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Abstract

We consider the four-graviton amplitudes in CHL constructions providing four-dimensional N =

4 models with various vector multiplet. We show that in these models the two-loop amplitude

factorizes a ∂2R4. This implies a non-renormalisation theorem for the R4 term, which forbids the

appearance of a three-loop ultraviolet divergence in four dimensions in the four-graviton amplitude.

We connect the special nature of the R4 term to the U(1) anomaly of pure N = 4 supergravity.
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I. INTRODUCTION

N = 4 supergravity in four dimensions has sixteen real supercharges and SU(4) for R-

symmetry group. The gravity supermutiplet is composed of a spin 2 graviton and two spin

0 real scalars in the singlet representation of SU(4), four spin 3/2 gravitini and four spin

1/2 fermions in the fundamental representation 4 of SU(4), and six spin 1 gravi-photons in

the 6 of SU(4).

The only matter multiplet is the vector multiplet composed by one spin 1 vector which

is SU(4) singlet, four spin 1/2 fermions transforming in the fundamental of SU(4), and six

spin 0 real scalars transforming in the 6 of SU(4). The vector multiplets may be carrying

non-Abelian gauge group from a N = 4 super-Yang-Mills theory.

Pure N = 4 supergravity contains only the gravity supermultiplet and the two real

scalar can be assembled into a complex axion-dilaton scalar S parametrizing the coset space

SU(1, 1)/U(1). This multiplet can be coupled to nv vector multiplets, whose scalar fields

parametrize the coset space SO(6, nv)/SO(6)× SO(nv) [1].

N = 4 supergravity theories can be obtained by consistent dimensional reduction of

N = 1 supergravity in D = 10, or from various string theory models. For instance the

reduction of the N = 8 gravity super-multiplet, leads to N = 4 gravity super-multiplet four

spin 3/2 N = 4 super-multiplet, and six vector-multiplet

(21, 3/28, 128, 1/256, 070)N=8 = (21, 3/24, 16, 1/24, 01+1)N=4 (I.1)

⊕ 4 (3/21, 14, 1/26+1, 04+4̄)N=4

⊕ 6 (11, 1/24, 06)N=4 .

Removing the four spin 3/2 N = 4 supermultiplet leads to N = 4 supergravity coupled to

nv = 6 vector multiplet.

In order to disentangle the contributions from the vector multiplets and the gravity su-

permultiplets, we will use CHL models [2–4] that allow to construct N = 4 four dimensional

heterotic string with gauge groups of reduced rank. In this paper we will work at a generic

point of the moduli space in the presence of (diagonal) Wilson lines where the gauge group

is Abelian.

Various CHL compactifications in four dimensions can obtained by considering ZN orb-

ifold [3, 5, 6] of the heterotic string on T 5 × S1. The orbifold acts on the current algebra
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and the right-moving compactified modes of the string (world-sheet supersymmetry is on

the left moving sector) together with an order N shift along the S1 direction. This leads

to four-dimensional models N = 4 with nv = 48/(N + 1)− 2 vector multiplets at a generic

point of the moduli space. Models with (nv, N) ∈ {(22, 1), (14, 2), (10, 3), (6, 5), (4, 7)} have

been constructed. No no-go theorem are known ruling out the nv = 0 case although it will

probably not arise from an asymmetric orbifold construction.1

One important point about the CHL model is that orbifold action does not alter the left

moving supersymmetric sector of the theory and the fermionic zero mode saturation in these

models will be identical as in the toroidally compactified heterotic string. It was shown in [7–

9] that the t8tr(R4) and t8tr(R2)2 are half-BPS statured couplings, receiving contributions

only from the short multiplet of the N = 4 super-algebra, and without perturbative contri-

butions beyond one-loop. These non-renormalisation theorems were confirmed in [10] using

the explicit evaluation of the genus-two four-graviton heterotic amplitude derived in [11–13].

We show in this paper that the genus-two four-graviton amplitude in CHL model sat-

isfy the same non-renormalisation theorems, since the genus-two four-graviton amplitude

factorizes the mass dimension ten ∂2R4 operator in each kinematic channel. By taking the

field theory limit of these amplitudes in four dimensions no reduction of derivative is found

for generic numbers of vector multiplets. Since this result is independent on the number of

vector multiplets in the model, we conclude that this rules out the appearance of a R4 ultra-

violet counter-term at three-loop order in four dimensional pure N = 4 supergravity. Thus

the four-graviton scattering amplitude is ultraviolet finite at three loops in four dimensions.

The paper is organized as follows. In section II we will give the form of the one- and

two-loop four-graviton amplitude in orbifold CHL models. In section III we evaluate their

field theory limit in four dimensions. In section IV we discuss the implication of these results

for the ultraviolet properties of pure N = 4 supergravity.

Note: As this paper was being finalized, the preprint [14] appeared on the arXiv. In this

work the absence of three-loop divergence in the four-graviton amplitude in four dimensions

is obtained by a direct field theory computation.

1 We would like to thank A. Sen for a discussion on this point.
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II. ONE- AND TWO-LOOP AMPLITUDES IN CHL MODELS

Our convention are that the left-moving sector of the heterotic string is the supersym-

metric sector, while the right-moving contains the current algebra.

We evaluate the four-graviton amplitude in four dimensional CHL heterotic string models.

We show that the fermionic zero mode saturation is model independent and similar to the

torus compactification.

A. The one-loop amplitude in string theory

The expression of the one-loop four-graviton amplitude in CHL models in D = 10 − d

dimensions is an immediate extension of the amplitude derived in [15]

M(nv)
4,1−loop = N1 t8F

4

∫
F

d2τ

τ
2− d

2
2

Z(nv)
1

∫
T

∏
1≤i<j≤4

d2νi
τ2

W(1) e−
∑

1≤i<j≤4 2α′ki·kjP (νij) . (II.1)

Where N1 is a constant of normalisation, F := {τ = τ1 + iτ2, |τ | ≥ 1, |τ1| ≤ 1
2
, τ2 > 0} is a

fundamental domain for SL(2,Z) and the domain of integration T is defined as T := {ν =

ν1 + iν2; |ν1| ≤ 1
2
, 0 ≤ ν2 ≤ τ2}. Z(nv)

1 is the genus-one partition function of the CHL model.

The polarisation of the rth graviton is factorized as h
(r)
µν = ε

(r)
µ ε̃

(r)
ν . We introduce the

notation t8F
4 := tµ1···µ88

∏4
r=1 k

(r)
µ2r−1 ε

(r)
µ2r . The quantity W(1) arises from the contractions of

the right-moving part of the graviton vertex operator

W(1) :=
〈
∏4

j=1 ε
j · ∂̄X(zj)e

ikj ·x(zj)〉
〈
∏4

j=1 e
ikj ·x(zj)〉

=
4∏
r=1

ε̃(r)νr t
ν1···ν4
4;1 , (II.2)

with t̂ν1···ν44;1 the quantity evaluated in [15]

t̂ν1···ν44;1 := Qν1
1 · · ·Qν4

4 +
2

α′
(Qν1

1 Q
ν2
2 δ

ν3ν4T (ν34)+perms)+
4

α′2
(δν1ν2δν3ν4T (ν12)T (ν34)+perms) ,

(II.3)

where

Qµ
I :=

4∑
r=1

k(r)µ ∂̄P (νIr|τ); T (ν) := ∂̄2
νP (ν|τ) .

We follow the notations and conventions of [16, 17]. The genus one propagator is given by
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P (ν|τ) := −1

4
log

∣∣∣∣θ1(ν|τ)

θ′1(0|τ)

∣∣∣∣2 +
πν2

2

2τ2

. (II.4)

In the α′ → 0 limit relevant for the field theory analysis in section III, with all the radii

of compactification R2
i ∼ α′, the mass of the Kaluza-Klein excitations and winding modes

go to infinity and the genus-one partition function Z(nv)
1 has the following expression in

q̄ = exp(−2iπτ̄)

Z(nv)
1 =

1

q̄
+ c1

nv
+O(q̄) . (II.5)

The 1/q̄ contribution is the “tachyonic” pole, c1
nv

depends on the number of vector multiplet

and higher powers of q̄ are massive string contribution that will not contribute in the field

theory limit.

B. The two-loop amplitude in string theory

By applying the technics of [10–13], for evaluating the heterotic string two-loop amplitude

we obtain that the four gravitons amplitude in the CHL models is given by

M(nv)
4,2−loop = N2

t8F
4

64π14

∫
|d3Ω|2

(det=mΩ)5− d
2

Z(nv)
2

∫ 4∏
i=1

d2νiW(2) Ys e−
∑

1≤i<j≤4 2α′ki·kjP (νij)

(II.6)

where N2 is a normalization constant, Z(nv)
2 (Ω, Ω̄) is the genus-two partition function and

W(2) :=
〈
∏4

j=1 ε
j · ∂̄X(zj)e

ikj ·x(zj)〉
〈
∏4

j=1 e
ikj ·x(zj)〉

=
4∏
i=1

ε̃νii t
ν1·ν4
4;2 . (II.7)

The tensor tν1·ν44;2 is the genus-two equivalent of the genus-one tensor given in (II.3)

tν1···ν44;2 = Qν1
1 · · ·Qν4

4 +
2

α′
Qν1

1 Q
ν2
2 T (ν34)δν3ν4 +

4

(α′)2
δν1ν2δν3ν4T (ν12)T (ν34) + perms , (II.8)

this time expressed in terms of the genus-two bosonic propagator

P (ν1 − ν2|Ω) := − log |E(ν1, ν2|Ω)|2 + 2π(=mΩ)−1
IJ (=m

∫ ν2

ν1

ωI)(=m

∫ ν2

ν1

ωJ) . (II.9)

where E(ν) is the genus-two prime form, Ω is the period matrix and the ωI with I = 1, 2 are

the holomorphic abelian differentials. We refer to [13, Appendix A] for the main properties

of these objects.
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The YS quantity, arising from several contributions in the RNS formalism and from the

fermionic zero modes in the pure spinor formalism [18, 19], is given by

3YS = (k1 − k2) · (k3 − k4) ∆12∆34 + (13)(24) + (14)(23) , (II.10)

with

∆(z, w) = ω1(z)ω2(w)− ω1(w)ω2(z) . (II.11)

Using the identity ∆12∆34 + ∆13∆42 + ∆14∆23 = 0 we have the equivalent form YS =

−3 (s∆14∆23 − t∆12∆34).

We use a parametrisation of the period matrix reflecting the symmetries of the field

theory vacuum two-loop diagram considered in the next section

Ω :=

τ1 + τ3 τ3

τ3 τ2 + τ3

 . (II.12)

With this parametrisation the expression for Z(nv)
2 (Ω, Ω̄) is completely symmetric in the

variables qI = exp(2iπτI) with I = 1, 2, 3.

In the limit relevant for the field theory analysis in section III, where r, Ri → 0 with

r2, R2
i � α′, the partition function of the CHL model has the following q̄i-expansion [20]

Z(nv)
2 =

1

q̄1q̄2q̄3

+ anv

∑
1≤i<j≤3

1

q̄iq̄j
+ bnv

∑
1≤i≤3

1

q̄i
+ cnv +O(qi) . (II.13)

III. THE FIELD THEORY LIMIT

In this section we extract the field theory limit of the string theory amplitudes compacti-

fied to four dimensions. We consider the low-energy limit α′ → 0 with the radii of the torus

proportional to
√
α′ so that all the massive Kaluza-Klein states, winding states and excited

string states decouple.

In order to simplify the analyzing we make the following choice of polarisations (1++, 2++, 3−−, 4−−)

and of reference momenta2 q1 = q2 = k3 and q3 = q4 = k1, such that 2t8F
4 = 〈k1 k2〉2 [k3 k4]2,

and 4t8t8R
4 = 〈k1 k2〉4 [k3 k4]4. With these choices the expression for W(g) reduces to

2 Our conventions are that null vector k2 = 0 is parametrized as kαα̇ = kαk̄α̇. The spin 1 polarisa-

tions of positive and negative helicities are given by ε+(k, q)αα̇ := qαk̄α̇√
2 〈q k〉 , ε

−(k, q)αα̇ := − kαq̄α̇√
2 [q k]

,

where q is a reference momentum. One finds that t8F
(1)+ · · ·F (4)+ = t8F

(1)+ · · ·F (4)+ = 0 and

t8F
(1)−F (2)−F (3)+F (4)+ = 1

16 〈k1 k2〉2 [k3 k4]
2
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W(g) = t8t8R
4 (∂̄P (ν12)− ∂̄P (ν14))(∂̄P (ν21)− ∂̄P (ν24))(∂̄P (ν32)− ∂̄P (ν34))(∂̄P (ν42)− ∂̄P (ν43))

+
t8t8R

4

u
∂̄2P (ν24)(∂̄P (ν12)− ∂̄P (ν14))(∂̄P (ν32)− ∂̄P (ν34)) . (III.1)

where s = (k1 + k2)2, t = (k1 + k4)2 and u = (k1 + k3)2. We introduce the notation

W(g) = t8t8R
4 (W(g)

1 + u−1W(g)
2 ).

The main result of this section is that the one-loop amplitudes factorizes a t8t8R
4 and

that the two-loop amplitudes factorizes a ∂2t8t8R
4 term. A more detailed analysis will be

given in the work [20].

A. The one-loop amplitude in field theory

In the field theory limit α′ → 0 with τ2 →∞ and t = α′τ2 fixed, we define ν2 = τ2 ω for

ν = ν1 + iν2.

Because of the 1/q̄ pole in the partition function (II.5) the integration over τ1 yields two

contributions ∫ 1
2

− 1
2

dτ1Z(nv)
1 F (τ, τ̄) = F1 + c1

nv
F0 , (III.2)

where F (τ, τ̄) = F0 + q̄F1 + c.c.+O(q̄2) represents the integrand of the one-loop amplitude.

The bosonic propagator can be split in an asymptotic value for τ2 →∞ (the field theory

limit) and a correction [16]

P (ν|τ) = P∞(ν|τ) + P̂ (ν|τ) (III.3)

where

P∞(ν|τ) =
πν2

2

2τ2

− 1

4
ln

∣∣∣∣sin(πν)

π

∣∣∣∣2
P̂ (ν|τ) = −

∑
m≥1

(
qm

1− qm
sin2(mπν)

m
+ c.c.

)
+ C(τ), (III.4)

where q = exp(2iπτ) and C(τ) is a zero mode contribution which drops out of the amplitude

due to the momentum conversation [16].

We decompose the asymptotic propagator P∞(ν|τ) = π
2
τ2 P

FT (ω) + δ(ν) into a piece

that will dominate in the field theory limit
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P FT (ω) = ω2 − |ω| , (III.5)

and a contribution δ(ν) from the massive string modes [16, appendix A]

δ(ν) =
∑
m6=0

1

4|m|
e2iπmν1−2π|mν2| . (III.6)

The expression for Qµ
I and T in (II.4) become

Qµ
I = QFT µ

I + δQµ
I − π

4∑
r=1

k(r)µ sin(2πν̄Ir) q̄ + o(q̄2) (III.7)

T (ν̄) = T FT (ω) + δT (ν̄) + 2π cos(2πν̄) q̄ + o(q̄2) ,

where

QFT µ
I := −π

2
(2Kµ + qµI ) (III.8)

Kµ :=
4∑
r=1

k(r)µ ωr (III.9)

qµI :=
4∑
r=1

k(r)µ sign(ωI − ωr) (III.10)

T FT (ω) =
πα′

t
(1− δ(ω)) , (III.11)

and

δQµ
I (ν̄) =

4∑
r=1

k(r)µ ∂̄δ(ν̄Ir) = −iπ
2

4∑
r=1

sign(ν2
Ir)k

(r)µ
∑
m≥1

e−sign(ν2Ir) 2iπmν̄Ir (III.12)

δT (ν) = ∂̄2δ(ν̄) = −π2
∑
m≥1

me−sign(ν2Ir) 2iπmν̄Ir .

We introduce the notation

Q(1)(ω) :=
∑

1≤i<j≤4

ki · kj P FT (ωij) , (III.13)

such that ∂ωi
Q(1) = ki ·QFT

i .
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In the field theory limit α′ → 0 with all the radii of compactification R2
i ∼ α′ the integrand

of the string amplitude in (II.1) becomes

M
(nv)
4;1 = N1 t8t8R

4

∫ ∞
0

dτ2

τ
2− d

2
2

∫
∆ω

3∏
i=1

dωi e
tQ(1)(ω) × (III.14)

×
∫ 1

2

− 1
2

dτ1

∫ 1
2

− 1
2

4∏
i=1

dν1
i

1 + c1
nv
q̄ + o(q̄2)

q̄
(W(1)

1 +
1

s13

W(1)
2 ) ×

× exp

( ∑
1≤i<j≤4

2α′ ki · kj

(
δ(νij)−

∑
m≥1

q̄ sin2(πν̄ij) +O(q̄)

))
,

here N1 is a constant of normalisation. The domain of integration ∆ω = [0, 1]3 is decomposed

into three regions ∆w = ∆(s,t) ∪ ∆(s,u) ∪ ∆(t,u) given by the union of the (s, t), (s, u) and

(t, u) domains. In the ∆(s,t) domain the integration is performed over 0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ 1

where Q(1)(ω) = −sω1(ω3 − ω2)− t(ω2 − ω1)(1− ω3) with equivalent formulas obtained by

permuting the external legs labels in the (t, u) and (s, u) regions (see [16] for details).

The leading contribution to the amplitude is given by

M
(nv)
4;1 = N1 t8t8R

4

∫ ∞
0

dτ2

τ
2− d

2
2

∫
∆ω

3∏
i=1

dωi e
tQ(1)(ω) × (III.15)

×
∫ 1

2

− 1
2

4∏
i=1

dν1
i

((
W(1)

1 +
1

u
W(1)

2

)∣∣∣∣
0

(c1
nv
−

∑
1≤i<j≤4

2α′ ki · kj sin2(πν̄ij)) +

(
W(1)

1 +
1

u
W(1)

2

)∣∣∣∣
1

)
.

where (W(1)
1 + 1

u
W(1)

2 )|0 and (W(1)
1 + 1

u
W(1)

2 )|1 are respectively the zeroth and first order in

the q̄ expansion of W(1)
i .

Performing the integrations over the ν1
i variables leads to the following structure for the

amplitude reflecting the decomposition in (I.1)

M
(nv)
4;1 = N1

π4

4

(
c1
nv
MN=4 matter

4;1 +MN=8
4;1 − 4M

N=4 spin 3
2

4;1

)
. (III.16)

The contribution from the N = 8 supergravity multiplet is given by the quantity evaluated

in [21]

MN=8
4;1 = t8t8R

4

∫
∆ω

d3ω Γ (2 + ε) (Q(1))−2−ε , (III.17)

where we have specified the dimension D = 4 − 2ε and Q(1) is defined in (III.13). The

contribution from the N = 4 matter fields vector super-multiplets
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MN=4 matter
4;1 = t8t8R

4 π
4

16

∫
∆ω

d3ω
[
Γ (1 + ε) (Q(1))−1−εW

(1)
2 + Γ (2 + ε) (Q(1))−2−εW

(1)
1

]
(III.18)

where W
(1)
i with i = 1, 2 are the field theory limits of the W(1)

i ’s

W
(1)
2 =

1

u
(2ω2 − 1 + sign(ω3 − ω2))(2ω2 − 1 + sign(ω1 − ω2)) (1− δ(ω24))

W
(1)
1 = 2(ω2 − ω3)(sign(ω1 − ω2) + 2ω2 − 1)×

× (sign(ω2 − ω1) + 2ω1 − 1)(sign(ω3 − ω2) + 2ω2 − 1) . (III.19)

Finally, the N = 4 spin 3/2 gravitino multiplet running in the loop

M
N=4 spin 3

2
4;1 = t8t8R

4

∫
∆ω

d3ω Γ (2 + ε) W̃
(1)
2 (Q(1))−2−ε, (III.20)

where

W̃
(1)
2 = (2ω2 − 1 + sign(ω3 − ω2))(2ω2 − 1 + sign(ω1 − ω2)) . (III.21)

Using the dictionary given in [22, 23], we recognize that the amplitudes in (III.18)

and (III.20) are combinations of scalar box integral functions I
(D=4−2ε)
4 [`n] evaluated in

D = 4 − 2ε with n = 4, 2, 0 powers of loop momentum and I
(D=6−2ε)
4 [`n] with n = 2, 0

powers of loop momentum evaluated in D = 6 − 2ε dimensions. The N = 8 supergravity

part in (III.17) is only given by a scalar box amplitude function I
(D=4−2ε)
4 [1] evaluated in

D = 4− 2ε dimensions.

In [20] we show the presence of rational terms in these N = 4 amplitudes in agreement

with the analysis of [24–27].

B. The two-loop amplitude in field theory

We will follow the notations of [28, section 2.1] where the two-loop four-graviton ampli-

tude in N = 8 supergravity was presented in the world-line formalism. In the field theory

limit α′ → 0 the imaginary part of the genus-two period matrix Ω becomes the period matrix

K := α′=mΩ of the two-loop graph in figure 1

K :=

L1 + L3 L3

L3 L2 + L3

 . (III.22)
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FIG. 1. Parametrisation of the two-loop diagram in field theory. Figure (a) is the vacuum diagram

and the definition of the proper times, and figures (b) and (c) the two configurations contributing

to the four-point amplitude.

We set Li = α′ τi and ∆ = detK = L1L2 + L1L3 + L2L3. The position of a point on the

line l = 1, 2, 3 of length Ll will be denoted by t(l). We choose the point A to be the origin

of the coordinate system, i.e. t(l) = 0 means the point is located at position A, and t(l) = Ll

on the lth line means the point is located at position B.

It is convenient to introduce the rank two vectors vi = t
(li)
i u(li) where

u(1) :=

1

0

 , u(2) :=

0

1

 , u(3) :=

−1

−1

 . (III.23)

The vi are the field theory degenerate form of the Abel map of a point on the Riemann surface

to its divisor. The vectors u(i) are the degenerate form of the integrals of the holomorphic

one-forms ωI . If the integrations on each line is oriented from A to B, the integration element

on line i is duli = dti u
(li). The canonical homology basis (Ai, Bi) of the genus two Riemann

surface degenerate to (0, bi), with bi = Li ∪ L̄3. L̄3 means that we circulate on the middle
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line from B to A. With these definitions we can reconstruct the period matrix (III.22) from∮
b1

du · u(1) =

∫ L1

0

dt1 +

∫ L3

0

dt3 = L1 + L3∮
b2

du · u(2) =

∫ L2

0

dt1 +

∫ L3

0

dt3 = L2 + L3∮
b1

du · u(2) =

∫ L3

0

dt3 = L3∮
b2

du · u(1) =

∫ L3

0

dt3 = L3 , (III.24)

in agreement with the corresponding relations on the Riemann surface
∮
BI
ωJ = ΩIJ . In the

field theory limit of YS (II.10) becomes

3YS = (k1 − k2) · (k3 − k4) ∆FT
12 ∆FT

34 + (13)(24) + (14)(23) (III.25)

where

∆FT
ij = εIJu

(li)
I u

(lj)
J . (III.26)

Notice that ∆FT
ij = 0 when the point i and j are on the same line (i.e. li = lj). Therefore

YS vanishes if three points are on the same line, and the only non-vanishing configurations

are the one depicted in figure 1(b)-(c).

In the field theory limit the leading contribution to YS is given by

YS =


s for l1 = l2 or l3 = l4

t for l1 = l4 or l3 = l2

u for l1 = l3 or l2 = l4

. (III.27)

The bosonic propagator in (II.9) becomes

P FT
2 (vi − vj) := −1

2
d(vi − vj) +

1

2
(vi − vj)T K−1 (vi − vj) , (III.28)

where d(vi − vj) is given by |t(li)i − t
(lj)
j | if the two points are on the same line li = lj or

t
(li)
i + t

(lj)
j is the two point are on different lines li 6= lj.

We find that

∂ijP
FT
2 (vi − vj) = (ui − uj)TK−1(vi − vj) +

sign(t
(li)
i − t

(lj)
j ) if li = lj

0 otherwise
, (III.29)
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and

∂2
ijP

FT
2 (vi − vj) = (ui − uj)TK−1(ui − uj) +

2δ(t
(li)
i − t

(lj)
j ) if li = lj

0 otherwise
, (III.30)

We define the quantity

Q(2) =
∑

1≤i<j≤4

ki · kj P FT
2 (vi − vj) . (III.31)

In this limit the expansion of CHL model partition function Z(nv)
2 is given by in (II.13)

where O(qi) do not contribute to the field theory limit. The integration over the real part

of the component of the period matrix projects the integrand in the following way∫ 1
2

− 1
2

d3<eΩZ(nv)
2 F (Ω, Ω̄) = cnvF0 +F123 +anv (F12 +F13 +F23)+bnv (F1 +F2 +F3) (III.32)

where F (Ω, Ω̄) = F0 +
∑3

i=1 q̄iFi +
∑

1≤i<j≤3 q̄iq̄jFij + q̄1q̄2q̄3 F123 + c.c.+ O(qiq̄i) represents

the integrand of the two-loop amplitude.

When performing the field theory limit the integral takes the form3

M
(nv)
4;2 = N2 t8t8R

4

∫ ∞
0

d3Li
∆2+ε

∮
d4ti YS [W

(2)
1 +W

(2)
2 ] eQ

(2)

. (III.33)

The contribution W
(2)
1 leads two-loop double-box integrals I

(D=4−2ε)
double−box[`

n] with n = 4, 2, 0

up to four powers of loop momentum and s/u I
(D=4−2ε)
double−box[`

m] with m = 2, 0 with up to two

powers of loop momentum evaluated in D = 4 − 2ε. Everything multiplied by s × t8t8R4

or t× t8t8R4 or u× t8t8R4 depending on the channel according to the decomposition of YS

in (III.27).

The contribution W
(2)
2 leads to two-loop double-box integrals I

(D=6−2ε)
double−box[`

n] with n = 2, 0

up to two powers of loop momentum evaluated in D = 6 − 2ε multiplied by s
u
× t8t8R

4

or t
u
× t8t8R

4 or t8t8R
4 depending on the channel according to the decomposition of YS

in (III.27).

We therefore conclude that the field theory limit of the four-graviton two-loop amplitude

of the CHL models with various number of vector multiplet has a ∂2R4 term factorizing the

D = 4− 2ε amplitudes.

3 A detailed analysis of these integrals will be given in [20].
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IV. NON RENORMALISATION THEOREMS

The analysis performed in this paper shows that the two-loop four-graviton amplitude

in N = 4 pure supergravity factorizes a ∂2R4 operator in each kinematical sectors. This

implies a non-renormalisation theorem for the R4 term, which forbids the appearance of a

three-loop ultraviolet divergence in four dimensions in the four-graviton amplitude.4

Since a fully supersymmetric R4 three-loop ultraviolet counter-terms in four dimensions

has been constructed in [29] one can wonder why no divergence occur. We provide a few

arguments that could explain why the R4 term is a protected operator in N = 4 pure

supergravity.

It was argued in [7–9] that the R4 is a half-BPS protected operator and does not re-

ceive perturbative corrections beyond one-loop in heterotic string compactification. These

non-renormalisation theorems were confirmed in [10] using the explicit evaluation of the

genus-two four-graviton heterotic amplitude derived in [11–13]. In D = 4 dimensions the

CHL model with 4 ≤ nv ≤ 22 vector multiplets obtained by the asymmetric orbifold con-

struction satisfy the same non-renormalisation theorems. For these models the moduli space

is SU(1, 1)/U(1) × SO(6, nv)/SO(6) × SO(nv). Since the axion-dilaton parametrizes the

SU(1, 1)/U(1) factor it is natural to conjecture that this moduli space will stay factorized

and that one can decouple the contributions from the vector multiplets. If one can set to

zero all the vector multiplets, this analysis shows the existence of the R4 non renormalisation

theorem in the pure N = 4 supergravity case.

It was shown in [29] that the SU(1, 1)-invariant superspace volume vanishes and the

R4 super-invariant was constructed as an harmonic superspace integral over 3/4 of the full

superspace. The structure of the amplitudes analyzed in this paper and the absence of

three-loop divergence points to the fact that this partial superspace integral is an F-term.

The existence of an off-shell formulation for N = 4 conformal supergravity and linearized

N = 4 supergravity with six vector multiplets [30–32] makes this F-term nature plausible

in the Poincaré pure supergravity.

What makes the N = 4 supergravity case special compared to the other 5 ≤ N ≤ 8

cases is the anomalous U(1) symmetry [33]. Therefore even without the existence of an

off-shell formalism, this anomaly could make the R4 term special and be the reason why

4 This has been confirmed by the recent field theory evaluation in [14].
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it turns out to be ruled out as a possible counter-term in four-graviton amplitude in four

dimensions. Because of the U(1)-anomaly full superspace integrals of functions of the axion-

dilaton superfield S = S + · · · are allowed [29]

I = κ4
(4)

∫
d4xd16θ E(x, θ)F (S) = κ4

(4)

∫
d4x
√
−g f(S)R4 + susy completion , (IV.1)

suggesting a three-loop divergence in the higher-point amplitudes with four gravitons

and scalar fields. Since one can write full superspace for ∂2R4 in terms of the gravitino∫
d16θ E(x, θ)(χχ̄)2, one should expect a four-loop divergence in the four-graviton amplitude

in four dimensions.
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