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Abstract

Response-adaptive randomization procedures have a dual goal of estimating

the treatment effect and randomizing patients with a higher probability of receiv-

ing the superior treatment. These are competing objectives, and no procedure

in the literature is “perfect” with respect to both objectives. For clinical trials of

two treatments, we discuss metrics for comparing response-adaptive randomiza-

tion procedures that can be represented graphically to compare designs. These

metrics involve the simulated distribution of the set of jointly sufficient statis-

tics for estimating functions of the unknown parameters. We explore the binary

response and normal cases, and compare numerous procedures found in the lit-

erature. We distinguish between metrics of efficiency and metrics that measure

ethical cost. Each of these is a function of the joint sufficient statistics. When

graphed against each other, we can gauge competing designs in obtaining these

competing objectives. We find that, contrary to asymptotic results, tuning pa-

rameters that affect the variability of the procedure do not have much impact in

the finite case. We also find that procedures that target an optimal allocation

based on ethical and efficiency considerations generally provide a better compro-

mise design than procedures that do not.

Keywords: Adaptive designs; Binary responses; Ethics; Efficiency; Multi-objective de-

signs; Normal response; Sufficient statistics.
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1 Introduction

The literature is replete with response-adaptive randomization procedures for clinical

trials; many are described in [1]. In essence, the objectives of such procedures often bal-

ance tenuously between the desire to assign more patients to the better treatment and

to efficiently estimate the treatment effect. In this paper, we provide a simulation-based

graphical technique to compare procedures with respect to their success in achieving

these competing objectives.

The paper is organized as follows. In Section 2 we introduce the clinical trial

setting used in our study, that of two treatments with binary and normal responses,

together with the attendant notation. In Section 3, we describe the response-adaptive

randomization procedures for which we compare treatment differences. Section 3.1

assumes binary responses, while Section 3.2 assumes normally distributed responses.

In Section 4, we describe the graphical method and use it to compare the procedures

described in Section 3 under various scenarios. Comments on different measures of

ethical performance are made in Section 5 and we draw conclusions in Section 6.

2 Background

Reference [1] describes response-adaptive randomization procedures for two treatments,

A and B, that target an optimal allocation to achieve some objective. Examples

include maximizing power, minimizing expected treatment failures, minimizing total

mean response or hazard, or some combination. The sample treatment allocations that

attain such objectives typically are unknown functions of the parameters θ; letting ρ(θ)

denote the proportion of subjects randomized to treatment A when the objective is

obtained, we call it the target allocation. The procedures we discuss converge almost

surely to a target allocation ρ(θ). As will be seen, randomization procedures based on

ad hoc rules rather than optimality properties, such as urn models, may be expected to

place more subjects on the better treatment, but do not necessarily have other optimal

properties.
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Let T1, ..., Tn be a randomization sequence for fixed n, where Tj = 1 indicates the

allocation of treatment A to patient j and Tj = 0 the allocation of treatment B to that

patient. Let NA(n) =
∑n

j=1 Tj be the (random) number of assignments to treatment

A, with the number NB(n) = n − NA thus assigned to treatment B. Let X1, ..., Xn

be responses of subjects to treatment, which could be binary, ordinal, or continuous.

Let Fn = σ(T1, ..., Tn, X1, ..., Xn), be the history of all treatment assignments and

responses through n subjects. Then a response-adaptive randomization procedure is

given by the probability of randomizing the jth subject to treatment A for j ≥ 1, i.e.,

φj = E(Tj|Fj−1). Note that 1 − φj is the probability of randomizing the jth subject

to treatment B.

Let L(θ) be the likelihood of the data. In response-adaptive randomization, NA(n)

must belong to the set of jointly sufficient statistics, since its distribution depends on θ.

Most inference procedures and efficiency measures would condition on NA(n) as fixed.

Because this results in a loss of information on θ [2], it is more appropriate to conduct

unconditional inference, over the joint distribution of the set of sufficient statistics [3].

Consider the binary response model, where Xj|(Tj = 1) and Xj|(Tj = 0) are

Bernoulli distributed with parameters pA and pB, respectively. Denote total response

on treatments A and B by SA =
∑n

j=1XjTj and SB =
∑n

j=1Xj(1− Tj), respectively.

Let pA and pB denote the probability of success on treatments A and B, respectively,

with qA = 1 − pA and qB = 1 − pB. For brevity, let NA ≡ NA(n). Even though they

are adaptive, the designs we consider are ancillary to the treatment outcomes [4], so

the likelihood is

L(θ) ∝ pSA
A qNA−SA

A pSB
B qn−NA−SB

B .

Note that (SA, SB, NA) are jointly sufficient for estimating θ = (pA, pB); see [3, p.193].

Assume now that pA > pB. Then, from an ethical perspective, we may wish as many

patients as possible to be assigned to treatment A, since the underlying probability of

success on A is higher. Many metrics have been described in the literature to gauge the

ethical objectives of a response-adaptive randomization procedure. These include the

proportion of patients assigned to the better treatment, E(NA/n), and the proportion
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of successes, E((SA + SB)/n), which are often used interchangeably as a metric of

achieving ethical objectives in spite of their involving completely different elements

from the set of sufficient statistics. While they are correlated, they also follow very

different distributions. Another metric is given by P (SB > SA), the probability of

being assigned to the inferior treatment [5].

The primary goal of a clinical trial is to estimate a treatment effect. In the binary

case, we can estimate the treatment effect as

η̂ ≡ p̂A − p̂B =
SA
NA

− SB
n−NA

,

which is a function of the sufficient statistics and a natural estimator of pA− pB. Note

that the distribution of the statistic η̂ must be computed with respect to the joint

distribution of the sufficient statistics (SA, SB, NA), which has enormous complexity

induced by the response-adaptive randomization procedure. In many cases, the joint

distribution is asymptotically normal (e.g., [1]); however, our interest will be in the

moderate sample size range, and therefore the distribution of η̂ must be simulated by

replicating the design under a particular set of parameters (pA, pB). A metric can be

obtained that captures the efficiency of estimation by computing the mean squared

error (MSE) of η̂ in estimating η:[
E

((
SA
NA

− SB
n−NA

)
− (pA − pB)

)]2

+ Var

(
SA
NA

− SB
n−NA

)
. (1)

Similarly the MSE can be computed for the relative risk or odds ratio, or the logarithms

of either.

Consider now the normal response model, where Xj|(Tj = 1) ∼ N(µA, σ
2
A) and

Xj|(Tj = 0) ∼ N(µB, σ
2
B). Let SA =

∑n
j=1XjTj, SB =

∑n
j=1Xj(1 − Tj), SSA =∑n

j=1X
2
j Tj and SSB =

∑n
j=1X

2
j (1 − Tj) denote the sums and sums of squares of the

responses for the two treatments A and B in an obvious way. The log-likelihood can

be written as

lnL(θ) ∝ −NA

2
lnσ2

A −
SSA − 2µASA +NAµ

2
A

2σ2
A

− NB

2
lnσ2

B −
SSB − 2µBSB +NBµ

2
B

2σ2
B

.

For this model, for fixed n, the jointly sufficient statistics for estimating θ = (µA, µB, σ
2
A, σ

2
B)

are given by the set (SA, SB, SSA, SSB, NA).
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Many response-adaptive randomization procedures have the property that NA(n)

is asymptotically distributed as N(nρ(θ), nv), where the variance v is derived for many

different procedures in [1]. A lower bound for v was found in [6]. They call a procedure

asymptotically best among all asymptotically normal procedures with mean nρ(θ) if it

attains the lower bound. This is one metric of the efficiency of a procedure, but it only

makes sense asymptotically. Procedures with asymptotically normal limits may be very

slow to attain them, and we found that, in some procedures, n = 500 was required

to attain v. Ignoring a possibly larger (than asymptotic) variance for finite NA(n)

may give unfounded confidence on the precision of estimators such as p̂A ≡ SA/NA(n),

depending on the variance of SA and the covariance between SA and NA.

3 Response-Adaptive Randomization Procedures

Most response-adaptive designs in the literature are for binary random variables. We

discuss them first. For each procedure, we specify the target allocation proportion

on treatment A, that is, ρ(θ), and the probability of assigning the next subject to

treatment A, that is, φj.

3.1 Binary Responses

One goal of response-adaptive randomization procedures is to target some optimal

allocation ρ(θ), where θ = (pA, pB) (e.g., [7]). In order to maximize power for fixed

sample size, for example, Neyman allocation is given by

ρ(θ) =

√
pAqA√

pAqA +
√
pBqB

.

For fixed power, the following allocation minimizes the expected number of treatment

failures NAqA +NBqB:

ρ(θ) =

√
pA√

pA +
√
pB

and is termed the RSIHR allocation, using an acronym based on the surnames of the

authors [7]. These target allocations depend on the unknown parameters θ and must
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be sequentially estimated by substituting ρ(θ̂), where θ̂ is the the usual estimator of

(pA, pB), that is, p̂A = SA/NA, p̂B = SB/NB.

One procedure with favorable operating characteristics and a known asymptotic

distribution theory is Hu and Zhang’s [8] version of Eisele’s [9] doubly-adaptive biased

coin design (DBCD) for which the probability of allocating the jth subject to treatment

A is

φj = Ê (Tj| Fj−1) =

ρ
(
θ̂j−1

)(
ρ(θ̂j−1)

NA(j−1)/(j−1)

)γ
ρ
(
θ̂j−1

)(
ρ(θ̂j−1)

NA(j−1)/(j−1)

)γ
+
(

1− ρ
(
θ̂j−1

))(
1−ρ(θ̂j−1)

NB(j−1)/(j−1)

)γ , (2)

where NA(j − 1) and NB(j − 1) = (j − 1) − NA(j − 1) are the numbers of subjects

allocated to treatments A and B, respectively, after a total of j− 1 subjects have been

randomized; γ is a tuning parameter that affects the variability of the procedure. This

procedure reduces to φj = ρ
(
θ̂j−1

)
if γ = 0, which is a procedure first investigated

by Melfi and Page [10]. The procedure is highly variable, but choosing γ between 2

and 5 will reduce the variability substantially. Note that if γ = ∞, the procedure is

deterministic unless NA(j − 1)/(j − 1) = ρ
(
θ̂j−1

)
. Hu and Zhang’s procedure can

target any ρ(θ) ∈ (0, 1), and has an asymptotically normal limit. However, it is not

asymptotically best in the sense of [6].

Reference [11] describes a randomization procedure that can target any allocation

ρ(θ), and is asymptotically best in the sense of [6]. It can be described as follows:

φj =


αρ(θ̂), if NA(j − 1)/(j − 1) > ρ(θ̂);

ρ(θ̂), if NA(j − 1)/(j − 1) = ρ(θ̂);

1− α(1− ρ(θ̂)), if NA(j − 1)/(j − 1) < ρ(θ̂).

(3)

where the parameter α controls the amount of variability and is termed an efficient

response-adaptive design, with acronym ERADE. When ρ(θ) = 1/2, the procedure

reduces to a class of restricted randomization procedures described by [12] and when,

in addition, α = 2/3 to Efron’s biased coin design [13]. When α = 0, we have complete

randomization.
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Urn models. Urn models have been proposed as a method to generate response-

adaptive randomization sequences, but, unlike the doubly adaptive biased coin design,

most urn models converge to a specific target that cannot be changed according to the

objectives of the trial.

The randomized play-the-winner rule [14] is a simple model that randomizes with

a higher probability to treatment A if there have been more successes on A or failures

on B. Specifically,

φj =
SA(j − 1) + n−NA(j − 1)− SB(j − 1)

j − 1
.

For the randomized play-the-winner rule, NA/n has an asymptotically normal distri-

bution, but it targets ρ(θ) = qB/(qA + qB), which is often too skewed to the better

treatment to offer efficient estimation. It can have a large variability, so it is not the

asymptotically best procedure targeting ρ(θ) = qB/(qA + qB)

The drop-the-loser rule [15] is a more complicated rule in which there are balls

of three types in an urn. The first two types, if drawn, assign the patient to either

treatment A or B. The ball is replaced only if there is a success. In addition to

two treatments, there is an external element, called “immigration balls”, that when

“drawn”, do not result in a treatment assignment, but replenish the urn through adding

a type A and type B ball; the immigration ball is replaced. Because of the immigration

component, it is not possible to write φj in a nice form. Reference [14] shows that NA/n

is asymptotically normal and also targets qB/(qA + qB), but with lower variability

than the randomized play-the-winner rule. The variance attains the lower bound and

therefore the procedure is asymptotically best for targeting ρ(θ) = qB/(qA + qB).

Reference [16] introduced a modification of Wei and Durham’s [14] randomized

play-the-winner rule which has

φj =
SA(j − 1) + α

SA(j − 1) + SB(j − 1) + α + β
,

where α and β are positive numbers that, although they do not have to be integers, can

be conceptualized as the initial number of type A and B balls, respectively, in an urn.

Reference [17] shows that NA/n converges almost surely to 1 if pA > pB. Reference
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[18] studies this procedure in a dose–finding context. Note that only successes change

the probability of assignment. So this urn procedure is constructed to only target

an ethical objective and is expected to have low power for tests of treatment effects,

although one can test a treatment effect using a modified t–test based on the data

accrued on both treatments prior to the asymptotic limit [19].

Other procedures. Other procedures have been proposed for response-adaptive ran-

domization with binary responses. Reference [20] described a Bayesian procedure to

compute the probability that one treatment is better than another with binary re-

sponses. Under a uniform prior distribution, the procedure yields the following formula.

Given sufficient statistics (SA, SB, NA) after j − 1 patients,

P̂ (pA > pB) =

∑SA

a=0

 SA + SB − a

SB

 NA − SA + n−NA − SB + a

n−NA − SB


 n+ 2

n−NA + 1

 .

Reference [21] reformulated this procedure by proposing the following response-adaptive

procedure:

φj =
[P̂ (pA > pB)]1/2

[P̂ (pA > pB)]1/2 + [1− P̂ (pA > pB)]1/2
.

3.2 Normal Responses

One can apply the doubly-adaptive biased coin design to any ρ(θ) in the case of con-

tinuous outcomes. If responses are normal with θ = (µA, µB, σ
2
A, σ

2
B), one can target

allocations that involve only the variances, in order to improve efficiency of estimation.

These include Neyman allocation, given by ρ(θ) = σA/(σA + σB), and the E-optimal

allocation of [2], given by ρ(θ) = σ2
A/(σ

2
A + σ2

B). Suppose we assume that µA > 0

and µB > 0, and that a higher mean response is undesirable, that is µA < µB. If one

wishes, for fixed power, to minimize the mean total response, the optimal allocation is

given by [22]:

ρ(θ) =

√
µBσA√

µBσA +
√
µAσB

.
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However, the relative magnitude of µB to σA and µA to σB may be such that φj = ρ(θ̂)

assigns more patients to the inferior treatment. The authors therefore recommend

constraining φj so that it never assigns more probability to the treatment performing

worse thus far.

Reference [23] proposed the following procedure that depends only on the means:

ρ(θ) = Φ

(
µA − µB

T

)
,

where Φ is the probit function and T is a positive constant. Reference [24] generalized

the binary optimal allocation for normal responses in terms of failures. This amounts

to minimizing the total number of patients with response greater than a constant c.

The corresponding allocation rule is

φj =

√
Φ
(
µ̂B−c
σ̂B

)
σ̂A√

Φ
(
µ̂B−c
σ̂B

)
σ̂A +

√
Φ
(
µ̂A−c
σ̂A

)
σ̂B

.

Reference [16] introduced a very general class of randomized treatment allocation

rules for nonnegative responses. A special case of these has come to be called the

randomized reinforcement urn (RRU); see [25] for more complete information. We

consider a special case for two treatments with continuous random variables in which

the jth subject is allocated as

φj =
N∗
A(j − 1) + a

N∗
A(j − 1) +N∗

B(j − 1) + a+ b
(4)

where N∗
A(j − 1) and N∗

B(j − 1) are the “numbers” of balls which have been added

to the urn after j − 1 subjects have been treated and a > 0 and b > 0 represent

the initial “numbers” in the urn for treatments A and B respectively. Updating of

the urn is based on the response xj of the jth patient and more specifically, in order

to avoid negative probabilities of allocation, on a positive, monotonic function g(xj)

of that response. Thus, for example, if the jth subject is allocated treatment A,

then N∗
A(j) = N∗

A(j − 1) + g(xj) and N∗
B(j) remains unchanged as N∗

B(j − 1). Note

that for µA < µB with treatment A prefered, g(xj) will be a monotonic decreasing
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function of xj. References [26] and [27] showed, by different methods, that φj converges

to 1 as j approaches infinity and thus that the target allocation is ρ(θ) = 1. The

procedure is sensitive to the choice of the initial numbers a and b and the function

g(·) as demonstrated in the simulation study of [28], but sensible recommendations are

available.

4 Comparing Procedures Graphically

To summarize the ethical and estimation performance for each procedure we study,

we compute the expected proportion of subjects on the inferior treatment, E(NB/n),

and the “root MSE” for estimating the treatment difference,
√
MSE (p̂A − p̂B) or√

MSE (µ̂A − µ̂B), from 1,000,000 simulated replications under different parameter-

izations using the programming language Gauss [29]. The number of simulations is

chosen to ensure that the Monte Carlo error, that is the between-simulation variation,

is such that all quantities of interest are estimated to within at least ±0.0015. Sim-

ulations involving 10,000 replications are in fact adequate for the graphics but it is

wise to be cognizant of the fact that Monte Carlo error can be high, as emphasized

recently in [30]. All graphs were produced using the software R [31]. Another natural

measure of ethical performance for binary responses is the total proportion of successes

(SA + SB)/n. We discuss this alternative briefly in Section 5.

4.1 Binary Responses

We implement procedures targeting Neyman and RSIHR allocations with the DBCD

[8] and γ = 0 and 2, denoted NM0, NM2, and RSIHR0 and RSIHR2, and procedures

targeting the RSIHR allocation with the ERADE and α = 0.4, 0.5 and 0.7, denoted

ERADE4, ERADE5 and ERADE7. Recall that the DBCD with γ = 0 reduces to

φj = ρ(θ̂j−1). We also implement the randomized play-the-winner rule, the drop-the-

loser rule with 1 immigration ball, the randomized reinforced urn with a = b = 3

and a = b = 5 following reference [28] for normal responses ([32] used a = b = 1
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and a = b = 3 ) and the Thall and Walthen [21] procedure denoted RPW, DL,

RRU3, RRU5, and TW, respectively. In addition, for comparison purposes, we simulate

selected restricted randomization procedures, specifically Efron’s biased coin design [13],

denoted BCD, and the generalized biased coin designs using:

φj =
[NB(j − 1)]γ

[NA(j − 1)]γ + [NB(j − 1)]γ

with γ = 0 (completely randomized), γ = 1 [33], γ = 2 [34] and γ = 5 [12], denoted

GBDC0, GBCD1, GBCD2 and GBCD5 respectively. All these BCDs target ρ(θ) = 1/2.

Each procedure has a “start-up” rule that assigns subjects with probability 1/2

until SA/NA and SB/NB are not equal to 0 or 1. The average number of subjects in

the start-up phase is approximately 13 (see the Appendix). All procedures, with the

exception of the RRU, are then begun with values of SA, SB, NA and NB obtained from

the start-up phase. The RRU rule, after start-up, is implemented with the initial urn

allocations a = b = 3 and a = b = 5 as specified above.

Figures 1 to 3 are plots of E(NB/n) versus root MSE, for the six parameter set-

tings and with n = 100 and 200. The TW procedure was found to have substantially

higher root MSE than do the other procedures. Specifically, values for the root MSE

for TW ranged from 0.973 to 1.802 and for E(NB/n) from 6.3% to 28.7%. The re-

sults for TW are therefore excluded from the graphs, since otherwise the remaining

procedures appear indistinguishable. In fact the TW procedure performs the best of

all procedures in terms of ethics and the worst in terms of estimation. Note that the

points corresponding to the BCD, GBCD0, GBCD1, GBCD2 and GBCD5 procedures

almost overlap on the graphs and, for the sake of visual clarity, are therefore labeled

generically as GBCD.

For the GBCD procedure, E(NB/n) stays right at 0.50 for all parameter combina-

tions considered. The other restricted randomization designs all cluster nearby with

E(NB/n) slightly lower in plots with pB = 0.20 and higher when pB reaches 0.60; all

restricted randomization designs have relatively small root MSE. The ERADE, dou-

bly adapted biased coin design and RSIHR procedures cluster tightly together with

relatively better ethical performance and yet very similar root MSE.

11



0.8 0.9 1.0 1.1 1.2

0
.2

0
.3

0
.4

0
.5

Root MSE

E
(N

B
n
)

●

●●

●

GBCD
 

 
 
 

RPW

DL
RRU3

RSIHR0

RSIHR2

NM0

NM2

ERADE7 ERADE5,ERADE4

RRU5

(a) pA = 0.8, pB = 0.4, n = 100

0.8 0.9 1.0 1.1 1.2

0
.2

0
.3

0
.4

0
.5

Root MSE
E

(N
B

n
)

●

●●

●

GBCD

 

 
 
 

RPW

DL

RRU3

RSIHR0,ERADE4
RSIHR2

NM0
NM2

ERADE5,ERADE7

RRU5

(b) pA = 0.8, pB = 0.4, n = 200

0.8 0.9 1.0 1.1 1.2

0
.2

0
.3

0
.4

0
.5

Root MSE

E
(N

B
n
)

●

●●

●

  GBCD

 

RPW

DL

RRU3

RSIHR0

ERADE5,RSIHR2
 

NM0,NM2 

ERADE4ERADE7

RRU5

(c) pA = 0.8, pB = 0.2, n = 100

0.8 0.9 1.0 1.1 1.2

0
.2

0
.3

0
.4

0
.5

Root MSE

E
(N

B
n
)

●

●●

●

   GBCD

 

 
 
 

RPW
DL

RRU3

RSIHR0

RSIHR2

NM0,NM2

ERADE5,ERADE4ERADE7

RRU5

(d) pA = 0.8, pB = 0.2, n = 200

Figure 1: Ethics versus estimation with binary responses
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Figure 2: Ethics versus estimation with binary responses
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Figure 3: Ethics versus estimation with binary responses
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The urn procedures tend to outperform the others in terms of ethics, and under-

perform in terms of estimation, with RRU3 being the extreme. RPW and DL tends

to cluster closer to the ERADE procedures than the other urns in terms of estimation

slightly better ethical performance, except when pA = 0.80 and pB = 0.60 in which

case RPW and DL cluster with the RRUs. The RRUs have the lowest ethical cost and

the greatest root MSE, with exceptions only in the case pA = 0.80 and pB = 0.60 when

clustered with RPW and DL.

The ethical performance of the urn procedures improves noticeably as the sample

size increases from 100 to 200, at the cost of higher MSEs, while the other procedures

improve in terms of estimation and change much less in terms of ethics.

4.2 Normal Responses

We implement procedures with target allocations Neyman, [2], [22], [23] with T = 2

and [24] with c = 0, and all with φj = ρ
(
θ̂j−1

)
and denote these NM, AG, ZR, BB

and BM respectively. We follow reference [28] in implementing the RRU with an initial

allocations of a = b = 3 and a = b = 5 but, since µA < µB with treatment A preferred,

we apply the reverse transformation function

g(x) =


1 if x < 0.1

1/x if 0.1 ≤ x ≤ 10

0 if x > 10

We denote these procedures RRU3 and RRU5, respectively.

Each procedure has a “start–up” rule that assigns subjects to treatments with

probability 1/2 until the smallest number of subjects assigned to either treatment is 2.

The average number of subjects to attain this bound is 5.5 (see the Online Supplemental

Material). Each response-adaptive procedure then begins with the sums and sums of

squares for treatments A and B calculated using the start-up data and, in addition,

the RRU begins with initial allocations a = b = 3 and a = b = 5 as indicated above.

We compare the procedures’ ethical and estimation performance graphically. Fig-

ures 4 and 5 are plots of E(NB/n) versus the root MSE,
√
MSE (µ̂A − µ̂B), for n = 100
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and 200. We compare procedures for parameter combinations (µA, µB, σA, σB) =

(1, 2, 0.2, 0.2), (1, 3, 0.2, 0.2), (1, 3, 0.2, 0.33) and (1, 3, 0.33, 0.2).

AG distinguishes itself as having significantly larger root MSE than the other pro-

cedures, except when (µA, µB, σA, σB) = (1, 3, 0.2, 0.33) in which case BB’s is equally

large. Furthermore, for every parameter combination considered there are procedures

that outperform AG in terms of ethics. BB is consistently the best procedure in terms

of ethical performance.

When the two groups have equal variance, E(NB/n) for NM and BM is consistently

at 0.5; but even with unequal variances, other procedures perform almost as well in

terms of root MSE, yet much better in terms of ethics.

For ZR and the urns, root MSE is similar and only noticeably larger than for NM

and BM with unequal variances. In terms of ethics, On the other hand, ZR and the

urns perform consistently better than NM and BM in terms of ethics. The relative

ranking of ZR and the urns in terms of ethics is inconsistent; and sometimes they

cluster together and sometimes they are quite disparate.

5 Measures of Ethical Performance

With binary responses, two natural measures of ethical performance are the overall

proportion of successes and the proportion of subjects on the best treatment. The

comparison of procedures is virtually unchanged if, versus root MSE, we plot the

expected proportion of successes instead of the expected proportion of subjects on the

best treatment. To see this Figure 5 plots the E((SA + SB)/n) versus E(NB/n) for

pA = 0.8, pB = 0.4 and n = 100 for each procedure. The points lie almost on a straight

line. Plots for other parameters show similar high correlations. So for comparing

procedures, these measures are interchangeable.

We emphasize that the similarity between the two ethics measures is shown regard-

ing their mean values. Correlations of the two measures within procedures, instead of

between procedures, are highly variable in the binary response case, with correlations

ranging from −0.328 for the NM2 procedure with n = 100 through 0.026 for the BCD
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Figure 4: Ethics versus estimation with normal responses, n = 100
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Figure 5: Ethics versus estimation with normal responses, n = 200
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with n = 200 to 0.818 for the RRU3 with n = 200.

Correlations decrease with sample size for the BCD and GBCD0, whereas they

increase with sample size for DL, RRU3, RRU5. For other procedures, the relationship

of correlation with sample size is more complicated. The point is that within procedure,

the two ethics variables are not interchangeable. Indeed, even in the best case with

RRU3, 24% (i.e., 1 − 0.762) of the variation in the proportion of successes is left

unexplained by the proportion treated on the best treatment. So for evaluating ethics

within procedures, both measures need to be considered.

6 Discussion

We have presented simple plots that compare dozens of procedures simultaneously

with respect to the tradeoffs between ethics and efficiency. The plots offer immediate

easy-to-view comparison as opposed to tedious tables scattered in the literature. For

a fixed sample size, an investigator can determine an appropriate procedure based on

the competing goals of the clinical trial.

The plots are based on metrics computed as functions of the jointly sufficient statis-

tics. While countless simulation papers have been published on randomization proce-

dures computing many different measures, the only measures that need to be computed

and saved from simulations are the sufficient statistics. In the case of binary responses,

these are (NA, SA, SB), and for normal response, these are (NA, SA, SB, SSA, SSB).

Once these are computed for a fixed sample size, all ethical metrics and efficiency met-

rics can be computed from them. We chose to illustrate only two on our graphs, but

it should be clear from the previous sections that many more can be explored.

Because of the different scaling of efficiency and ethical measures, one needs to

exercise caution in interpreting a 45 degree line as a measure of how well a procedure

balances competing goals. In our plots, “closer to the origin” on both axes must be

considered.

We have noted several important global properties of these procedures that have

heretofore been examined only specifically. First, many papers in the literature have
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addressed important asymptotic properties of procedures, and we have examined these

procedures for realistic sample sizes found in clinical trials. While the theory of ran-

domization has been enriched by asymptotic results, and many procedures have been

described that have optimal asymptotic properties, we find that some of the theoretical

results become less important in the finite sample case. For example, many procedures,

such as the generalized biased coin designs, the doubly adaptive biased coin designs,

and the ERADE have “tuning parameters” that affect the variability of the procedure.

While these parameters tend to be important asymptotically, our plots show that many

of these procedures cluster on top of each other for different parameter values, and,

in fact, some plots do not follow the natural ordering of the parameter values. The

ERADE, although asymptotically best, is not globally much better than the doubly

adaptive biased coin design targeting RSIHR allocation in finite samples.

Second, while urn models and other types of response-adaptive randomization pro-

cedures that do not have optimal “targets” may sometimes outperform procedures

that are based on optimal targets, in general the latter types of procedures capture

the trade-offs in competing objectives better across all values of θ. This is a global

observation that is seen throughout our graphics. Procedures based on Hu and Zhang’s

function (including the Zhang and Rosenberger procedure in the normal case) and the

ERADE seem to balance the trade-off best. Of the procedures that do not target an

optimal allocation in the binary case, the drop-the-loser rule seems to be globally better

than others.

If E(NA/n), rather than E(NB/n), is plotted against root MSE then the graphs can

be regarded as representing risk-return and are clearly the same, at least in principle,

as the risk-return plots that are ubiquitous in finance. It is therefore tempting to take

this analogy further and to consider constructing an efficient frontier for our settings

by plotting the smallest root MSE that can be attained for a fixed E(NA/n) and then

allowing E(NA/n) to vary. The calculation of such a frontier is however undoubtedly

challenging and is left as an open problem for future research.
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Appendix: Average Number of Trials in the Start-

Up Procedures

Binary Responses

Observe that

P (SA, SB , NA|n) = P (SA, SB |NA, n)P (NA|n)

= P (SA|NA, n)P (SB |(n−NA)|NA, n)P (NA|n)

=
(
nA

sA

)
psA

A (1− pA)nA−sA

(
n− nA

sB

)
psB

B (1− pB)n−nB−sB

(
n

nA

)(
1
2

)n

.

Thus, for Nstop the (random) number of trials in the start-up, it follows that

P (Nstop ≤ n) =
n−2∑
nA=2

nB−1∑
sB=1

nA−1∑
sA=1

P (SA, SB, NA|n)
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and hence, by some straightforward but tedious algebra, that

P (Nstop = n) = P (Nstop ≤ n)− P (Nstop ≤ (n− 1))

=
1
2n

[
(1 + pA)(1− pA)n−1 + (1 + pB)(1− pB)n−1 + (2− pA)pn−1

A + (2− pB)pn−1
B

+pA(2− pA)n−1 + pB(2− pB)n−1 + (1− pA)(1 + pA)n−1 + (1− pB)(1 + pB)n−1

−(1− pA + pB)(1 + pA − pB)n−1 − (1 + pA − pB)(1− pA + pB)n−1

−(pA + pB)(2− pA − pB)n−1 − (2− pA − pB)(pA + pB)n−1 − 2
]
,

for n = 4, 5, . . . Thus for (pA, pB) = (0.4, 0.2), (0.6, 0.2), (0.8, 0.4) and (0.8, 0.6), E(Nstop) =

12.3611, for (pA, pB) = (0.8, 0.2) E(Nstop) = 15.3056 and for (pA, pB) = (0.6, 0.4)

E(Nstop) = 8.8571, giving an average expected number of 12.2679.

Normal Responses

Observe that

P (NA = 1 and NB ≥ 2|n− 1 trials ) =

(
n− 1

1

)(
1

2

)n−1

for n ≥ 3

and vice versa. Hence, by conditioning arguments,

P (min(NA, NB) = 2|n trials ) =

(
n− 1

1

)(
1

2

)n−1

= (n− 1)

(
1

2

)n−1

for n ≥ 4

and thus the expected number of trials in the start-up procedure is 11/2.
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