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Abstract

In this paper we consider locally optimal designs problems for rational regression

models. In the case where the degrees of polynomials in the numerator and denominator

differ by at most 1 we identify an invariance property of the optimal designs if the

denominator polynomial is palindromic, which reduces the optimization problem by

50%. The results clarify and extend the particular structure of locally c-, D- and E

optimal designs for inverse quadratic regression models which have recently been found

by Haines (1992) and Dette and Kiss (2009). We also investigate the relation between

the D-optimal designs for the Michaelis Menten and EMAX-model from a more general

point of view.
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1 Introduction.

Rational functions have appealing approximation properties and are widely used in regression

analysis. They define a flexible family of nonlinear regression models which can be used

to describe the relationship between a response, say Y , and a univariate predictor, say d
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[see Ratkowsky (1983), Ratkowsky (1990) among many others]. In contrast to ordinary

polynomials rational regression models can be bounded. As a consequence, they can be used

to describe saturation effects, in cases where it is known that the response does not exceed a

finite amount. Similarly, a toxic effect can be produced, in situations where the response is

decreasing and converges eventually to a constant. Two important examples are given by the

Michaelis Menten and the EMAX model which are widely used is such important areas as

medicine, economics, environment modeling, toxicology or engineering [see Johansen (1984),

Cornish-Browden (1995) or Boroujerdi (2002) among many others]

Despite of their importance optimal designs for rational models have only recently been

found. For the Michaelis Menten model optimal designs have been studied by Dunn (1988),

Rasch (1990), Song and Wong (1998), López-Fidalgo and Wong (2002), Dette et al. (2003)

and Dette and Biedermann (2003) among others. Similarly, optimal designs for the EMAX

model have been determined by Merle and Mentre (1995), Wang (2006), Dette et al. (2008)

and Dette et al. (2010). Cobby et al. (1986) determined local D-optimal designs numerically

and Haines (1992) provided some analytical results for D-optimal designs in the inverse

quadratic regression model. Recently Dette and Kiss (2009) extended these results and also

derived D1, E- and optimal extrapolation designs for this class of models. He et al. (1996),

Dette et al. (1999), Imhof and Studden (2001) and Dette et al. (2004) investigated D-, E-

and c-optimal designs for more general rational models.

In the present paper we will derive further results on the structure of optimal designs

for rational regression models. In particular, we consider the case where the degrees of the

polynomials in the numerator and denominator differ by one. Several structural results of

locally optimal designs in these models are derived, which explain the specific structure

found in the case of inverse quadratic regression models by Haines (1992) and Dette and

Kiss (2009). More precisely, for a broad class of optimality criteria we prove an invariance

property of locally optimal designs if the polynomial in the denominator is palindromic. This

reduces the corresponding optimization problems by 50%. In particular we investigate under

which circumstances the results found by Haines (1992) and Dette and Kiss (2009) can be

transferred to other optimality criteria and more general rational regression models.

The remaining part of this paper is organized as follows. In Section 2 we introduce the

class of rational models considered in this paper. Section 3 is devoted to a discussion of the

number of support points of locally optimal designs in these models and to the D-optimal

design problem. Finally, in Section 4 we consider the special case where the polynomial in

the numerator is palindromic (for a precise definition see Section 4). The results of this

paper demonstrate that the specific properties of the optimal designs found in Haines (1992)

and Dette and Kiss (2009) have a deeper background, namely the palindromic structure of

the polynomial in the denominator.
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We finally point out that the designs considered in this paper are locally optimal in the

sense of Chernoff (1953), because they require the specification of the unknown parameters.

These designs are usually used as benchmarks for commonly proposed designs. Moreover,

they are the basis for more sophisticated design strategies, which require less precise knowl-

edge about the model parameters, such as sequential, Bayesian or standardized maximin

optimality criteria [see Chaloner and Verdinelli (1995) and Dette (1997) among others].

2 Rational regression models.

We consider the common nonlinear regression model

E(Y |d) = η(d, θ) , (2.1)

where the regression function η is either given by

η1(d, θ) =
P (d, θ)

Q(d, θ)
=

θ1d+ · · ·+ θpd
p

1 + θp+1d+ · · ·+ θp+qdq
(2.2)

or

η2(d, θ) =
P0(d, θ)

Q(d, θ)
=

θ0 + θ1d+ · · ·+ θpd
p

1 + θp+1d+ · · ·+ θp+qdq
. (2.3)

We define θ = (θ0, θ1, . . . , θt)
T as the corresponding vector of parameters (where t = p+ q or

t = p+ q+1 corresponding to model η1 or η2, respectively) and assume that the explanatory

variable d varies in the design space D, which is either given by a compact interval D =

[d`, du], where d` ≥ 0, or by interval D = [0,∞) . If p ≥ q we always assume that D = [d`, du]

(it is easy to see that otherwise the design problem is not well defined). Additionally, we

assume that Q(d, θ) 6= 0 for all d ∈ D. Note that in the case p = q = 1 the models (2.2)

and (2.3) give the Michaelis Menten and the EMAX model, respectively, which are widely

used is such important areas as medicine, economics, environment modeling, toxicology or

engineering [see Johansen (1984), Cornish-Browden (1995) or Boroujerdi (2002) among many

others]. On the other hand the choice p = 1 and q = 2 yields inverse quadratic regression

models as discussed in Haines (1992) and Dette and Kiss (2009).

We assume that for each experimental condition d an observation Y is available according

to the model (2.1), where different observations are realizations of independent and normally

distributed random variables with variance σ2 > 0. We consider approximate designs in the

sense of Kiefer (1974), which are defined as probability measures on the design space D with

finite support. The support points of an (approximate) design ξ define the locations where

observations are taken, while the weights give the corresponding relative proportions of total

observations to be taken at these points. If the design ξ has masses wi > 0 at the different
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points di (i = 1, . . . , t) and n observations can be made, the quantities win are rounded

to integers, say ni, satisfying
∑t

i=1 ni = n, and the experimenter takes ni observations at

each location di (i = 1, . . . , t). In this case (under regularity conditions) the asymptotic

covariance matrix of the maximum likelihood estimator is given by the matrix σ2

n
M−1(ξ, θ),

where

M(ξ, θ) =

∫
D
f(d, θ)fT (d, θ)dξ(θ)

denotes the information matrix of the design ξ and

f(d, θ) =
∂

∂θ
η(d, θ)

is the gradient of the regression function in model (2.1) with respect to the parameter θ. For

n ∈ N we introduce the notation

hn(d) = (1, d, . . . , dn)T ,

then a similar calculation as in He et al. (1996) shows that for the models (2.2) and (2.3)

the information matrix has the representation

Mi(ξ, θ) = Bi(θ)M̄i(ξ, θ)B
T
i (θ), i = 1, 2, (2.4)

where the matrix M̄i(ξ, θ) is given by

M̄i(ξ, θ) =

∫
D

d2(2−i)

Q4(d, θ)
hp+q−2+i(d)hTp+q−2+i(d)dξ(d) ∈ Rp+q−1+i×p+q−1+i, i = 1, 2. (2.5)

In the representation (2.4) the symbols Bi(θ) denote square matrices of appropriate dimen-

sion with rows given by

b1,i =


(0, 0, . . . , 0︸ ︷︷ ︸

i−1

, 1, θp+1, θp+2 . . . , θp+q, 0, 0, . . . , 0︸ ︷︷ ︸
p−i

), if 1 ≤ i ≤ p,

−(0, 0, . . . , 0︸ ︷︷ ︸
i−p

, θ1, . . . , θp, 0, 0, . . . , 0︸ ︷︷ ︸
p+q−i

), if p+ 1 ≤ i ≤ p+ q.

for model (2.2), and by

b2,i =


(0, 0, . . . , 0︸ ︷︷ ︸

i

, 1, θp+1, θp+2 . . . , θp+q, 0, 0, . . . , 0︸ ︷︷ ︸
p−i

), if 0 ≤ i ≤ p,

−(0, 0, . . . , 0︸ ︷︷ ︸
i−p

, θ0, θ1, . . . , θp, 0, 0, . . . , 0︸ ︷︷ ︸
p+q−i

), if p+ 1 ≤ i ≤ p+ q.
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for model (2.3), respectively. An optimal (approximate) design maximizes an appropriate

concave functional, say Φ, of the information matrix Mi(ξ, θ) which is proportional to the

asymptotic covariance matrix, and there are numerous criteria which can be used for dis-

criminating between competing designs [see Silvey (1980), Pukelsheim (1993) among others].

Note that resulting designs are locally optimal in the sense of Chernoff (1953), because

they require the specification of the unknown parameters. There are many situations where

such preliminary knowledge is available, such that the application of locally optimal de-

signs is well justified [a typical example are phase II dose finding trials, see Dette et al.

(2008)]. However, the most important application of locally optimal designs is their use as

benchmarks for commonly proposed designs. Moreover, they are the basis for more sophis-

ticated design strategies, which require less precise knowledge about the model parameters,

such as sequential, Bayesian or standardized maximin optimality criteria [see Chaloner and

Verdinelli (1995) and Dette (1997) among others].

3 Number of support points and locally D-optimal de-

signs

Throughout this paper we assume that the function Φ is an information function in the

sense of Pukelsheim (1993) and are interested in a most precise estimation of KT θ where

K ∈ Rs×t is a given matrix of rank s and t = p+ q or t = p+ q+ 1 corresponding to models

(2.2) and (2.3), respectively. Throughout this section the matrix M(ξ, θ) is either M1(ξ, θ)

or M2(ξ, θ) corresponding to model (2.2) and (2.3), respectively. A locally Φ-optimal design

ξ∗ for estimating KT θ maximizes the function

Φ(CK(M(ξ, θ))) (3.1)

in the class of all models for which KT θ is estimable, that is range(K) ∈ range(M(ξ, θ)). In

(3.1) the matrix CK is defined by

CK(M(ξ, θ)) = (KTM−(ξ, θ)K)−1

and A− denotes a generalized inverse of the matrix A. Our first result refers to the number

of support points of optimal designs in the rational regression model (2.3) and requires some

concepts of classical approximation theory. Following Karlin and Studden (1966) a set of

functions {g0, . . . , gk} defined on an interval D is called Chebychev-system, if every linear

combination
∑k

i=0 aigi(d) with
∑k

i=0 a
2
i > 0 has at most k distinct roots on D. This property

is equivalent to the fact that

det(g(d0), . . . , g(dk)) 6= 0
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holds for all d0, . . . , dk ∈ D with di 6= dj (i 6= j), where g(d) = (g0(d), . . . , gk(d))T denotes the

vector of all functions [see Karlin and Studden (1966)]. If the functions g0, . . . , gk constitute

a Chebyshev-system on the set D, then there exists a unique “polynomial”

φ∗(d) :=
k∑
i=0

α∗i gi(d) (α∗0, . . . , α
∗
k ∈ R) (3.2)

with the following properties

(i) | φ∗(d) | ≤ 1 ∀d ∈ D
(ii) There exist k + 1 points s0 < · · · < sk such that φ∗(si) = (−1)k−i for i = 0, . . . , k.

The function φ∗(d) is called the Chebychev-polynomial, and the points s0, . . . , sk are called

Chebychev-points, which are not necessarily unique. They are unique if the constant function

is an element of span{g0, . . . , gk}.

Theorem 3.1 Assume that the polynomial Q in model (2.2) and (2.3) satisfies one of the

following conditions

(a) The function ∂2(p+q)+1

∂d2(p+q)+1 Q
4(d, θ) has no roots in the interior of the interval D.

(b) p ≥ q.

(c) In model (2.2) the functions {d2, . . . , d2(p+q), Q4(d, θ)} form a Chebyshev system on the

interval D \ {0}.

In model (2.3) the functions {1, d, . . . , d2(p+q), Q4(d, θ)} form a Chebyshev system on

the interval D.

In model (2.2) any locally Φ-optimal design for estimating KT θ is supported at at most p+ q

points. In model (2.3) any locally Φ-optimal design for estimating KT θ is supported at at

most p + q + 1 points. Moreover, if all roots of the polynomial Q(d, θ) are smaller than d`
and a locally Φ-optimal design is supported at p+ q + 1 points then its support contains the

boundary point d` of the design space.

Proof. It follows from Pukelsheim (1993) that a design ξ∗ is locally Φ-optimal for

estimating KT θ if an only if there exists a generalized inverse G of the matrix M(ξ∗, θ) and

a matrix D satisfying

Φ(CKM((ξ∗, θ)))Φ∞(D) = trace (CK(M(ξ∗, θ))) = 1,

such that the inequality

fTi (d, θ)GKCK(Mi(ξ
∗, θ))DCK(Mi(ξ

∗, θ))KTGTfi(d, θ) ≤ 1 (3.3)

6



is satisfied for all d ∈ D, where Φ∞ denotes the polar function of Φ and the vector fi is

defined by

fi(d, θ) = Bi(θ)d
2−ihp+q−2+i(d)

Q2(d, θ)
; i = 1, 2,

corresponding to model (2.2) and (2.3), respectively. For model (2.3) corresponding to the

case i = 2 it now follows by the same arguments as given in the proof of Theorem 3.6 in

Chapter X of Karlin and Studden (1966) that any Φ-optimal design has at most p + q + 1

support points [note that these authors consider the D-optimality criterion, but the proof

does not change if the checking condition is of the form (3.3)]. For the second part assume

that the locally Φ-optimal design ξ∗ is supported at p+ q + 1 points but does not have the

boundary point d` as support point. From Theorem 4.2 in Dette and Melas (2011) it follows

that there exists a design ξ̃ with p+ q + 1 support points including the point d`, such that

M2(ξ̃, θ) ≥M2(ξ
∗, θ).

By the concavity of the information function Φ we have for the design ξ̄ = 1
2
(ξ∗ + ξ̃)

Φ(CK(M2(ξ̄, θ))) ≥ Φ(CK(M2(ξ
∗, θ))).

This means that ξ̄ is also Φ-optimal but has at least p+ q+ 2 support contradicting the first

part of the proof. The results for model (2.2) are derived similarly and the arguments are

omitted for the sake of brevity. 2

For the D-optimality criterion Φ(CK(M(ξ, θ))) = |CK(M(ξ, θ))|1/s there exists an inter-

esting connection between locally D-optimal designs which minimize the criterion in the class

of all (p+q)-point designs or (p+q+1)-point designs for model (2.2) and (2.3), respectively.

Note that a standard result in optimal design theory [see Silvey (1980) for example] shows

that these designs are equally weighted.

Theorem 3.2 If the assumptions of Theorem 3.1 are satisfied and

ξ∗D =

(
d1 . . . dp+q
1
p+q

. . . 1
p+q

)

is the locally D-optimal design for model (2.2), then the design

ξ∗D =

(
0 d1 . . . dp+q
1

p+q+1
1

p+q+1
. . . 1

p+q+1

)

is a locally D-optimal for model (2.3).
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Proof. We obtain from Theorem 3.1 that locally D-optimal designs for the rational

regression models (2.2) and (2.3) have p+ q and p+ q+ 1 support points, respectively, and a

standard argument shows that the optimal designs have equal masses at their support points.

Observing the representation (2.4) it follows that a locally D-optimal saturated design for

model (2.3) maximizes the determinant of the matrix

M̄2(ξ, θ) = XT
2 (ξ, θ)diag

(
1

p+q+1
, . . . , 1

p+q+1

)
X2(ξ, θ),

where the matrix X2(ξ, θ) is defined by

X2(ξ, θ) =
(

1
Q2(di,θ)

di
j
)p+q
i,j=0

and diag(a1, . . . , ak) denotes a diagonal matrix with diagonal elements a1, . . . , ak. A straight-

forward calculation yields for this determinant

det(M̄2(ξ, θ)) =
1

(p+ q + 1)p+q+1
det(X2(ξ, θ))

2

=
1

(p+ q + 1)p+q+1

p+q∏
i=0

1

Q4(di, θ)

∏
0≤i<j≤p+q

(di − dj)2.

By Theorem 3.1 the smallest support point of the locally D-optimal design is given by d0 = 0

and the corresponding determinant reduces to

det(M̄2(ξ, θ)) =
1

(p+ q + 1)p+q+1

1

Q4(0, θ)

p+q∏
i=1

d2i
Q4(di, θ)

∏
1≤i<j≤p+q

(di − dj)2

which has to be maximized with respect to the choice of d1 . . . dp+q. Now a similar calculation

shows that the same optimization problem arises in the maximization of the determinant

of the information matrix in model (2.2) in the class of all (p + q)-point designs and the

assertion of Theorem 3.2 follows. 2

Example 3.1 Consider the case p = q = 1 and D = [0, 1], where (2.2) and (2.3) correspond

to the Michaelis-Menten and EMAX model, respectively. The locally D-optimal design has

been determined in Rasch (1990) and puts equal masses at the two points 1
2+θ2

and 1. The

corresponding EMAX model is given by

η2(d, η) =
θ0 + θ1d

1 + θ2d

for which the locally D-optimal design has not been stated explicitly in the literature. By

Theorem 3.1 and 3.2 this design has 3 support points and puts equal masses at the points

0, 1
2+θ2

and 1.
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4 Palindromic polynomials

In this section we investigate the case q = p + 1 in model (2.2) and q = p in model (2.3)

in more detail in the case where the polynomial in the denominator is palindromic, which

means that the coefficients of the polynomial in the denominator

Q`(d, θ) = 1 + θp+1d+ · · ·+ θ2p+`d
p+` (4.1)

satisfy θ2p+` = 1 and θ2p−1+`−i = θp+1+i (i = 0, . . . , bp−1+`
2
c), where the choice ` = 1 and

` = 0 correspond to model (2.2) and (2.3), respectively. It is easy that this condition is

equivalent to the equation

d2(p+`)Q2
`(

1

d
, θ) = Q2

`(d, θ) (` = 0, 1). (4.2)

4.1 Locally c-optimal designs for model (2.2)

We begin with an investigation of c-optimal designs, which maximize the function

(cTM−
1 (ξ, θ)c)−1

for a given vector c ∈ R2p+1 in the class of all designs satisfying range(c) ∈ range(M(ξ, θ))

(note that we have s = 1, K = c in the general optimality criterion). By the discussion in

Section 2 the gradient of the regression function η1 in model (2.3) is given by

f1(d, θ) = B1(θ)
d

Q2(d, θ)

(
1, d, . . . , d2p

)T
= B1(θ)

d

Q2(d, θ)
h2p(d), (4.3)

where Q(d, θ) is defined in (4.1) and satisfies (4.2). Therefore a straightforward calculation

shows that

f1(
1

d
, θ) = B1(θ)

d

Q2(d, θ)

(
d2p, . . . , d, 1

)T
= B1(θ)D

d

Q2(d, θ)
h2p(d) = B1(θ)DB

−1
1 (θ)f1(d, θ) = D̃f1(d, θ),

where the matrices D and D̃ are given by

D =

0 1
. . .

1 0


(all other entries in the matrix D are 0) and

D̃1 = B1(θ)DB
−1
1 (θ), (4.4)
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respectively. Obviously the functions

g1(d) =
d

Q2(d, θ)
, . . . , g2p+1(d) =

d2p+1

Q2(d, θ)
(4.5)

form a Chebyshev system on the interval D\{0}. This means that for all α1, . . . , α2p+1 with∑2p+1
j=1 α2

j > 0 the function
2p+1∑
j=1

αjgj(d)

has at most 2p roots, where roots in the interior of D \ {0}, where no sign changes are

counted twice [see Karlin and Studden (1966), p. 23].

Define the set A∗ ⊂ R2p+1 as the set of all vectors ĉ = (ĉ1, . . . , ĉ2p+1)
T ∈ R2p+1 such that

the condition ∣∣∣∣∣∣∣∣∣
g1(d1) . . . g1(d2p) ĉ1
g2(d1) . . . g2(d2p) ĉ2

...
...

...

g2p+1(d1) . . . g2p+1(d2p) ĉ2p+1

∣∣∣∣∣∣∣∣∣ 6= 0 (4.6)

is satisfied for all d1, . . . , d2p ∈ D \ {0} (with di 6= dj). If d∗1, . . . , d
∗
k are Chebyshev points

(see the discussion in Section 3) and φ∗ is the corresponding Chebyshev polynomial then the

inequality (φ∗)2(d) ≤ 1 for all d ∈ D is equivalent to the inequality

∆(d) = d2S4p(d)− S̃4p+4(d) ≤ 0

for all d ∈ D, where S4p and S̃4p+4 are polynomials of degree 4p and 4p + 4 with positive

leading coefficients, respectively. Because ∆(d∗i ) = 0 (i = 1, . . . , k) a careful counting

argument shows that k = 2p + 1 and consequently the Chebyshev points d∗1, . . . , d
∗
2p+1 are

uniquely determined. If ĉ ∈ A∗, define the weights

w∗i =
|vi|∑2p+1
j=0 |vj|

i = 1, . . . , 2p+ 1, (4.7)

where the vector v is given by

v = (XTX)−1XT ĉ,

and X =
(
gi(d

∗
j)
)2p+1

i,j=1
. It now follows from Theorem 7.7 in Chapter X of Karlin and Studden

(1966) that the design, which puts masses w∗1, . . . w
∗
2p+1 at the points d∗1, . . . d

∗
2p+1 minimizes

ĉTM̄−
1 (ξ, θ)ĉ.
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Theorem 4.1 Consider the model (2.2) with D = (0,∞) with q = p+ 1 and polynomial Q

satisfying (4.2). If ĉ = B−11 (θ)c ∈ A∗ then the c-optimal design ξ∗c in model (2.2) is uniquely

determined and has 2p+ 1 points d∗1 < d∗2 < · · · < d∗2p+1 satisfying

d∗2p+2−j =
1

d∗j
j = 1, . . . , p+ 1. (4.8)

In particular d∗p+1 = 1 and the weights are given by (4.7).

Proof. A c-optimal design minimizes the criterion

cTM−1
1 (ξ, θ)c = cTBT

1 (θ)
−1
M̄−1

1 (ξ, θ)B1(θ)
−1c = ĉTM̄−1

1 (ξ, θ)ĉ,

where the matrix M̄1 and the vector ĉ are defined by (2.5) and ĉ = B−1(θ)c, respectively.

Consider the Chebyshev polynomial

φ∗(d) =

2p+1∑
i=1

α∗i gi(d, θ)

defined in (3.2). By the discussion in Section 3 and in the previous paragraph there exist

exactly 2p+ 1 points 0 < d∗1 < . . . < d∗2p+1 in D such that the values φ∗(di) alternate in sign

and |φ∗(di)| = supd∈D |φ∗(d)|; i = 1, . . . , 2p+ 1.

Because ĉ = B−11 (θ)c ∈ A∗ the discussion in the previous paragraph also shows that the

design ξ∗c with masses w∗i defined in (4.7) at the points d∗i (i = 1, . . . , 2p + 1) is the unique

design which minimizes ĉTM̄−1
1 (ξ, θ)ĉ, that is the design ξ∗c is the unique c-optimal design for

the model (2.2). We show at the end of the proof that the Chebyshev polynomial satisfies

φ∗(d) = φ∗(1/d), (4.9)

then it follows that for each Chebyshev point d∗i the point 1/d∗i is also a Chebyshev point.

Now consider the p + 1 smallest Chebyshev points 0 < d∗1 < · · · < d∗p < d∗p+1 and

note that φ∗(d∗i ) = (−1)iε sup{|φ∗(d)|
∣∣d ∈ D} (i = 1, . . . , p + 1) for some ε ∈ {−1, 1}

and d∗p < 1. Define d̃j = d∗j (j = 1, . . . , p + 1) and d̃j+p+1 = 1/d∗2p+2−j (j = 1, . . . , p).

Then the points d̃1, . . . , d̃2p+1 obviously satisfy (4.8) and are also the Chebyshev points, by

(4.9). Consequently, they must coincide with d∗1, . . . , d
∗
2p+1. By the discussion in the previous

paragraph the c-optimal design is supported at these points. Moreover, d∗p+1 = 1, because

otherwise there would exist 2p+ 2 Chebyshev points.

The proof will now be completed by showing the property (4.9). For this purpose we

consider the problem of approximating the function g2p+1 by a linear combination of the

functions g1, . . . , g2p in (4.5) with respect to the sup-norm, that is

m∗ = min
α1,...,α2p

sup
d∈D

∣∣∣g2p+1(d)−
2p∑
j=1

αjgj(d)
∣∣∣ (4.10)
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by Theorem 1.1 in Karlin and Studden (1966), Chapter IX, it follows that there exist 2p+ 1

points d∗1 < · · · < d∗2p+1 in D, such that the solution ψ∗(d) = g2p+1(d) −
∑2p

j=1 α
∗
jgj(d) of

(4.10) satisfies supd∈D |ψ∗(d)| = m∗ and

m∗(−1)iε = ψ∗(di) i = 1, . . . , 2p+ 1

for some ε > 0. Therefore ψ∗ must be proportional to the Chebyshev polynomial, that is

φ∗ = εψ∗/m∗ for some ε ∈ {−1, 1}, where 1/m∗ is the coefficient of g2p+1 in φ∗. On the

other hand, m∗φ∗(1/d) is the unique solution of the minimax problem

m∗ = min
β1,...,β2p

sup
d∈D

∣∣∣g2p+1(
1

d
)−

2p∑
j=1

βjgj(
1

d
)
∣∣∣ = min

β2,...,β2p+1

sup
d∈D

∣∣∣g1(d)−
2p+1∑
j=2

βjgj(d)
∣∣∣,

where we have used the fact that

gj(
1

d
) =

d−j

Q2(1
d
, θ)

=
d2p+2−j

Q2(d, θ)
= g2p+2−j(d) j = 1, . . . , 2p+ 1,

which follows from (4.2). By the same argument as in the previous paragraph it follows that

the coefficient of g1 in φ∗ is 1/m∗, which means that the coefficients of g1 and g2p+1 in the

representation of φ∗ coincide. Repeating these arguments for the other coefficients of φ∗ we

obtain

φ∗(
1

d
) = φ∗(d),

which completes the proof of Theorem 4.1. 2

Example 4.1 Dette et al. (2010) considered locally optimal design problems for the inverse

quadratic regression model

u

κ0 + κ1u+ κ2u2
; u ∈ (0,∞). (4.11)

If the explanatory variable u is scaled by the transformation d = d(u) =
√
κ2/κ0u it is

easy to see that locally ĉ-optimal designs in model (4.11) can be obtained from the locally

c-optimal designs for the model (2.3) with p = 1 and q = 2 with

c = B1(θ)E
−1
1 (θ)ĉ

by transforming the support points via d →
√
κ0/κ2 d and leaving the weights unchanged.

Here the matrices B1(θ) and E1(θ) are defined by

B1(θ) =

 1 θ2 θ3
0 −θ1 0

0 0 −θ1

 ; E−11 (θ) = diag(κ
1/2
0 κ

1/2
2 , κ2, κ

−1/2
0 κ

3/2
2 )
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and θ3 = 1, θ2 = κ1(κ0κ2)
−1/2 (note that it is not necessary to specify θ1). Consequently,

the support of a ĉ-optimal design is of the form {1/ρ, 1, ρ} if E−1(θ)ĉ ∈ A∗, which implies

that in the original parametrization (4.11) the support of the ĉ-optimal design is of the form{
1

ρ

√
κ0
κ2
,

√
κ0
κ2
, ρ

√
κ0
κ2

}
(4.12)

if E−1(θ)ĉ ∈ A∗. Dette and Kiss (2009) considered the case ĉ = (0, 0, 1)T for which E−1(θ)ĉ

is of the form (0, 0, κ
−1/2
0 κ

3/2
2 )T and obviously an element of set A∗. Similarly, if extrapolation

at a point u0 in model (4.11) with design space U = (0, du] is of interest, then

E−1(θ)ĉ = κ
1/2
0 κ

1/2
2

u0
(κ0 + κ1u0 + κ2u20)

2

 1

κ
−1/2
0 κ

1/2
2 u0

κ−10 κ2u
2
0

 ,

and it is easy to see that this vector satisfies E−1(θ)ĉ ∈ A∗. Consequently, the support of

the optimal extrapolation design in model (4.11) on the interval (0, du] is of the form (4.12)

if t ≥ ρ
√
κ0/κ2. Therefore the first parts of Theorem 3.1 and 3.3 in Dette and Kiss (2009)

are consequences of Theorem 4.1 of this paper.

4.2 Locally Φ`-optimal designs for model (2.2)

We now consider general Φ`-optimal designs for estimating KT θ in model (2.2) with q = p+1

and polynomial Q satisfying (4.2). The following result identifies a condition, which implies

that the support of the locally Φ`-optimal design satisfies a similar invariance property as

specified in (4.8).

Theorem 4.2 For ` ∈ [−∞, 1] let Φ`(CK(M(ξ, θ))) = (1
s
tr(C`

K(M(ξ, θ))))1/` denote the

Φ`-optimality criterion and assume that

D̃1KA
−1 = K (4.13)

for some orthogonal matrix A ∈ Rs×s where the matrix D̃1 is defined in (4.4). Then there

exists a number t∗ ∈ {1, . . . , 2p + 1} and a locally Φ`-optimal design ξ∗ for estimating KT θ

in model (2.2) with D = (0,∞) and q = p+ 1 has masses w∗1, . . . , w
∗
t∗ at points d∗1 < . . . , d∗t∗,

which satisfy

d∗t∗+1−j =
1

d∗j
j = 1, . . . , t∗ (4.14)

w∗t∗+1−j = w∗j j = 1, . . . , t∗ (4.15)
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In particular, if s = 2p + 1 and the matrix K is non-singular, then condition (4.13) can be

rewritten as

(KKT )−1D̃−11 KKT = D̃1, (4.16)

t∗ = 2p+ 1, the locally Φ`-optimal design is uniquely determined and d∗p+1 = 1.

Proof. Let

ξ =

(
d1, . . . , dt
w1, . . . , wt

)
denote a locally Φ`-optimal design for estimating KT θ in model (2.2) and define

ξ̄ =

(
1
d1
, . . . , 1

dt

w1, . . . , wt

)
.

with t ∈ {1, . . . , 2p + 1}. Observing (4.3) and the definition of the matrix D̃1 in (4.4) it

follows by a straightforward calculation that

M1(ξ̄, θ) =
t∑
i=1

f1(
1

di
, θ)fT1 (

1

di
, θ)wi

= D̃1

t∑
i=1

f1(di, θ)f
T
1 (di, θ)wiD̃

T
1 = D̃1M1(ξ, θ)D̃

T
1 .

¿¿From the assumption D̃KA−1 = K we have (Pukelsheim (1993), Chapter 3.2 and 3.21)

CK(M(ξ̄1, θ)) = min
{
LM1(ξ̄, θ)L

T
∣∣LK = Is, L ∈ Rs×(2p+1)

}
= A−1 min

{
ALM1(ξ̄, θ)L

TAT
∣∣ALKA−1 = Is, L ∈ Rs×(2p+1)

}
A

= A−1 min
{
ALD̃1M1(ξ, θ)D̃

T
1 L

TAT
∣∣ALD̃1D̃1KA

−1 = Is, L ∈ Rs×(2p+1)
}
A

= A−1 min
{
L̃M1(ξ, θ)L̃

T
∣∣L̃K = Is, L ∈ Rs×(2p+1)

}
A

= A−1CK(M1(ξ, θ))A,

and the orthogonality of the matrixA shows that the matrices CK(M1(ξ, θ)) and CK(M1(ξ̄, θ))

have the same eigenvalues, which implies Φ`(CK(M1(ξ, θ))) = Φ`(CK(M1(ξ̄, θ))). If 1 ∈
supp(ξ), define t∗ = 2t− 1, otherwise define t∗ = 2t and consider the design

ξ∗ =
ξ + ξ̄

2
=

(
d∗1, . . . , d

∗
t∗

w∗1, . . . , w
∗
t∗

)
with support points d∗1 < . . . < d∗t∗ and corresponding weights w∗1, . . . , w

∗
t∗ . Then it is easy

to see that the support points and weights of ξ∗ satisfy (4.14) and (4.15), respectively.

14



Moreover, by the concavity of the Φ`-optimality criterion and the mapping M → CK(M)

[see Pukelsheim (1993), Chapter 3.13] we have

Φ`(CK(M1(ξ
∗, θ))) ≥ 1

2

(
Φ`(CK(M1(ξ, θ))) + Φ`(CK(M1(ξ̄, θ)))

)
= Φ`

(
CK(M1(ξ, θ))

)
which shows that the design ξ∗ is also Φ`-optimal for estimating KT θ in model (2.2) and

proves the first part of Theorem 4.2.

For a proof of the second part note that it follows from Theorem 3.1 that for a non-

singular matrix K ∈ R2p+1×2p+1 the Φ`-optimal design is supported at exactly 2p+ 1 points

and that the condition (4.16) is a direct consequence of (4.13) in this case. 2

For the D-optimality criterion a stronger version of Theorem 4.2 is available, which

follows directly from its proof.

Corollary 4.1 If

D̃1KA
−1 = K

for some nonsingular matrix A ∈ Rs×s, then there exists a locally D-optimal design for

estimating KT θ in model (2.2) with q = p + 1 and D = (0,∞) with masses w∗1, . . . , w
∗
t∗ at

the points d∗1 < . . . < d∗t∗ with t∗ ∈ {1, . . . , 2p+ 1}, which satisfies (4.14) and (4.15).

4.3 Locally optimal designs for model (2.3)

In this section we briefly discuss similar results for the model (2.3) with p = q and palindromic

polynomial in the denominator. In this case the design space is bounded (otherwise the

design problems are not well defined) and it follows from the discussion in Section 2 that

the gradient of the expected response with respect to the parameter θ is given by

f2(d, θ) = B2(θ)
h2p(d)

Q2(d, θ)

where Q is a polynomial of a degree p. It follows from Theorem 3.1 that any Φ-optimal

design is supported at at most p + q + 1 points. Moreover, a similar argument as used in

the proof of this result (using the equivalence theorem in (3.3)) shows that if the locally

Φ-optimal design is supported at exactly p + q + 1 points, then the support includes both

boundary points of the design space (note that p = q).

Now assume that Q is palindromic, then the coefficients in the polynomial Q(d, θ) =∑p
j=0 θjd

j satisfy θ0 = 1 and

θp−j = θj ; j = 0, . . . , p.

15



It is now easy to see that Q(1
d
, θ) = d−pQ(d, θ), which implies

f2(
1

d
, θ) = B2(θ)D

h2(d)

Q2(d, θ)
= D̃2f2(d, θ)

where D̃2 = B2(θ)DB
−1
2 (θ) and D is defined in Section 4.1. It is now easy to see that the

statement of the previous remain valid. For a precise statement, define the set B∗ ⊂ R2p+1

as the set of all vectors ĉ = (ĉ1, . . . , ĉ2p+1)
T satisfying (4.6), where the functions g1, . . . , g2p+1

in the determinant are given by gj(d) = dj−1/Q2(d, θ) (j = 1, . . . , 2p+ 1).

Theorem 4.3 Consider the model (2.3) with p = q, design space D = [1/du, du] and poly-

nomial Q(d, θ) satisfying (4.2).

(a) If ĉ = B−12 (θ)c ∈ B∗, then the c-optimal design has 2p+ 1 support points 1/du = d1 <

d2 < · · · < d2p+1 = du satisfying (4.8) and the weights are given by (4.7).

(b) If there exists an orthogonal matrix A ∈ Rs×s such that D̃2KA
−1 = K, then there exists

a number t∗ ∈ {1, . . . , 2p+1} such that the Φ`-optimal design has masses w∗1, . . . , w
∗
t∗ at

the points d∗1 < d∗2 < · · · < d∗t∗, which satisfy (4.14) and (4.15), respectively. Moreover,

if s = 2p + 1 and K is non-singular, then t∗ = 2p + 1 and the support of the optimal

design contains the boundary points 1/du and du of the design space. For the D-

optimality criterion (` = 0) these statements remain valid if the matrix A is non-

singular (but not necessarily orthogonal).

Example 4.2 Consider the problem of constructing D-optimal designs for the model

η2(x, θ) =
θ0 + θ1x+ θ2x

2

1 + θ3x+ θ4x2
(4.17)

where x = [0.2, 5]. In this case we have K = Is and the condition of part (b) of Theorem

4.3 is obviously satisfied. The D-optimal design (with θ4 = 1) puts equal masses at the

points 0.2, 1/x, 1, x, 5. The remaining point x can now easily be found numerically. For

example, if θ3 = 2, θ4 = 1, the support points are given by 0.2, 0.3923, 1, 2.54884, 5 while

for θ3 = 8, θ4 = 1 the support is given by 0.2, 0.4031, 1, 2.8408, 5. The corresponding plots

of the equivalence theorem are depicted in Figure 1.
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Figure 1: The checking condition (3.3) for the D-optimality criterion for the model (4.17).

Solid curve θ3 = 2; dashed curve θ3 = 8.
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