters, such as the numbers of treatments, replicates,147

rows and columns. They may differ in the unit sources that are taken into account in the148

design and the manner in which the different treatment sources are confounded with the unit149

sources. Hence, choosing between designs depends on the expected sources of variability150

and potential treatment effects. With regard to the potential treatment effects, the issue is151

usually about which interactions, if any, need to be allowed for. If the designer decides that152

certain interactions are likely, then in view of the likely smaller size of interactions (Yates,153

1937), it is especially important to maximize the amount of information about them which154

is confounded with the smallest source of variability. Consequently, our objective is not to155

obtain the “best design” for a given set of factorial treatments and of units, but to give156

several designs each of which is applicable in different situations.157

Quasi-Latin designs are resolvable so that there is the option of developing a design158

that is (i) a row-column design with a single whole frame, (ii) a nested design being an159

α-resolved design consisting of s whole frames within which rows and columns are nested,160

or (iii) a contiguous design, which is like a nested design except that the contiguity between161

frames is acknowledged, so that treatments may be latinized to rows or columns (Williams,162

1986). The value of α depends on the choice of s. Latinizing the treatments means that163

they are replicated as equally as possible in the direction being latinized. The three types164

of design that have been described differ in the sources of unit variability for which they165

allow. Hence, they have different unit structures and so different randomizations. A unit166

structure for an experiment is the decomposition of its data vector according to unit sources167

only, all treatment sources being disregarded.168

A row-column design anticipates differences between rows and between columns. In this169

case, the factors indexing the units are Rows and Columns and these are crossed, as in, say,170

the design in Section 5.1. The randomization that applies is that rows and columns are171

permuted independently.172

A nested design is appropriate when (i) there is a set of frames among which differences173

are anticipated and (ii) differences are also anticipated between rows and columns within174
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each frame, these not being consistent across frames. Its factors are Frames, Rows and175

Columns, with Rows and Columns nested within Frames, as in Design 1 in Section 8.1,176

where the word Squares is used for Frames. For the randomization of a nested design,177

frames are permuted, as are rows and columns within each frame.178

A contiguous design, like a nested design, has frames. It is utilized when, in addi-179

tion to the unit variability for the nested design, consistent differences between rows, for180

horizontally-aligned frames, and columns, for vertically-aligned frames, are expected across181

frames. To account for these consistent differences, the treatments are latinized across182

frames to rows or columns or rows and columns, depending on the contiguity of the design.183

For designs in which either rows or columns are contiguous, the factors are Frames, Rows184

and Columns. If rows are contiguous, because consistent difference between rows across185

frames are expected, then Rows are crossed with Frames and Columns, and Columns are186

nested within Frames. An example is Design 3 in Section 8.1, where the word Squares187

is used for Frames. Randomization involves the permutation of frames, of rows, and of188

columns within frames.189

Yates (1937) originally stressed that all rows and all columns should be randomized,190

because he was concerned to ensure that the Latin square analysis would be unbiased.191

However, the other randomizations can be applied, provided the appropriate analysis is192

then employed. The choice between the three options should be based on the expected unit193

sources of variability, rather than on the availability of a resolvable design. Will there be194

differences between frames? Will rows or columns differ consistently across frames? If it is195

likely that there are differences between frames and a row-column design is used, then either196

the differences between frames may obscure differences between treatments or, depending197

on the outcome of the randomization, the Residual mean square will give an overestimate198

of the variance of treatment effects. Similarly, if a nested design is used when a contiguous199

one is needed, then consistent differences between rows across frames will inflate either the200

Residual mean square for Rows within Frames or the apparent size of treatment effects201

confounded with Rows within Frames. On the other hand, if such differences are not202

appreciable, there is a penalty in employing a nested or contiguous design in that they are203

often less efficient than a good row-column design. Especially, for smaller designs, the loss204

in efficiency may outweigh any advantage of a nested or contiguous design.205

Some authors advocate the use of a nested design, or, if frames are contiguous, a con-206

tiguous design in which treatments are latinized, whenever feasible and suggest that terms207

for the extra required sources of variation be omitted if a preliminary data analysis indi-208

cates that they are minor sources. This amounts to a “sometimes-pool” strategy. Janky209

(2000), in reviewing this topic, concluded that this strategy should not be used routinely as210

it generally inflates the probability of Type I errors and offers, at best, insubstantial gains211

in power. In a similar vein, Gilmour and Goos (2009) warn of the dangers that arise from212
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omitting variance components that happen to have zero estimates and are based on small213

degrees of freedom. Our conclusion is that the designer should select a design appropriate214

for the anticipated sources of variation and use the analysis appropriate for the chosen de-215

sign. This supports our objective of having a range of designs for a specific set of design216

parameters.217

In considering the confounding of factorial treatment sources with unit sources, the218

canonical efficiency factor will be used because it reflects the amount of information about219

a treatment source, adjusted for previously fitted treatment sources, that is (partially) con-220

founded with a particular unit source (John and Williams, 1995, Section 2.3). One property221

that distinguishes between designs is whether or not they are structure balanced (Brien and222

Bailey, 2009). This obtains when, for all treatment sources (partially) confounded with a223

particular unit source, (i) each treatment source has a single canonical efficiency factor and224

(ii) treatment sources remain orthogonal when estimated from that unit source. Condi-225

tion (i) is met for all 2m factorial experiments. Condition (ii) means that the experiment226

has orthogonal factorial structure (Bailey, 1985). The advantage of factorial experiments227

having structure balance is that the estimates of various factorial effects are independent.228

It is desirable that, if at all possible, a structure-balanced design is used, even if it means229

sacrificing some efficiency on particular treatment effects. A structure-balanced design has230

a much simpler analysis, and conclusions are more straightforward than for designs that231

are not structure balanced. Also, the amount of treatment information available from unit232

sources is maximized for structure-balanced experiments, the amount of information avail-233

able about treatments from a unit source being the weighted sum of the degrees of freedom234

of treatment sources confounded with it, the weights being the efficiency factors.235

We have obtained designs in two distinctly different ways: (i) choosing which treatment236

effects to confound with rows and columns and constructing the designs using the methods237

introduced in Sections 4 and 6, and (ii) using a package for the computer generation of238

designs based on an interchange algorithm, in our case CycDesigN (CycSoftware Ltd, 2009).239

The first gives the designer greater control over the design by providing the tools for choosing240

how to spread the information about the treatment effects across the different sources of241

variability, that is, deciding what to confound a treatment effect with and the amount of242

information that will be associated with more variable unit sources.243

On the other hand, software, such as CycDesigN, has the advantage of giving an auto-244

mated procedure, which requires little more than input of the design parameters. CycDesigN245

4.0 (CycSoftware Ltd, 2009), optimizes the overall weighted efficiency of a design. A further246

significant advantage of such programs is that they can produce designs for a wider range247

of design parameters than the construction methods we outline. With CycDesigN, some248

control over the properties of the design produced is afforded by varying the weighting of249

(i) treatment main effects relative to two-factor treatment interactions and (ii) the row,250
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column and row-column components of a resolved design relative to each other. For (i), the251

weighted efficiency is the weighted linear combination of the average efficiency factors of252

the treatment main effects and of the treatment two-factor interactions (CycSoftware Ltd,253

2009, Section 9.3). Hence, it is not possible to specify the properties of single main effects254

or two-factor interactions or anything about the higher order interactions. Also, CycDesigN255

generates only 1-resolved designs.256

It is our contention that, in spite of the availability of software like CycDesigN, con-257

struction methods of the type outlined in this paper are useful because they permit more258

direct control of the design process and can lead to designs that are better suited to some259

particular situations than those produced by such software. Further, they often have nice260

properties and provide a point of comparison for computer-generated designs. The methods261

of construction will be useful to any designer who does not have access to software like Cyc-262

DesigN, provided the experimental conditions correspond to the parameter combinations263

available with the methods. In comparing constructed and computer-generated designs, we264

generally compare the canonical efficiency factors of the two designs. However, even if the265

canonical efficiency factors are the same, the designs themselves may not be isomorphic in266

that it is not possible to obtain one by permuting the other in ways that are allowable for267

its unit structure.268

4. A method for the construction of row-column designs for symmetric factorial269

experiments270

In this section we present Method 1 for constructing whole frames of shape k × ℓ. We271

assume that v = pm, that v divides kℓ, that k and ℓ are both divisible by p. The replication272

is r, where r = kℓ/v. The method produces quasi-Latin squares and rectangles, extended273

quasi-Latin rectangles and Latin squares. It involves dividing a whole frame into several274

types of frames as illustrated in Figure 1 and consists of the steps below. The crux of the275

method is to form what we term box frames, whose dimensions are powers of p such that276

each contains one or more complete replicates of the treatments. Then sets of characters277

can be confounded with sets of rows and sets of columns in each box frame.278

Step 1 Divide up the whole frame: Having ascertained the values of p, m, k, ℓ and279

r, determine values of t and u so that we can write k = ptr1 and ℓ = pur2, where280

1 ≤ t ≤ m, 1 ≤ u ≤ m, t + u ≥ m. That is, we factorize both k and ℓ as a product281

of two integers, of which the first is p raised to a non-zero power. The condition282

t+ u ≥ m means that the product of the powers of p must be divisible by v. Select t283

and u as follows:284

(a) If v divides k, then take t = m and r1 = k/v; if k is a power of p smaller than v285
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Fig. 1. Division of the whole frame for Method 1: the whole frame is divided into r1 row super-frames
and r2 column super-frames whose intersections form box frames of shape pt × pu; each row super-
frame is divided into r3 row frames and each column super-frame is divided into r3 column frames;
their intersections form subframes of shape c× d.

or r is not divisible by p, then pt is the largest power of p dividing k; otherwise286

there is some choice in the value of t.287

(b) If v divides ℓ, then take u = m and r2 = ℓ/v; if ℓ is a power of p smaller than v288

or r is not divisible by p, then pu is the largest power of p dividing ℓ; otherwise289

there is some choice in the value of u.290

Note that if k < v, ℓ < v and r is a power of p, then r1 = r2 = 1.291

Now divide the whole frame into r1 row super-frames of pt whole rows and r2 column292

super-frames of pu whole columns. The intersection of a row super-frame and a column293

super-frame forms a box frame of shape pt × pu. Of course, if r1 = r2 = 1, then the294

super-frames and box frames are all the same as the whole frame.295

To set up row and column frames, calculate c = pm−u, d = pm−t and r3 = pt+u−m.296

Then r = r1r2r3. Divide each row super-frame into r3 row frames of shape c× ℓ and297

each column super-frame into r3 column frames of shape k × d. The intersection of a298

row frame and a column frame forms a subframe of shape c × d and each box frame299

contains an r3 × r3 array of these subframes. Also, each box frame contains r3 grids300

of shape pt × d, as well as r3 of shape c× pu.301



10 Brien et al.

Step 2 Specify the row design: Each row frame consists of r2 grids of shape c× pu. If302

u = m then c = 1. In this case, each 1× pu grid contains a complete replicate of the303

treatments and there is no need to further consider the row design. If c > 1, then304

select r1r3 sets of characters, one set per row frame, so that each set specifies (c− 1)305

treatment degrees of freedom to confound with c rows. The characters specifying one306

lot of (c − 1) treatment degrees of freedom must be closed under the formation of307

sums (modulo p). We shall call these row characters. Each set divides the treatments308

into c groups of size pu. If r2 = 1 then the groups in each row frame are completely309

confounded with rows. If r2 > 1 then each row frame needs a c × r2 row-column310

design ∆1 for c treatments as an auxiliary design, where these treatments correspond311

to the c groups of treatments defined by the set of row characters for this row frame.312

In design ∆1, the columns are complete and the row design should be as efficient as313

possible.314

Step 3 Specify the column design: Similarly, each column frame consists of r1 grids of315

shape pt × d. If t = m then d = 1. In this case, each pt × 1 grid contains a complete316

replicate of the treatments and there is no need to further consider the column design.317

If d > 1, then select r2r3 sets of characters, each specifying d− 1 degrees of freedom318

and dividing the treatments into d groups of size pt. We shall call these column319

characters. If r1 > 1 then each column frame needs a r1 × d auxiliary design ∆2 for320

d treatments.321

Step 4 Ensure a unique treatment for each unit: In each box frame, the treatments322

in each 1 × pu subrectangle are specified: if u = m, this subrectangle contains a323

complete set of treatments; otherwise they are specified by the row characters and,324

if r2 > 1, the auxiliary design ∆1. Similarly, if t = m, then each pt × 1 subrectan-325

gle contains a complete set of treatments; otherwise the treatments it contains are326

specified by the column characters and, if r1 > 1, the auxiliary design ∆2. If r3 = 1,327

this uniquely determines the treatment on each unit. Otherwise, for each box frame,328

choose a set of characters which divide the treatments into r3 groups of size cd. We329

shall call these unit characters. The groups are assigned to the r3 × r3 array of sub-330

frames of shape c× d by a using a r3 × r3 Latin square ∆3 as third auxiliary design.331

For each box frame, the sets of characters of whichever of the three different types332

(row, column and unit) are needed must satisfy the following condition:333

any nonempty collection of characters, all of different types, must be linearly

independent modulo p.

(1)

If t = u = m, then c = d = 1 and r3 = pm so that no row and column characters334

are required and there is no need to specify unit characters. All that is needed is ∆3,335
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which is a pm × pm Latin square. The whole design is an r1 × r2 array of such Latin336

squares.337

In general, for each set of c rows, one has to specify either (i) c characters, including 0,338

closed under addition, or (ii) m− u linearly independent characters, or (iii) (c− 1)/(p− 1)339

characters none of which is a multiple of any other. Similarly, for each set of d columns,340

one has to specify either (i) d characters, including 0, closed under addition, or (ii) m − t341

linearly independent characters, or (iii) (d−1)/(p−1) characters none of which is a multiple342

of any other. A set of characters to be confounded with c rows (d columns) can be repeated343

amongst the r1r3 (r2r3) sets of row (column) characters. If the sets of one type are not all344

the same, this results in partial confounding.345

If r is divisible by p but is not a power of p then there is some choice in the values of346

u and t. Different choices may lead to designs with different properties. If t+ u = m then347

r3 = 1 and there is no need for unit characters, so Condition (1) is easier to satisfy. On348

the other hand, there is more freedom of choice for the row characters when c is smaller,349

and more freedom of choice for the column characters when d is smaller. The availability of350

good c× r2 and r1 × d row-column designs for the possible values of c, d, r1 and r2 is also351

an issue. When u is larger then c and r2 are smaller so the former are easier to find, but352

there may be more choice when c and r2 are larger. For designs of practical size, it seems353

unlikely that all three of r1, r2 and r3 will be bigger than one.354

With k = ℓ and r1 = r2 = 1, the method is equivalent to that of Rao (1946) for355

constructing quasi-Latin square designs. That is, our method generalizes that of Rao (1946)356

in two ways. The first simply allows t ̸= u when r1 = r2 = 1. The second allows one or357

both of r1 and r2 to be bigger than one: in either case, another auxiliary design is needed.358

5. Examples of quasi-Latin squares and rectangles with dimensions less than the359

number of treatments360

5.1. A 23 factorial in a 4× 4 square361

For p = 2, m = 3, k = ℓ = 4 and r = 2, both k and ℓ are powers of p and the only possible362

quasi-Latin square is for t = u = 2 and r1 = r2 = 1. Thence, c = d = 2 and r3 = 2. Hence,363

we can ignore super-frames and take the box frame to be the whole frame. The square is364

subdivided into two row frames of shape 2× 4 and two column frames of shape 4× 2. The365

whole (box) frame is a 2× 2 array of subframes, each of which is 2× 2.366

Construction of the design requires two row characters and two column characters, as367

well as a unit character; the unit character splits the 8 treatments into 2 groups of 4 and368

the groups are assigned using, as an auxiliary design ∆3, a 2× 2 Latin square.369

Let U and V be the row characters, W and X be the column characters and Y be the370

unit character. They can be any five characters with the property that none of U + W ,371
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Table 1. Quasi-Latin square for a 23 factorial ex-
periment in 4 rows × 4 columns

A+B A+ C

= 0 = 1 = 0 = 1

B + C = 0 1, 1, 1 1, 0, 0 0, 0, 0 0, 1, 1

B + C = 1 1, 1, 0 1, 0, 1 0, 1, 0 0, 0, 1

A+B + C = 0 0, 0, 0 0, 1, 1 1, 0, 1 1, 1, 0

A+B + C = 1 0, 0, 1 0, 1, 0 1, 1, 1 1, 0, 0

Table 2. Canonical efficiency factors and Residual degrees of freedom (DF) for a
23 factorial experiment in 4 rows × 4 columns

Treatment sources Residual

Unit sources A B C A#B A#C B#C A#B#C DF

Rows 0 0 0 0 0 1
2

1
2

1

Columns 0 0 0 1
2

1
2

0 0 1

Rows#Columns 1 1 1 1
2

1
2

1
2

1
2

2

U + X, V + W and V + X is equal to Y or to 0. The four rows are defined by U = 0,372

U = 1, V = 0 and V = 1, respectively, and the four columns by W = 0, W = 1, X = 0 and373

X = 1, respectively. These restrictions are not enough to define the entries uniquely, so we374

put Y = 1 on the top left-hand and the bottom right-hand subsquares, and put Y = 0 on375

the other two subsquares. In the top left-hand corner, the four combinations of levels of376

U and W , together with the constraint Y = 1, define the treatments uniquely, giving all377

four treatments with Y = 1. Similarly, in the top right-hand corner, the four combinations378

of levels of U and X, together with the constraint Y = 0, define the treatments uniquely,379

giving the remaining four treatments. Hence the first two rows form a complete replicate. In380

a similar manner, the treatment on each unit is defined uniquely, and the first two columns381

form a complete replicate, as do the last two rows and also the last two columns.382

This construction results in U and V each losing half their information to rows, if U ≠ V ,383

while W and X each lose half their information to columns, if W ̸= X. The character Y is384

necessary for the construction, but it remains orthogonal to both rows and columns.385

For example, if we want full information on all main effects then we can put U = B+C,386

V = A + B + C, W = A + B, X = A + C and Y = A. This gives the design in Table 1.387

Up to relabelling of the factors, it is the same as Square II in Cochran and Cox (1957,388

Table 8.1). The canonical efficiency factors and Residual degrees of freedom for the design389

are in Table 2. Clearly, the design has too few Residual degrees of freedom to be of practical390

use.391

To increase the Residual degrees of freedom, two squares (s = 2) are usually proposed392

for a 23 factorial. Cochran and Cox (1957) give such a plan, which will be compared with393
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other designs using two squares in Section 8.1. However, there is another possibility that394

applies when the rows (or columns) of the two squares are contiguous. Namely, construct395

a single 4× 8 rectangle, as is done in Section 7.1.396

5.2. A 25 factorial in an 8× 8 square397

Here p = 2, m = 5, k = ℓ = 8 and r = 2 and so both k and ℓ are powers of p. Hence,398

the only possible quasi-Latin square is for t = u = 3 and r1 = r2 = 1 so that c = d = 4399

and r3 = 2. Again, super-frames are superfluous. The row frames are 4 × 8 and col-400

umn frames are 8 × 4 and there are two of each. To construct the design two sets of401

three row characters are needed and two sets of three column characters. Plan 8.3 in402

Cochran and Cox (1957) uses the two sets {A+B + C, A+D + E, B + C +D + E} and403

{A+B +D, B + C + E, A+ C +D + E} for row characters and the two sets404

{A+ C + E, B + C +D, A+B +D + E} and {A+ C +D, B +D + E, A+B + C + E}405

for column characters. Each set of characters is closed under addition (modulo 2). The box406

frame for this design is of shape 8 × 8 or the whole frame. As r3 = 2, the whole frame407

consists of a 2× 2 array of subframes of shape 4× 4 and a unit character is required. The408

unit character chosen is A+B+C +D and a 2× 2 Latin square is used to assign its levels409

to the subframes.410

In Section 8.2, nested and contiguous designs, based on two 4× 8 grids, are explored as411

alternatives to the above design.412

5.3. A 33 factorial experiment in a 9× 12 rectangle413

In this case p = 3, m = 3, k = 9, ℓ = 12 and r = 4 so that k is a power of p and r is not414

divisible by p. Thus, t = 2 and u = 1. We have c = 9, d = 3 and r3 = 1. The numbers of415

row and column super-frames are r1 = 1 and r2 = 4. Then there is one row frame, the same416

as the row super-frame and the whole frame; each column super-frame is also a column417

frame and a box frame, and consists of a 9× 3 grid.418

Row characters specifying 8 degrees of freedom and four column characters, each spec-419

ifying 2 degrees of freedom, are required. An auxiliary design ∆1, for assigning the nine420

groups defined by the row characters, is needed and this will be a 9× 4 row-column design421

for 9 treatments. A suitable design has the following rows: (5, 6, 8, 9), (9, 4, 6, 7), (7, 8, 4, 5),422

(8, 9, 2, 3), (3, 7, 9, 1), (1, 2, 7, 8), (2, 3, 5, 6), (6, 1, 3, 4), (4, 5, 1, 2). Use two of the row char-423

acters to index treatments 1–9 in lexicographical order. Then, the four degrees of freedom424

corresponding to these two row characters have canonical efficiency factor 1/4 in rows,425

while the canonical efficiency factor for the four degrees of freedom for the other two row426

characters is 1/16.427

No unit characters are required because r3 = 1.428
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For example, one could choose A+B and B+C for row characters, so that A+2C and429

A + 2B + C would be required to make the complete set of row characters. The column430

characters could be chosen from A+B + C, A+B + 2C and A+ 2B + 2C. For example,431

one could use two of these characters in one frame each and the other in two frames, thus432

partially confounding the corresponding effects. Those used in just one would have 75% of433

their information orthogonal to rows and columns and, for the other character, it would be434

50%.435

5.4. A 24 factorial in an 8× 12 rectangle436

In this example p = 2, m = 4, k = 8, ℓ = 12 and r = 6. We have k = 23 and ℓ = 2231 and437

so, as k is a power of p, it must be that t = 3 and, as r is divisible by p, there is a choice of438

values for u; u = 2 is chosen. As a result c = 4, d = 2 and r3 = 2. The numbers of row and439

column super-frames are r1 = 1 and r2 = 3, respectively. Hence, there are two row frames440

of shape 4× 12 in the one row super-frame, and three column frames, one in each column441

super-frame of shape 8× 4.442

The row and column characters chosen for this design are given in Table 3. Because443

r2 = 3, an auxiliary design ∆1 is needed to assign groups defined by the row characters to444

the 4 × 3 array of subrectangles of shape 1 × 4. The transpose of a 3 × 4 Youden square,445

constructed by removing the last row from a Latin square, is suitable. The three rows of446

the Youden square are (1, 2, 3, 4), (2, 3, 4, 1) and (3, 4, 1, 2). As the Youden square has 1/9447

of the treatment information confounded with columns, 1/9 of each of the row characters is448

confounded with Rows. Because r1 = 1, an auxiliary design ∆2 is not needed for assigning449

the column characters.450

The box frames for this design are of shape 8× 4. As r3 = 2, a box frame consists of a451

2× 2 array of subframes of shape 4× 2 and a unit character is required for each box frame.452

They are in Table 3. The auxiliary design ∆3, used in assigning unit characters, is a 2× 2453

Latin square with rows (0,1) and (1,0).454

The canonical efficiency factors and Residual degrees of freedom for this design are455

summarized in Table 4. This shows that the design has very good properties. Many other456

choices of sets of confounding characters are possible, depending on which interactions are457

considered important.458

5.5. A 23 factorial in a 6× 12 rectangle459

Here p = 2, m = 3, k = 6 and ℓ = 12, so that r = 9 and, as r is not divisible by p, we are460

forced to put t = 1, u = 2 and r1 = r2 = 3, which give c = 2, d = 4 and r3 = 1. Thus the461

row and column super-frames are the same as the row and column frames.462

There are three row frames, each of shape 2×12. We can assign the characters A, B and463
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Table 4. Canonical efficiency factors and Residual degrees of freedom (DF) for
the design for a 24 factorial experiment in 8 rows × 12 columns

Unit sources

Treatment sources Rows Columns Rows#Columns

A, B, C, D 0 0 1

A#B 1
9

0 8
9

A#C, A#D, B#C, B#D 1
18

0 17
18

C#D, A#B#C, A#B#D, A#C#D, 0 1
6

5
6

B#C#D, A#B#C#D

Residual DF 2 5 62

Table 5. Quasi-Latin rectangle for a 23 factorial experiment in 6 rows × 12 columns

Column frame I Column frame II Column frame III

A = 0, 0, 1 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0

A = 1, 1, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1

B = 0, 0, 1 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1

B = 1, 1, 0 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 0, 0, 1 1, 0, 1 1, 0, 0 0, 0, 0

C = 0, 0, 1 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1

C = 1, 1, 0 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1 1, 0, 1 0, 1, 1 1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0 0, 0, 0 1, 1, 0

C to one row frame each. In each row frame we use, for the two levels of the row character,464

the 2×3 auxiliary design ∆1 whose rows are (0, 0, 1) and (1, 1, 0): this confounds 1/9 of the465

between-level information with rows. There are three column frames, each of shape 6× 4:466

in order to satisfy Condition (1), we take {A + B,A + C,B + C} to be the set of column467

characters in each column frame. This set divides the eight treatments into four groups of468

two, so our 3 × 4 auxiliary design ∆2 is the Youden square given in Section 5.4. There is469

no need for a unit character or a third auxiliary design, because r3 = 1.470

The complete design is shown in Table 5. All main effects have canonical efficiency471

factors 1/27, 0 and 26/27 in Rows, Columns and Rows#Columns respectively, while the472

corresponding figures for the two-factor interactions are 0, 1/9 and 8/9. The three-factor473

interaction is completely confounded with Rows#Columns.474

6. Other methods for constructing row-column designs for symmetric factorial ex-475

periments476

We now give two other methods for constructing (extended) quasi-Latin rectangles.477

Method 2 applies when one of k and ℓ is a multiple of v. Method 3 divides the design478

into unequally-sized segments and a design is constructed for each segment.479

For Method 2, not only must one of k and ℓ be a multiple of v, but the other must480
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be a proper divisor of v. Take ℓ to be a multiple of v; for the case of k a multiple of v481

interchange the roles of rows and columns. While such designs can be constructed using482

Method 1, this requires the specification of both column and unit characters. On the other483

hand, Method 2 requires only column characters and so with it there will usually be more484

choice for the column characters. Further, Condition (1) is vacuously satisfied, and so there485

are no constraints on the choice of column characters. Hence, Method 2 is likely to be486

the preferred method for this class of designs, unless the designer is prepared to confound487

column characters with multiple column frames. The steps for Method 2 are:488

Step 1: Divide up the whole frame: Divide the design into r2 column super-frames of489

shape k × v, where r2 = ℓ/v. Divide each column super-frame into k column frames490

of shape k × d, where d = v/k.491

Step 2: Specify the column design: In each column super-frame, choose k sets of col-492

umn characters each specifying d − 1 degrees of freedom. It is not necessary for all493

the sets to be different. Each set of characters is confounded with the columns of one494

of the column frames.495

Step 3: Form the row design: In each column super-frame, rearrange the treatments496

in each column, using the algorithm given in Technique 11.1 of Bailey (2008), so that497

each row consists of a complete replicate.498

The justification for the last step is that the column design can be viewed as a symmetric499

incomplete-block design. By Hall’s Marriage Theorem, the treatments in each column can500

be rearranged so that each row consists of a complete replicate.501

k1row
segment 1

k2row
segment 2

ℓ1

column
segment 1

ℓ2

column
segment 2

1 2

3 4

Fig. 2. Segmentation of the whole frame for Method 3 into four segments numbered as shown

Method 3 divides the design into segments as illustrated in Figure 2. It is useful when502

at least one of k and ℓ is neither a power of p nor a multiple of v; otherwise, it duplicates503
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Method 1 or Method 2. W assume that the normal conditions for (extended) quasi-Latin504

designs apply.505

Step 0: Initialize: Set k1 = k, k2 = 0, ℓ1 = ℓ and ℓ2 = 0.506

Step 1: Choose the row segment sizes: If k is neither a power of p nor a multiple of507

v, then choose a value of t such that pt < k, t ≤ m, v divides ptℓ, and pt does not508

divide k. If there is no such value of t, then there is nothing to be gained by row509

segmentation. Otherwise, it is usually sensible to choose the largest possible value of510

t; in particular, if k ≥ v then take t = m. Let k1 be the largest multiple of pt which511

is smaller than k, and put k2 = k − k1. Then v divides k1ℓ and k2ℓ, and p divides k1512

and k2.513

Step 2: Choose the column segment sizes: If ℓ is neither a power of p nor a multiple514

of v, then choose a value of u such that pu < ℓ, u ≤ m, v divides puk, and pu does not515

divide ℓ. If there is no such value of u, then there is nothing to be gained by column516

segmentation. Otherwise, it is usually sensible to choose the largest possible value of517

u; in particular, if ℓ ≥ v then take u = m. Let ℓ1 be the largest multiple of pu which518

is smaller than ℓ, and put ℓ2 = ℓ− ℓ1. Since v divides puk, we must have k divisible519

by pm−u. If t is defined, then m−u ≤ t, and hence pm−u divides k1 and k2; otherwise520

k1 = k and k2 = 0 and again pm−u divides k1 and k2. Therefore v divides k1ℓ1, k1ℓ2,521

k2ℓ1 and k2ℓ2, and p divides ℓ1 and ℓ2.522

Step 3: Divide the whole frame into segments: If k2 = ℓ2 = 0, then it is not useful523

to segment the design and this method does not apply. Otherwise, segment the design524

as shown in Figure 2. Only if both k2 ̸= 0 and ℓ2 ̸= 0 will there be four segments. If525

only one is nonzero, then there will be two segments.526

Step 4: Construct a design for each segment: Use Method 1, 2 or 3, as appropriate,527

on each of the design segments. If there are two segments in the same row segment and528

row characters are needed for both, then, to minimize the amount of information on529

row characters in Rows in the whole design, the row characters in each row frame of the530

first segment should be a subset of those in the corresponding row frame of the second531

segment; this will also require the values of these characters in the corresponding532

rows of the two designs to be chosen suitably. Similar considerations apply if there533

are two segments in the same column segment and column characters are needed534

for both. The simplest situation is that k1 = ℓ1 = v and so a Latin square can be535

used for segment 1. In this situation, segment 2 will require only row characters for536

its construction, segment 3 will require only column characters and segment 4 will537

require both row and column characters, but these can be chosen independently of538

the those used for the other segments.539
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7. Examples comparing (extended) quasi-Latin rectangles constructed using the540

different methods541

In this Section we compare several row-column designs for three sets of basic design param-542

eters using all three methods of construction that we have presented, as well as computer543

search.544

7.1. A 23 factorial in a 4× 8 rectangle545

For this example p = 2, m = 3, k = 22, ℓ = 23 and r = 4. Here, we compare the properties546

of three designs, all of which have orthogonal factorial structure.547

Design 1: As ℓ = v, Method 2 in Section 6 applies with r2 = 1 and d = 2. We use it to548

construct a design. There are four column frames of shape 4× 2. A column character549

is needed for each column pair. For example, assign each of A+B, A+C, B+C and550

A+B+C to be confounded with one pair of columns, so that a different character is551

used for each pair. Then, 1/4 of the information on each of the corresponding effects is552

lost to columns. Table 6 shows one of the possible designs obtained after rearranging553

treatments in each column to make each row a complete replicate.554

Design 2: The optimal design produced by CycDesigN 4.0, which can be constructed using555

Method 2 by assigning A+C to one pair of columns and A+B +C to three pairs of556

columns. It partially confounds 1/4 of A#C and 3/4 of A#B#C with its columns.557

Design 3: Healy’s (1951) design, which can be constructed using Method 1, with r1 =558

r2 = 1, t = 2 and u = 3 so that c = 1 and d = 2. Thus, r3 = 4 and the whole559

(box) frame consists of a 4 × 4 array of 1 × 2 subframes. Four column characters560

are needed, as well as one set of three unit characters that are closed under addition561

and an auxiliary design ∆3, for assigning the four groups of treatments determined562

by the four combinations of the values of the unit characters. Healy’s design has the563

character A + B + C assigned to every pair of columns, uses the set {B,C,B + C}564

for unit characters, and takes a 4 × 4 Latin square for the auxiliary design. So, the565

interaction A# B # C is totally confounded with columns and no treatment effects566

are confounded with rows.567

Table 7 compares the canonical efficiency factors and Residual degrees of freedom for568

the three designs. In using CycDesigN to produce Design 2, the default weights ratio of569

1 : 0.25 for main effects relative to two-factor interactions was employed. One might consider570

reducing the weights for two-factor interactions in order to produce Design 1, which has571

lower efficiency for two-factor interactions. However, for two designs with orthogonal main572

effects and so maximal main-effect efficiency, such as Designs 1 and 2, the weighted efficiency573
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Table 6. Quasi-Latin rectangle for a 23 factorial experiment in 4
rows × 8 columns constructed using Method 2

A+B A+ C B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 0, 1, 1 1, 1, 0 1, 0, 1 1, 1, 1

1, 1, 0 1, 0, 1 0, 0, 0 1, 0, 0 1, 1, 1 0, 0, 1 0, 1, 1 0, 1, 0

0, 0, 1 0, 1, 0 1, 1, 1 0, 1, 1 0, 0, 0 1, 0, 1 1, 1, 0 1, 0, 0

1, 1, 1 0, 1, 1 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0 0, 0, 0 0, 0, 1

Table 7. Canonical efficiency factors and Residual degrees of freedom (DF) for the designs
for a 23 factorial experiment in 4 rows × 8 columns

Treatment sources Residual

Design Unit sources A B C A#B A#C B#C A#B#C DF

1 Rows 0 0 0 0 0 0 0 3

Columns 0 0 0 1
4

1
4

1
4

1
4

3

Rows#Columns 1 1 1 3
4

3
4

3
4

3
4

14

2 Rows 0 0 0 0 0 0 0 3

Columns 0 0 0 0 1
4

0 3
4

5

Rows#Columns 1 1 1 1 3
4

1 1
4

14

3 Rows 0 0 0 0 0 0 0 3

Columns 0 0 0 0 0 0 1 6

Rows#Columns 1 1 1 1 1 1 0 15

factor for a given set of weights must be greater for the design for which the sum of the574

efficiency factors for two-factor interactions is greater. Hence, Design 2, or any design575

whose two-factor efficiencies include both 0.75 and 1 and no other values, will always have576

higher efficiency than Design 1 and so Design 1 will only be selected as the optimal design577

if one manages to stop the iterative search procedure prematurely. This is more likely to578

be possible if a relatively very small weight is used for two-factor interactions, such as in a579

weights ratio of 1:0.001, because this will make the differences between the efficiency of the580

designs small (< 0.001).581

Clearly, Design 3 suits experiments in which it is appropriate to confound the three-582

factor interaction with the likely more variable Columns, such as when this interaction is583

anticipated to be negligible. On the other hand, as concluded in Section 3, Design 1 will584

be preferred if a three-factor interaction is thought to be highly likely and one wants to585

estimate it with good precision.586
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7.2. A 23 factorial in a 4× 6 rectangle587

This example is for p = 2, m = 3, k = 4, ℓ = 6 and r = 3. As always, Method 1 applies.588

Neither ℓ nor k are multiples of v and so Method 2 is not applicable. On the other hand, ℓ589

is nether a multiple of v nor a power of p, so that Method 3 can be used.590

Three designs will be constructed, ordered according to the amount of information par-591

tially confounded with Rows#Columns: the amount for A#B#C decreases and that for592

the two-factor interactions increases. They demonstrate how the designer can influence the593

spread of the information about the treatment effects across the unit sources and show the594

flexibility of our construction methods.595

Design 1: In this design Method 1 is used. As r is not a multiple of p, it follows that596

t = 2 and u = 1 so that r1 = 1 and r2 = 3. Also, c = 4, d = 2 and r3 = 1.597

Hence, there are 3 column super-frames, each containing a single 4 × 2 grid that is598

both a box frame and a subframe. To construct the design requires, firstly, a set of599

row characters specifying 3 treatment degrees of freedom and an auxiliary design ∆1600

for assigning groups of treatments determined by the row characters. Secondly, one601

column character for each column super-frame is needed. Unit characters and the602

associated auxiliary design ∆3 are not required.603

Let {U, V, U + V } be the set of row characters and {W,X, Y } the set of column604

characters. It is not necessary for all the column characters to be different, but605

Condition (1) must be satisfied. The three row characters divide the eight treatments606

into four groups of two, say S1, S2, S3 and S4. The transpose of the 3 × 4 Youden607

square used in Section 5.4 is a suitable auxiliary design for assigning these groups.608

To maximize the minimum canonical efficiency factor for all treatment effects when609

(partially) confounded with Rows# Columns, we can take U = A, V = B, W = A+C,610

X = B + C and Y = A+B + C. Table 8 shows the final design.611

Design 2: This design uses Method 3. Because k is a power of p, row segmentation is not612

useful and k2 = 0. On the other hand, ℓ is not a power of p or a multiple of v, and613

ℓ > 4 so that column segmentation can be employed. Here u = 2 so that ℓ1 = 4 and614

ℓ2 = 2. That is, segment 1 is of shape 4× 4 and the other segment is 4× 2. The first615

can be constructed as a 4× 4 quasi-Latin square and the other as a 4× 2 quasi-Latin616

rectangle, both using Method 1.617

For the quasi-Latin rectangle, which consists of a single grid, a set of row characters618

specifying 3 treatment degrees of freedom and a column character are required. Sup-619

pose that, in order to have no main effects involved, the row characters are A + B,620

A+C and B+C and the column character is A+B+C. The row characters divide the621

treatments into four groups of two, one for each combination of the values of A+B,622

A+ C.623
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For the quasi-Latin square, which has the same basic design parameters as the design624

given in Section 5.1, two row and two column characters, as well as a unit character,625

are needed. To match the quasi-Latin rectangle, the row characters for the quasi-Latin626

square should be a subset of those for the rectangle. Take A+B and A+C. For the627

column characters, again to have no main effects involved and more information about628

A#B#C confounded with Columns, suppose the characters B + C and A + B + C629

are chosen. The unit character is A. The transpose of the 4 × 4 quasi-Latin square630

design in Table 1 is such a design, which is given in the first four columns of Design 2631

in Table 8.632

In combining the 4 × 2 rectangle and the 4 × 4 square, assign the values of the row633

characters in each row of the combined design so that they differ between the two634

segments. The last two columns of Design 2 in Table 8 have the quasi-Latin rectangle.635

The last column of the table applies to the last two columns of the design. The636

canonical efficiency factors for the combined design are those of Design 2 in Table 9637

and it happens that they are the same as those for the design produced by CycDesigN638

4.0. However, the two designs are not isomorphic.639

Design 3: This design is constructed in the same manner as Design 1, but using different640

characters. To completely confound A#B#C with Columns, take U = A + C, V =641

B + C and W = X = Y = A+B + C.642

Table 8. Designs for a 23 factorial experiment in 4 rows × 6 columns

Design 1 — Method 1

A+ C B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 0, 0, 1 1, 0, 0 1, 0, 1 0, 1, 1 0, 1, 0

1, 0, 1 1, 0, 0 0, 1, 1 0, 1, 0 1, 1, 0 1, 1, 1

0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1

1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1 1, 0, 1 1, 0, 0

Design 2 — Method 3

B + C A+B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1 A+B† A+ C†

A+B = 0 1, 1, 1 1, 1, 0 0, 0, 0 0, 0, 1 0, 1, 1 1, 0, 0 = 1, = 1

A+B = 1 1, 0, 0 1, 0, 1 0, 1, 1 0, 1, 0 0, 0, 0 1, 1, 1 = 0, = 0

A+ C = 0 0, 0, 0 0, 1, 0 1, 0, 1 1, 1, 1 1, 1, 0 0, 0, 1 = 0, = 1

A+ C = 1 0, 1, 1 0, 0, 1 1, 1, 0 1, 0, 0 1, 0, 1 0, 1, 0 = 1, = 0

†These relations apply only to units in the last two columns of the design
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Table 9. Canonical efficiency factors and Residual degrees of freedom (DF) for the designs
for a 23 factorial experiment in 4 rows × 6 columns

Treatment sources Residual

Design Unit sources A B C A#B A#C B#C A#B#C DF

1 Rows 1
9

1
9

0 1
9

0 0 0 0

Columns 0 0 0 0 1
3

1
3

1
3

2

Rows#Columns 8
9

8
9

1 8
9

2
3

2
3

2
3

8

2 Rows 0 0 0 1
9

1
9

1
9

0 0

Columns 0 0 0 0 0 1
3

2
3

3

Rows#Columns 1 1 1 8
9

8
9

5
9

1
3

8

3 Rows 0 0 0 1
9

1
9

1
9

0 0

Columns 0 0 0 0 0 0 1 4

Rows#Columns 1 1 1 8
9

8
9

8
9

0 9

The canonical efficiency factors and Residual degrees of freedom for the three designs643

are in Table 9. Design 3 has the advantage over the other designs in having more Residual644

degrees of freedom for Columns. To achieve this there is no information about A#B#C645

confounded with Rows#Columns. This is the design that was used in the experiment646

described by Tran (2009), but, in retrospect, Design 1 would have been better. The reason647

is that Design 1 has more information about the three-factor interaction confounded with648

Rows#Columns, and so is better able to distinguish between models with and without the649

three-factor interaction, with little loss of information about the other treatment effects650

from Rows#Columns.651

An alternative to Design 1, when three-factor interactions are likely, is to ignore the652

factorial structure in the construction and to generate a design for eight treatments. For653

example, treatments 1–8 are assigned to the combinations of A, B and C listed in lexico-654

graphical order and CycDesigN 2.0 used to produce a design for the 8 treatments. The655

canonical efficiency factors for the factorial effects, when confounded with Rows#Columns,656

are more uniform than those for Designs 1–3, but the gain in efficiency for A#B#C is less657

than 10%. Also, the design does not have orthogonal factorial structure and cannot be658

made to have, no matter how the 23 factorial combinations are assigned to treatments 1–8.659

Section 7.3 investigates constructing a row-column design when the number of replicates660

is increased from 3 to 5.661
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7.3. A 23 factorial in a 4× 10 rectangle662

For this example p = 2, m = 3, k = 4, ℓ = 10 and r = 5. As always, Method 1 applies.663

Neither ℓ nor k are multiples of v and so Method 2 is not applicable. On the other hand, ℓ664

is neither a multiple of v nor a power of p so that Method 3 can be used. The design is an665

extended quasi-Latin rectangle design. We compare the three designs given in Table 10, that666

are in order of decreasing information about A#B#C confounded with Rows#Columns.667

They are constructed as follows:668

Design 1: Method 3 is used and segments the design into a column segment of shape 4×8669

and a second of shape 4× 2 that contains an additional grid. The first segment uses670

Design 1 from Section 7.1 and the second segment is constructed using Method 1. It671

uses A+ B and A+ C, and hence B + C, for row characters and A+ B + C for the672

column character.673

Design 2: Either CycDesigN 2.0 or 4.0 (Whitaker et al., 2002; CycSoftware Ltd, 2009) is674

used, although the resulting design is not isomorphic to any of those constructed by675

our methods. A design with the same (partial) confounding of treatment effects as676

the computer-generated design can be constructed using Method 3 in the manner of677

Design 1. Here, the 4 × 8 segment is the same as Design 2 from Section 7.1, except678

that B + C is used instead of A + C in one of the column pairs. The 4 × 2 segment679

is the same as for Design 1.680

Design 3: Method 1 is used, dividing the 4 × 10 rectangle into 1 row super-frame and 5681

column super-frames. Each column super-frame contains a single column frame which682

is a grid of shape 4× 2. The set of row characters is {A+B,A+ C,B + C}; a 4× 5683

extended Latin square is used as an auxiliary design to assign the 4 pairs of treatments684

defined by the row characters. The column character is A + B + C for all 5 column685

super-frames.686

The canonical efficiency factors and Residual degrees of freedom for the three designs687

are given in Table 11. It appears that Designs 2 and 3 are suitable for situations in which it688

is appropriate to confound most of the three-factor interaction with Columns. In this cir-689

cumstance, Design 3 has the advantage over Design 2 that there is no two-factor interaction690

confounded with Columns so that the rather small Residual degrees of freedom are increased691

by one. Design 1 would be preferred where the variance of the estimate of the three-factor692

interaction is to be minimized and the researcher is prepared to sacrifice some precision in693

estimating the two-factor interactions by partially confounding them with Columns; even694

so, only 24% of each two-factor interaction is confounded with Rows or Columns.695
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Table 10. Designs for a 23 factorial experiment in 4 rows × 10 columns

Design 1 — Method 3

A+B A+ C B + C A+B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 Relations

0, 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 0, 1, 1 1, 1, 0 1, 0, 1 1, 1, 1 0, 0, 0 1, 1, 1 A+B = 0, A+ C = 0†

1, 1, 0 1, 0, 1 0, 0, 0 1, 0, 0 1, 1, 1 0, 0, 1 0, 1, 1 0, 1, 0 1, 0, 1 0, 1, 0 A+B = 1, A+ C = 0†

0, 0, 1 0, 1, 0 1, 1, 1 0, 1, 1 0, 0, 0 1, 0, 1 1, 1, 0 1, 0, 0 1, 1, 0 0, 0, 1 A+B = 0, A+ C = 1†

1, 1, 1 0, 1, 1 1, 0, 1 1, 1, 0 1, 0, 0 0, 1, 0 0, 0, 0 0, 0, 1 0, 1, 1 1, 0, 0 A+B = 1, A+ C = 1†

Design 2 — Generated using CycDesigN: columns re-ordered to show confounding

A+B + C A+B + C A+B + C A+B + C B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 1, 1 0, 1, 0 1, 0, 1 1, 0, 0 0, 1, 1 1, 1, 1 0, 0, 0 0, 0, 1 1, 0, 0 1, 1, 0

1, 1, 0 1, 1, 1 1, 1, 0 0, 1, 0 0, 0, 0 0, 0, 1 1, 0, 1 1, 0, 0 0, 1, 1 0, 0, 1

0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 1 1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 1, 1, 1 1, 0, 1

1, 0, 1 0, 0, 1 0, 1, 1 1, 1, 1 1, 0, 1 1, 0, 0 1, 1, 0 0, 1, 0 0, 0, 0 0, 1, 0

Design 3 — Method 1

A+B + C A+B + C A+B + C A+B + C A+B + C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1

1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0

1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1

0, 1, 1 1, 0, 0 1, 0, 1 0, 1, 0 0, 0, 0 1, 1, 1 1, 1, 0 0, 0, 1 0, 1, 1 1, 0, 0

†These relations apply only to units in the last two columns of the design

Table 11. Canonical efficiency factors and Residual degrees of freedom (DF) for the designs
for a 23 factorial experiment in 4 rows × 10 columns

Treatment sources Residual

Design Unit sources A B C A#B A#C B#C A#B#C DF

1 Rows 0 0 0 1
25

1
25

1
25

0 0

Columns 0 0 0 1
5

1
5

1
5

2
5

5

Rows#Columns 1 1 1 19
25

19
25

19
25

3
5

20

2 Rows 0 0 0 1
25

1
25

1
25

0 0

Columns 0 0 0 0 0 1
5

4
5

7

Rows#Columns 1 1 1 24
25

24
25

19
25

1
5

20

3 Rows 0 0 0 1
25

1
25

1
25

0 0

Columns 0 0 0 0 0 0 1 8

Rows#Columns 1 1 1 24
25

24
25

24
25

0 21
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8. Choosing a unit structure696

In the previous Sections we have constructed just row-column designs. However, as outlined697

in Section 3, no one type of design applies in all experimental situations and for quasi-Latin698

designs there is generally the option of using row-column, nested or contiguous designs699

for any specific experiment. That is, it is necessary, for any quasi-Latin design, to decide700

whether to employ a row-column design or an r-resolved design with the design divided into701

s whole frames and, if so, whether to latinize the divided design across its whole frames. This702

amounts to choosing between unit structures, which give different decompositions according703

to the unit sources. In addition, there is the question of how to construct r-resolved designs704

using our techniques. Choosing between different types of designs and the construction of705

r-resolved designs are illustrated for just two of the examples from Sections 5 and 7: the 23706

factorial in an 4 × 8 square from Section 7.1 and the 25 factorial in an 8 × 8 square from707

Section 5.2.708

This division of a design into several Latin squares or rectangles is fundamentally dif-709

ferent from the division of a whole frame into frames or segments. Firstly, the division of710

a whole frame is purely a device for construction and is constrained by the construction711

algorithm. On the other hand, the division into several whole frames is done deliberately712

by the designer and is based on expected sources of variability in the experiment. Secondly,713

the division of whole frames is ignored in the randomization and analysis of the design. On714

the other hand, the formation of several whole frames results in randomizations between715

and, usually, within whole frames, depending on what is appropriate for the unit structure.716

It also results in the inclusion of terms corresponding to the whole frames in the analysis.717

In constructing both nested and contiguous designs the first step is to specify the number718

and size of whole frames, which is akin to Method 3, except that the designer has more719

freedom in choosing the size of the whole frames. However, each whole frame needs to meet720

the conditions for a quasi-Latin square or (extended) quasi-Latin rectangle. For nested721

designs, the second step is to apply the methods we have presented to each whole frame722

independently, although the overall pattern of (partial) confounding of the treatment effects723

must be considered. For contiguous designs, the whole frames are joined into a single frame724

and the methods that we have presented are applied to this combined frame. This ensures725

that the same characters are confounded between the contiguous entities (rows or columns).726

However, in choosing the characters for the noncontiguous entities, the overall pattern of727

their (partial) confounding must be considered. Also, care is needed in choosing the unit728

characters and auxiliary design ∆3, as this will determine the treatment effects confounded729

with the interaction of whole frames and the contiguous entities.730

A design constructed as one type can often be deployed as a design of a different type.731

This requires the randomization and analysis appropriate to the type of design actually732

deployed. For example, a Latin square design can be deployed as a randomized complete733
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block design, by randomizing and analysing the Latin square design for one blocking factor734

nested within the other. That is, the unit structure differs between the constructed and735

deployed designs. Thus, the nested designs constructed in this Section can be deployed as736

row-column designs and the contiguous designs as row-column or nested designs.737

8.1. The 23 factorial in a 4× 8 rectangle revisited738

In Section 5.1 it was suggested that two 4 × 4 squares, like the plan given by Cochran739

and Cox (1957, Table 8.1), are more useful than a single square. It was also noted that740

constructing a single 4× 8 rectangle, as is done in Section 7.1, is an alternative. Here, this741

alternative and two nested and two contiguous quasi-Latin square designs with two squares742

are compared. For the designs constructed here, the first step is to divide them into two743

squares (whole frames) of shape 4× 4. Then, p = 2, m = 3, s = 2, k = ℓ = 4 and r = 2 so744

t = u = 2 and c = d = 2.745

The two nested designs are constructed by applying Method 1 to each square. Design 1746

is the quasi-Latin square design given in Cochran and Cox (1957, Table 8.1). The first747

square of the design is in Table 1; the second square is obtained from this by swapping row748

and column characters. The design involves complete replicates in grids of shape 2× 4 and749

4× 2 in each square, and is a nested, 2-resolved design.750

Design 2, also a nested, 2-resolved design, is constructed in the same way as Design 1.751

For its first square, U = V = A+B + C, W = A+B, X = A+ C and Y = A; the second752

square uses the same characters, except that X = B + C and Y = B.753

These nested designs do not take advantage of the contiguity of the rows of the two754

squares because there is no constraint on the treatments assigned to the same row in different755

squares. On the other hand, although the quasi-Latin rectangle design in Table 6 has a756

complete replicate in each row and in each of four 4 × 2 grids, it also not suitable as a757

contiguous design, because no attention has been paid to the confounding with rows within758

squares. In particular, it does not have orthogonal factorial structure. Our construction759

method can be used to choose a better confounding pattern for a contiguous design.760

Design 3 consists of two row-contiguous 4 × 4 quasi-Latin squares and is 2-resolved.761

To construct it, we apply Method 1 to the whole design, which is of shape 4 × 8. The762

construction is similar to that of Design 3 in Section 7.1. That is, we require four column763

characters, which need not be different, and one set of three unit characters that are closed764

under addition. Also, necessary is an auxiliary design ∆3 for assigning the values of the unit765

characters. For example, take as the column characters B+C and A+C in both squares to766

leave other interaction characters for unit characters. Take the set {A+B + C,A+B,C}767

for unit characters. In order to have A+B+C and A+B, but not C, partially confounded768

with the Rows#Squares, number the combinations of the values of the first two characters769

as follows: 1 = (0, 0), 2 = (0, 1), 3 = (1, 0) and 4 = (1, 1). Then assign assign these groups770



28 Brien et al.

to the 4 × 4 array of 1 × 2 subframes using the particular Latin square whose rows are771

(2, 1, 3, 4), (3, 4, 2, 1), (1, 3, 4, 2) and (4, 2, 1, 3). The design is in Table 12.772

CycDesigN cannot produce a design with the same unit structure as Design 3, because773

it generates only 1-resolved designs. Instead, Design 4 is a contiguous design for a 2 × 2774

array of 2 × 4 grids produced using CycDesigN; the design is resolved and latinization is775

across both rows and columns. The unit factors are BigRows, BigCols, Rows and Columns,776

all with 2 levels except that Columns has 4 levels. Also, they all are crossed, except that777

Rows is nested within BigRows and Columns is nested BigCols. The design is in Table 12.778

Table 12. Contiguous designs for a 23 factorial experiment in 4
rows × 8 columns

Design 3 — Method 1

B + C A+ C B + C A+ C

= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1

0, 1, 1 1, 0, 1 0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0

1, 1, 1 0, 0, 1 0, 1, 0 1, 0, 0 0, 1, 1 1, 0, 1 0, 0, 0 1, 1, 0

0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1 1, 0, 0 0, 1, 0 1, 0, 1 0, 1, 1

1, 0, 0 0, 1, 0 1, 0, 1 0, 1, 1 0, 0, 0 1, 1, 0 1, 1, 1 0, 0, 1

Design 4 — Generated using CycDesigN

0, 1, 0 0, 1, 1 0, 0, 1 0, 0, 0 1, 1, 1 1, 0, 0 1, 1, 0 1, 0, 1

1, 1, 1 1, 1, 0 1, 0, 0 1, 0, 1 0, 0, 0 0, 1, 1 0, 0, 1 0, 1, 0

1, 1, 0 0, 1, 0 0, 1, 1 1, 1, 1 1, 0, 1 0, 0, 0 1, 0, 0 0, 0, 1

1, 0, 1 0, 0, 1 0, 0, 0 1, 0, 0 0, 1, 1 1, 1, 0 0, 1, 0 1, 1, 1

The canonical efficiency factors and Residual degrees of freedom for the four designs are779

given in Table 13. As described by Cochran and Cox (1957), Design 1 has a quarter of the780

information of the effects for each of {A+B,A+ C,B + C,A+B + C} confounded with781

both rows and columns. Main effects are orthogonal to rows and columns. Design 2, com-782

pared with Design 1, has A#B#C completely confounded with Rows [Squares] and more783

information about the two-factor interactions confounded with Rows # Columns [Squares].784

However, the effect of removing Squares variability would appear to be a decrease in the785

amount of information about the interactions in the lowest unit source; both designs have786

lower efficiencies for the interactions than those for Design 1 in Section 7.1. Of the contigu-787

ous designs, Design 3 is better than Design 4, because it has orthogonal factorial structure,788

and, for the last unit source, it has (i) main effects completely confounded with it, (ii) more789

three-factor information partially confounded with it, and (iii) more Residual degrees of790

freedom.791

Designs 3 and 4, while constructed as contiguous designs, could also be deployed as792

row-column or nested designs. The analysis for Design 3 when deployed as a nested de-793
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Table 13. Canonical efficiency factors and Residual degrees of freedom (DF) for the nested and
contiguous designs for a 23 factorial experiment in 4 rows × 8 columns

Treatment sources Residual

Design Unit sources A B C A#B A#C B#C A#B#C DF

1 Squares 0 0 0 0 0 0 0 1

Rows [Squares] 0 0 0 1
4

1
4

1
4

1
4

2

Columns [Squares] 0 0 0 1
4

1
4

1
4

1
4

2

Rows # Columns [Squares] 1 1 1 1
2

1
2

1
2

1
2

11

2 Squares 0 0 0 0 0 0 0 1

Rows [Squares] 0 0 0 0 0 0 1 5

Columns [Squares] 0 0 0 1
2

1
4

1
4

0 3

Rows # Columns [Squares] 1 1 1 1
2

3
4

3
4

0 12

3 Squares 0 0 0 0 0 0 0 1

Rows 0 0 0 0 0 0 0 3

Rows # Squares 0 0 0 1
2

0 0 1
2

1

Columns [Squares] 0 0 0 0 1
2

1
2

0 4

Rows # Columns [Squares] 1 1 1 1
2

1
2

1
2

1
2

11

4 BigRows 0 0 0 0 0 0 0 1

BigCols 0 0 0 0 0 0 0 1

BigRows#BigCols 0 0 0 0 0 0 0 1

Rows [BigRows] 0 0 0 0 0 0 0 2

Columns [BigCols] 1
8

1
8

1
8

0 0† 1
8

†
0† 2

Rows # BigCols [BigRows] 1
2

1
2

0 0 0 0 0 0

Columns # BigRows [BigCols] 1
8

1
8

1
8

1
2

0† 1
8

† 1
2

†
0

Rows # Columns [BigRows ∧ BigCols] 1
4

1
4

3
4

1
2

1
2

1
2

1
4

5
†This treatment source is nonorthogonal to previous treatment sources estimated from the same

unit source and its canonical efficiency factor is adjusted for the previous sources.

sign combines the Rows and Rows#Squares unit sources from the analysis of the con-794

tiguous design. The nested design has the advantage over the contiguous design of hav-795

ing more Residual degrees of freedom for Rows, but would subject A#C and A#B#C796

to Rows variability. Hence, Design 3 should not be deployed as a nested design when797

appreciable differences between long rows are anticipated. The efficiencies for the last798

unit source for Design 3, as a nested design, and for Design 1 are equal. However, of799

these two nested designs, Design 3 has the advantage that it has more Residual degrees800

of freedom for Rows [Squares] and Columns [Squares]. The analysis for Design 3 when de-801

ployed as a row-column design can be obtained from its analysis as a contiguous design by802



30 Brien et al.

combining (i) the Squares and Columns [Squares] sources and (ii) the Rows#Squares and803

Rows # Columns [Squares] sources. The result is that A#B and A#B#C are now com-804

pletely confounded with Rows#Columns, the latter having 14 Residual degrees of freedom.805

Using Design 3 as a row-column design is restricted to situations in which it is anticipated806

that squares are similar and the Rows#Squares is not appreciable source of variability.807

Design 1 in Section 7.1 and Designs 1 and 3 from this Section are row-column, nested808

and contiguous designs, respectively, for which the amount of information about A#B#C809

partially confounded with the last unit source is maximized for each type of design. Com-810

paring them shows that allowing for the removal of the difference between Squares reduces811

the last unit source’s (i) efficiencies for the interactions and (ii) Residual degrees of freedom812

(from 14 to 11). As suggested in Section 3, the choice between these designs depends on813

the sources of unit variability that are expected. One might argue that there is little to814

be lost in routinely employing a contiguous design because, if unit sources are shown to be815

negligible in a preliminary analysis, then one can drop these unit sources and so increase816

the efficiencies and Residual degrees of freedom associated for the remaining sources in the817

final analysis. However, as noted in Section 3, this is a strategy with undesirable conse-818

quences and it is preferable to use the analysis appropriate to the design chosen. Further,819

the contiguous design, when analysed as a row-column design, is inferior to Design 1 from820

Section 7.1.821

8.2. The 25 factorial in an 8× 8 square revisited822

Section 5.2 describes a quasi-Latin square design for arranging a 25 factorial in an 8 × 8823

square. The design in Section 5.2, as constructed, is resolvable; grids, each containing a824

complete set of treatments, are obtained by dividing either the rows into two 4 × 8 grids825

or the columns into two 8 × 4 grids. So again, while the design was formulated as a row-826

column design, it could be deployed as either a nested or a contiguous design. The resulting827

design is a quasi-Latin rectangle design. However, as in Section 8.1, the characters used828

in constructing the particular design given in Section 5.2 are not ideal for these other unit829

structures and so we again employ our construction method to choose a better confounding830

pattern.831

The first step in constructing either a nested or a contiguous design is to divide the832

design into whole frames. We consider a design in which there are two rectangles (whole833

frames) of shape 4× 8, each of which is a grid. Thus, p = 2, m = 5, s = 2, k = 4, ℓ = 8 and834

r = 1.835

Constructing a nested quasi-Latin rectangle design for two such rectangles is a straight-836

forward application of Method 1 to each rectangle. Different column characters can be837

chosen in the two rectangles.838

We now give two column-contiguous quasi-Latin rectangle designs consisting of two rect-839
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angles of shape 4 × 8. Design 1 is constructed by applying Method 1 to the whole design.840

So, as for the design in Section 5.2, the new design consists of a 2 × 2 array of 4 × 4 sub-841

squares, and two sets of row characters and two sets of columns characters are required.842

Each set contains three characters closed under addition (modulo 2). Also, a unit char-843

acter is required and this must be chosen carefully as it, and its sums with the column844

characters, are confounded with Columns#Grids. The chosen sets of row characters are845

{A+B + C, C +D + E, A+B +D + E} and {A+B + C + E, B + C +D + E, A+D}846

and the sets of column characters are {A+B + C +D, A+ C + E, B +D + E} and847

{A+ C +D + E, B + C +D, A+B + E}. The unit character is B + C + E. It is se-848

lected because none of its sums with column characters results in a main effect.849

Design 2 was constructed using CycDesigN 4.0 and it is also a column-contiguous design.850

It was obtained using default weights in a two-stage search in which each stage was allowed851

to run for between 210 and 420 seconds on a computer running Windows XP. If one stops852

the searches sooner, as discussed in Section 7.1, a design with lower weighted efficiency will853

be obtained.854

The skeleton analysis-of-variance tables for Designs 1 and 2 are in Table 14. They are855

divided into subtables according to the unit sources. The treatment sources confounded856

with a unit source, along with their efficiencies and degrees of freedom, are incorporated857

into the subtable for that unit source. An important difference between the two designs is858

that Design 1 has orthogonal factorial structure whereas Design 2 does not. As a result,859

the estimation of one treatment effect is independent of another for Design 1, but not for860

Design 2. Design 1 also has an advantage over Design 2 in the estimation of two-factor861

interactions. Unlike Design 2, Design 1 has no two-factor interactions partially confounded862

with Columns; it confounds more with Columns#Grids, which is expected to be less variable863

than Columns. The two designs have a similar amount of information about two-factor864

interactions confounded with Rows # Columns [Grids]. Design 1 has more information865

about three-factor interactions confounded with Rows # Columns [Grids].866

Design 3 is constructed like Design 1, but using different characters, so that all main ef-867

fects are estimated with full efficiency from the last unit source and all two- and three-factor868

interactions from the last unit source with as high efficiency as possible. The sets of row char-869

acters are {A+ C +D, B + C + E, A+B +D + E} and870

{B + C +D, A+ C + E, A+B +D + E} and the sets of column characters are871

{A+B, A+D + E, B +D + E} and {D + E, A+B +D, A+B + E}. The unit char-872

acter is A+B + C +D + E.873

Like Designs 3 and 4 in Section 8.1, these contiguous designs can be deployed as row-874

column, nested or contiguous designs, with similar considerations to those outlined in Sec-875

tion 8.1.876
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Table 14. Skeleton analysis-of-variance tables for a 25 factorial experi-
ment in 2 column-contiguous rectangles of 4 rows × 8 columns (G = Grids;
R = Rows; L = Columns)

units treatments

Design 1 Design 2

Source DF Eff.§ Source DF Eff.§ Source¶ DF

Mean 1 1 Mean 1 1 Mean 1

Grids 1

Rows [G] 6 1
2

A#D 1 1
8

B#D 1
1
2

A#B#C 1 1
2

A#B#C 1
1
2

C#D#E 1 1
8

A#B#D 1
1
2

A#B#C#E 1 1
8

A#B#E 1
1
2

A#B#D#E 1 1
4

A#D#E† 1
1
2

B#C#D#E 1 1
4

C#D#E 1

Columns 7 1
2

A#B#E 1 1
4

A#C 1
1
2

A#C#E 1 1
4

B#C 1
1
2

B#C#D 1 1
8

A#D 1
1
2

B#D#E 1 1
16

A#E† 1
1
2

A#B#C#D 1 1
8

D#E† 1
1
2

A#C#D#E 1 1
8

A#B#D 1

Residual 1 1
8

A#C#D 1

L #G 7 1
2

A#B 1 1
4

A#C 1
1
2

A#C 1 1
4

B#C 1
1
2

C#D 1 1
8

A#D 1
1
2

D#E 1 1
16

A#E† 1
1
2

A#B#D 1 1
8

D#E† 1
1
2

A#D#E 1 5
8

A#B#D 1

1 B#C#E 1 1
40

A#C#D† 1

R # L [G] 42 1 Main effects 5 1 Main effects 5

0.67 Two-factor 10 0.68 Two-factor‡ 10

0.53 Three-factor 9 0.21 Three-factor‡ 10

0.50 Four-factor 5 0.56 Four-factor‡ 5

1 A#B#C#D#E 1 1
2

A#B#C#D#E† 1

Residual 12 Residual 11
§For single-degree-of-freedom sources, the efficiencies are the canonical efficiency factors; when a

source is nonorthogonal to previous treatment sources estimated from the same unit source, its

canonical efficiency factor is adjusted for the previous sources. Those for the sources with multiple

degrees of freedom are the harmonic means of the canonical efficiency factors or the A-optimality

criterion (John and Williams, 1995, Section 2.4).
†This source is nonorthogonal to previous treatment sources estimated from the same unit source.
‡Not all these interactions are orthogonal to each other.
¶The following sources are partially confounded with the accompanying unit source, but there is

no information about them remaining after the previous treatment sources have been fitted:

Rows [G]: B#E, C#D, C#E, A#C#D, A#C#E, A#B#D#E, B#C#D#E and A#B#C#D#E;

Columns: A#B#E, A#C#E, B#C#D, B#C#E, B#D#E, C#D#E, A#B#C#D, A#B#C#E

and A#C#D#E;

L # G: A#B#E, A#C#E, B#C#D, B#C#E, B#D#E, C#D#E, A#B#C#D, A#B#C#E and

A#C#D#E.
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9. Discussion877

The (extended) quasi-Latin rectangle designs increase the range of situations in which a row-878

column design with orthogonal factorial structure can be employed for assigning factorial879

treatments. In particular, they allow for more choice in the number of replicates of each880

treatment than is available with quasi-Latin square designs.881

The construction methods that we present are flexible and permit a degree of direct882

control of the confounding in a quasi-Latin design, as shown in Section 7. For example, in883

Sections 7.1 and 7.2, all designs can be produced using our construction methods and the884

designer can choose which two-factor interactions are partially confounded with Columns.885

It would be helpful to practitioners if software assisted in this by searching through possible886

confounding characters and listing them, in the way that PLANOR (Kobilinsky, 1994)887

currently does for fractional factorial designs.888

The methods can be used to produce row-column, nested or contiguous designs as demon-889

strated in Section 8. A contiguous design can always be deployed as a row-column or a nested890

design, by varying the randomization and analysis to suit the deployed design. However,891

the deployed design may not be the best of its type.892

The practice of habitually employing a contiguous design on the basis that nonsignificant893

unit sources can be dropped after a preliminary analysis is discouraged on the grounds that894

this would mean that (i) often the best design is not used and (ii) an analysis strategy895

with undesirable consequences is employed. Our recommendation is that, in designing an896

experiment, the designer identify the expected sources of unit variability for the experiment897

and these determine the unit structure. Then a purpose-built design is constructed of the898

type corresponding to the unit structure for the experiment. The chosen design should be899

randomized, and the results analysed, according to its unit structure.900

Generating quasi-Latin designs using computer search algorithms, such as the one em-901

ployed by CycDesigN, may not produce a design with the properties desired by the designer.902

For example, with CycDesigN as currently implemented, the control over the confounding903

of two-factor interactions is not as flexible as with our construction method. Also, the de-904

sign produced can depend upon the seed for the random number generator and the length905

of the search time. There is also no guarantee that computer-generated designs will have906

orthogonal factorial structure. On the other hand, software like CycDesigN has the distinct907

advantages that it can produce designs for a wider range of design parameters than our908

construction methods and that it is easy to use. Also, a design produced by CycDesigN, if909

one has access to it, can be used as a benchmark for constructed designs, as was done by910

Tran (2009).911
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